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ABSTRACT 15 

Accumulating evidence across species indicates that brain oscillations are superimposed 16 

upon an aperiodic 1/#	- like power spectrum. Maturational changes in neuronal oscillations 17 

have not been assessed in tandem with this underlying aperiodic spectrum. The current study 18 

uncovers co-maturation of the aperiodic component alongside the periodic components 19 

(oscillations) in spontaneous magnetoencephalography (MEG) data. Beamformer-20 

reconstructed MEG time-series allowed a direct comparison of power in the source domain 21 

between 24 children (8.0 ± 2.5 years, 17 males) and 24 adults (40.6 ± 17.4 years, 16 males). 22 

Our results suggest that the redistribution of oscillatory power from lower to higher frequencies 23 

that is observed in childhood does not hold once the age-related changes in the aperiodic 24 

signal are controlled for. When estimating both the periodic and aperiodic components, we 25 

found that power increases with age in the beta band only, and that the 1/#	signal is flattened 26 

in adults compared to children. These results suggest a pattern of co-maturing beta oscillatory 27 

power with the aperiodic 1/# signal in typical childhood development.  28 
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INTRODUCTION 29 

Neuronal Oscillations Characteristic of Childhood Brain Maturation 30 

Neuronal oscillatory power undergoes profound developmental changes throughout childhood 31 

(Gomez et al., 2017; Rodriguez-Martinez et al., 2017). These developmental changes in 32 

neuronal oscillations are often assessed noninvasively using electrophysiological brain 33 

recordings such as magneto-/electro-encephalography (MEG/EEG). Commonly, a Fourier 34 

analysis is used to compute the power spectral density (PSD) in fixed frequency bands, 35 

including delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-80 36 

Hz; Mackay, 1997; note that different studies may differ slightly in establishing the boundaries 37 

between frequency bands). There are age-related decreases in total power, which is estimated 38 

across a broad frequency range (Gasser et al., 1988; Schafer et al., 2014; Gomez et al., 2017; 39 

Rodriguez-Martinez et al., 2017), as well as  age-related decreases in absolute power in each 40 

of the narrowband frequencies (Gasser et al., 1988; Boord et al., 2007). Studies also report a 41 

low-to-high redistribution of relative power (i.e., where power is estimated in any given band 42 

in relation to the total power across all frequencies); more specifically, relative power 43 

decreases in the delta and theta bands and increases in the alpha, beta and gamma bands 44 

(Puligheddu et al., 2005; Gomez et al., 2013; Schafer et al., 2014). In addition, there is an 45 

increase during childhood in the peak frequency of alpha oscillations, which typically reach a 46 

peak frequency of ~10 Hz around the primary/elementary school years (Marcuse et al., 2008; 47 

Boersma et al., 2011; Cragg et al., 2011; Smit, Boomsma, et al., 2012; Miskovic et al., 2015; 48 

Gomez et al., 2017; Rodriguez-Martinez et al., 2017). 49 

Power in each narrow frequency band has been associated with different cognitive functions. 50 

The alpha rhythm (Markand, 1990) has been prominently associated with inhibition of visual 51 

attention (Jensen and Mazaheri, 2010; Clayton et al., 2017; Voytek et al., 2017). In addition, 52 

the increase of alpha peak frequency with age has been considered a biomarker for cognitive 53 
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development (Marcuse et al., 2008; Boersma et al., 2011; Cragg et al., 2011; Smit, Boomsma, 54 

et al., 2012; Miskovic et al., 2015; Gomez et al., 2017; Rodriguez-Martinez et al., 2017), which 55 

suggests that the perception of visual stimuli would also improve with age (Thut et al., 2012). 56 

In the sensory motor cortex, mu� which is analogous to the alpha band (Mackay, 1997), and 57 

beta oscillations have been found to increase when cortical motor areas are disengaged (Ritter 58 

et al., 2009; Jenkinson and Brown, 2011). Our recent longitudinal MEG study of motor 59 

development in children demonstrated linear increases in amplitude and mean frequency in 60 

movement-evoked mu and beta oscillations (Johnson et al., 2019). In studies of 61 

developmental resting-state neuronal activity (i.e., in the absence of any specific cognitive 62 

event), there are also reports of age-related increases in mu power from infancy to age 5 63 

(Berchicci et al., 2011) and age-related increases in beta power between age 9-14 and 20-42 64 

(Heinrichs-Graham et al., 2018). Delta power has been correlated with different stages of 65 

sleep (Amzica and Steriade, 1998), and theta activity has been shown to relate to executive 66 

attention and working memory (Wang et al., 2005). Developmental trends in delta and theta 67 

power are less clear, with some studies reporting profound decreases during childhood 68 

(Schafer et al., 2014; Gomez et al., 2017) and others reporting no changes between 9 and 11 69 

years, followed by decreases into early adulthood (Campbell and Feinberg, 2009). There is 70 

evidence of increased gamma activity in the initiation and cessation of movement (Gaetz et 71 

al., 2010; Burianova et al., 2013; Cheyne and Ferrari, 2013; Marstaller et al., 2014; Sowman 72 

et al., 2014). Gamma activity can be adult-like as early as 3 years of age in motor tasks 73 

(Johnson et al., 2019), and resting state gamma activity across the first 3 years of life is 74 

predictive of later development of language and cognitive skills (Benasich et al., 2008). Based 75 

on the previous literature, it is clear that a precise characterisation of developmental changes 76 

in neuronal oscillatory power is critical for our mechanistic understanding of the maturation of 77 

cognitive functions during childhood. 78 
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Outstanding Questions  79 

Spectral analysis of resting-state MEG/EEG recordings has proven to be a powerful tool for 80 

assessing age-related power changes. However, nearly all previous resting-state studies have 81 

used the five canonical frequency bands to estimate developmental changes in power. These 82 

studies, therefore, are susceptible to methodological challenges. For example, examining 83 

power in pre-defined bands can conflate power changes with other parameters, such as 84 

oscillation centre frequency and bandwidth (Haller et al., 2018). An example is the increase in 85 

alpha peak frequency with age, which is considered to be one of the most important 86 

electrophysiological hallmarks of brain development (Valdés et al., 1990). Following historical 87 

tradition, nearly every study to date has defined the peak frequency as the frequency with the 88 

highest amplitude within the range of the canonical alpha band. Under this constraint, it is 89 

impossible to determine whether or not changes in the peak frequency may in fact reflect shifts 90 

of the peak frequency outside the canonical alpha band. Similarly, group-level estimates of 91 

power in one band may leak into the estimates of power in adjacent bands, given the variability 92 

in oscillation centre frequency across individuals (Haegens et al., 2014; Samaha and Postle, 93 

2015) and age (Rodriguez-Martinez et al., 2017). But perhaps most importantly, the 94 

narrowband estimates of oscillatory activity may be affected by aperiodic components in the 95 

signal. Brain activity at many spatiotemporal scales, ranging from neuronal membrane 96 

potentials to MEG/EEG signals, exhibits an aperiodic background signal that co-exists with 97 

neuronal oscillations (He, 2014). This aperiodic signal follows a power-law function: % ∝ 1/#'. 98 

Thus, power % is inversely proportional to frequency # with a power-law exponent of (, which 99 

is equivalent to the slope of the power spectrum when plotted in the log-log space. The 100 

aperiodic 1/# signal is not only prevalent in the nervous system, but it is a ubiquitous feature 101 

of a wide variety of time-varying real-world systems, including the flow of the river Nile and the 102 

luminosity of stars (Bak et al., 1987). Historically, the aperiodic 1/# signal has not been as 103 

well investigated as periodic (oscillatory) brain activity, resulting in a lack of consensus on how 104 
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to measure it, what it may reflect, and what might be its physiological generators. Nonetheless, 105 

the recent electrophysiological literature has started to elucidate the functional significance of 106 

the 1/# signal in human cognition and behaviour. For instance, this signal has been found to 107 

vary systematically with age (Voytek et al., 2015), and to change with task demands (He et 108 

al., 2010) that can co-vary with behavioural performance (Podvalny et al., 2015). Moreover, 109 

recent simulations, as well as empirical data from rats and macaques, indicate that neuronal 110 

excitation and inhibition in cortical circuits can be inferred from the slope of the invasively-111 

recorded electrophysiological power spectrum (Gao et al., 2017). This further emphasises the 112 

importance of quantifying the 1/# signal and its contributions to human cognition (Voytek and 113 

Knight, 2015). 114 

Related to this, standard analytic approaches, which estimate power in narrow frequency 115 

bands, fail to examine whether an oscillation – a rhythmic component that peaks at a particular 116 

frequency – is truly present in the power spectrum. The power that is assessed within a pre-117 

defined frequency range of the electrophysiological power spectrum is most likely a mixture of 118 

both oscillatory and aperiodic 1/# components. It is imperative to disentangle age-related 119 

changes in the narrowband oscillations from those in the broadband aperiodic 1/# signal. 120 

Although these signals are inter-related, they are likely to represent distinct underlying neural 121 

mechanisms (Haller et al., 2018). 122 

Current Study: Aims and Hypotheses  123 

To overcome the limitations of previous studies that used narrowband power analyses, the 124 

present study used advanced analysis techniques (Haller et al., 2018) to investigate, and to 125 

disentangle, age-related effects in the aperiodic 1/# and the oscillatory components of brain 126 

activity. For this, we used a paediatric whole-head MEG scanner (Johnson et al., 2010) to 127 

collect resting-state electrophysiological signals from children ranging in age from 4 to 12 128 

years, as well as a conventional MEG scanner to obtain the same signals from adults. 129 

Importantly, source waveforms were computed using an atlas-based beamforming approach 130 
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for power spectra analyses (Hillebrand et al., 2012; Hillebrand et al., 2016), which allowed for 131 

direct comparison of MEG data acquired from the two systems (He et al., 2019).  132 

We first analysed neuronal power in pre-defined frequency bands using standard methods, to 133 

permit direct comparisons of our results with those from previous studies. In line with the 134 

previous literature (Gasser et al., 1988; Puligheddu et al., 2005; Marcuse et al., 2008; Boersma 135 

et al., 2011; Cragg et al., 2011; Smit, Boersma, et al., 2012; Gomez et al., 2013; Schafer et 136 

al., 2014; Miskovic et al., 2015; Gomez et al., 2017; Rodriguez-Martinez et al., 2017), we 137 

hypothesised that, in contrast to children, adults would show decreased low-frequency power, 138 

increased high-frequency power, and an increased alpha peak frequency.  139 

Subsequently, we used an automatic parameterising algorithm (Haller et al., 2018) that 140 

efficiently disentangles the two features - the slope and the offset – that characterise the 1/# 141 

signal, and the three features – the centre frequency, power and bandwidth – that characterise 142 

the oscillatory components. Since the automatic parameterising algorithm does not impose 143 

band boundaries, this method allows for the assessment of group and individual differences 144 

in the centre frequency, power and bandwidth of the oscillations, both in the broadband 145 

spectra and in pre-defined narrow bands. With regard to possible age-associated differences 146 

in 1/# signal, there exists only one developmental fMRI/EEG study so far, which showed that 147 

the 1/#	slope was significantly flatter in 17 healthy adults compared to 21 full-term newborns 148 

(Fransson et al., 2013). Based on the limited developmental MEG/EEG evidence regarding 149 

the 1/# signal, we hypothesised that differences in the 1/# signal may account to a large 150 

extent for observed age-related power differences between children and adults, and that 151 

canonical frequency band analyses may confound some band specific power changes with 152 

1/# signal shifts. In particular, we predicted that the 1/# slope would be flatter, and the offset 153 

would be smaller in adults as compared to children (Fransson et al., 2013).  154 
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METHODS 155 

Participants and Ethics Statement 156 

This study included 52 human participants (28 children and 24 adults), namely healthy controls 157 

that had been recruited in a larg project on stuttering. Data from 4 children were excluded from 158 

the analysis due to excessive head movement (> 5 mm), incidental system noise or signs of 159 

drowsiness throughout the recording. Drowsiness was monitored online through a video-160 

camera so that any affected data would be removed from further analysis. Child participants 161 

were accompanied by an experienced researcher who sat with them during the whole session 162 

to make sure they remained comfortable, and who monitored and encouraged their 163 

compliance. The final sample consisted of 24 children (8.0 ± 2.5 years, 17 males) and 24 164 

adults (40.6 ± 17.4 years, 16 males).  165 

Written informed consent was obtained from the adult participants and from the 166 

parents/guardians of the children prior to the experiment. No participant reported personal or 167 

family history of neurological disease or psychological impairment and none were taking 168 

medication that could affect MEG recordings at the time of participation. All participants were 169 

remunerated $AUD 40 for their participation. The experimental procedures were approved by 170 

the Human Participants Ethics Committee at Macquarie University.  171 

MEG Data Acquisition 172 

Resting-state MEG data of 300 seconds were acquired for child and adult participants using 173 

two separate whole-head gradiometer MEG systems. Child data were acquired using a 174 

paediatric 125-channel whole-head gradiometer MEG system (Model PQ1064R-N2m, 175 

Kanazawa Institute of Technology/KIT, Kanazawa, Japan). Adult data were acquired using a 176 

160-channel whole-head gradiometer MEG system (Model PQ1160RN2, KIT, Kanazawa, 177 

Japan). Use of the paediatric MEG system to overcome critical limiting factors for MEG 178 

experimentation on children below the ages of five to six years (Irimia et al., 2014), including 179 
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a much smaller head size and overall structure in children (the smaller crown to shoulder 180 

distance prevents the full insertion of the head into the adult helmet), has been demonstrated 181 

previously (Sowman et al., 2014; He, Brock, et al., 2015; He, Garrido, et al., 2015; Etchell et 182 

al., 2016).  183 

The gradiometers of both systems have 50 mm baseline and 15.5 mm diameter coils 184 

positioned in a glass fibre reinforced plastic cryostat for measurement of the normal 185 

component of the magnetic field from the human brain (Kado et al., 1999). In both systems, 186 

neighbouring channels are 38 mm apart and 20 mm from the outer dewar surface. These 187 

factors ensure that the signals obtained by the two MEG systems are equivalent. The 125-188 

channel dewar was designed to fit a maximum head circumference of 53.4 cm, 189 

accommodating more than 90% of heads of 5-year-olds (see Johnson et al., 2010 for details). 190 

Both systems were situated within the same magnetically shielded room within the KIT-191 

Macquarie Brain Research Laboratory (https://www.mq.edu.au/research/research-centres-192 

groups-and-facilities/healthy-people/facilities/meg), and therefore environmental noise was 193 

comparable.  194 

During MEG data acquisition, participants were asked to remain relaxed, awake and with their 195 

eyes fixed on a white cross at the centre of a black 36 cm (width) x 24 cm (length) rectangular 196 

image with 4 x 4 degrees of visual angle. Visual display was presented on a back-projected 197 

screen mounted approximately 140 cm above the participant using video projectors situated 198 

outside the magnetically shielded room (child MEG projector: Sharp Notevision Model PG10S, 199 

Osaka, Japan; Adult MEG projector: InFocus Model IN5108, Portland, USA). An overview of 200 

the child-friendly experimental protocol can be found in the video article (Rapaport et al., 2019). 201 

MEG Data Processing  202 

An overview of the processing pipeline is illustrated in Figure 1. MEG data were acquired at a 203 

sampling frequency of 1000 Hz, using a hardware bandpass filter of 0.03-200 Hz. The 204 
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continuous raw MEG data were filtered off-line from 0.5 to 100 Hz using bi-directional IIR 205 

Butterworth filters with DC removal and segmented into epochs of 4096 samples (= 4.096 206 

seconds). The data were visually inspected by WH, and epochs that contained oculographic, 207 

myographic, and system/environmental artefacts (e.g., squid jumps) were removed. The first 208 

and last epochs were also excluded from the analysis. A mean of 23.8 ± 3.02 artefact-free 209 

epochs of 4.096 s data in children (15-28 epochs) and 40.0 ± 0.02 artefact-free epochs in 210 

adults (39-40 epochs) were selected for subsequent source modelling. There were age-211 

related differences in the number of clean trials between children and adults (t (46) = 26.31, p 212 

< 0.01; two-sample t-test using the ttest2 function in MATLAB, version R2017b), as expected 213 

and was inevitable due to the fact that more trials were removed from younger participants 214 

because of movement. However, it has been shown in previous simulations that beamformer 215 

performance plateaus before the lower limit of ~80 seconds of data that was used for our 216 

analysis (20 epochs of 4.096 seconds; Brookes et al., 2008).   217 

MEG sensor data were then projected onto a parcellated cortical surface using an atlas-based 218 

beamforming approach (Hillebrand et al., 2012; Hillebrand et al., 2016), providing source 219 

activities at each centroid of the automated anatomical labelling (AAL) atlas (Tzourio-Mazoyer 220 

et al., 2002). Firstly, the geometry of each participant’s scalp was reconstructed from a 221 

“surrogate” MRI, where the Montreal Neurological Institute (MNI) template T1 structural brain 222 

image was warped to each participant’s digitized head shape with an iterative closest point 223 

algorithm implemented in BrainWave (Cheyne et al., 2014). Secondly, a multi-sphere volume 224 

conductor model was calculated using the outline of the scalp from this co-registered data in 225 

MRIViewer of the CTF MEG5 software (VSM MedTech Systems Inc., Coquitlam BC, Canada; 226 

Version 5.0.2). Thirdly, the broadband (0.5-48 Hz) data covariance matrix was calculated from 227 

all selected epochs, and a unity noise covariance was used. Lastly, the data covariance, the 228 

unity noise covariance, together with an equivalent current dipole source model and the multi-229 

sphere volume conductor model, were combined to reconstruct beamformer weights for the 230 

parcels’ centroids using Synthetic Aperture Magnetometry (SAM, Robinson, 1999). 231 
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Subsequently, the broadband MEG sensor data were projected through the normalised 232 

beamformer weights in order to obtain traces of neuronal activity in the cortical space (Cheyne 233 

et al., 2007).  234 

To counteract trial imbalance between groups, we chose for each individual the first 15 235 

artefact-free epochs from each of the 80 AAL source regions of interest (80 Regions of 236 

Interest/ROIs; 78 cortical and bilateral hippocampal) for the subsequent estimation of power 237 

spectral density. 238 
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239 

Figure 1. Schematic overview of the processing pipeline. The eyes-open resting 240 

state MEG were recorded (A) and bandpass filtered (B) before being co-241 

registered to individual head shape (C) and template MRI (D). Following this, 242 

data were epoched and beamformed to parcels of the AAL atlas (E). Power 243 

spectral density was then estimated from individual cortical sources by Welch’s 244 

method (F).245 
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Spectral Analysis 246 

Conventional Analysis in a priori Defined Frequency Bands 247 

Power spectral density (PSD) was estimated for each participant, ROI and artefact-free 248 

epochs separately using Welch’s method (Welch, 1967) implemented in MATLAB 2017b, with 249 

50% overlap and a Hamming window of 3s (resulting in a spectral resolution of 0.24 Hz). A 250 

single PSD for each participant was obtained by averaging the PSDs across all epochs and 251 

ROIs.  252 

A conventional spectral analysis was carried out by calculating the absolute power from the 253 

raw power spectrum in five canonical frequency bands (delta: 1–4 Hz, theta: 4–8 Hz, alpha: 254 

8–13 Hz, beta: 13-30 Hz, and low gamma: 30–48 Hz). The frequency at which each participant 255 

reached the peak amplitude was calculated within the 5-13 Hz band for children and the 8-13 256 

Hz band for adults using an automated local maxima algorithm (MATLAB function findpeaks). 257 

The lower frequency boundary was used for children in order to account for reduced alpha 258 

peak frequencies in young children when compared to adults (Klimesch, 1999; Bathelt et al., 259 

2013; Mierau et al., 2016).  260 

Parameterising the Power Spectrum with no a priori Defined Frequency Bands 261 

The PSDs, calculated by Welch’s method, were also submitted to the FOOOF v0.1.3 262 

parameterisation model – an open source Python package (https://github.com/fooof-263 

tools/fooof/; in Python v3.7.0) - for automatic separation of periodic and aperiodic components 264 

of neural power spectra (Haller et al., 2018). Briefly, the model considers the PSDs as a linear 265 

sum of aperiodic “background” neural signal ( 1/#  signal) and oscillations, or peaks 266 

represented by Gaussian functions in the PSD, above the 1/#	signal level.  267 

The power spectrum % is then modelled as: 268 
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% = * +	, -.
/

.01
 269 

with * the aperiodic “background” signal and - the oscillations, modelled as 2 Gaussians. 270 

The aperiodic signal is fitted, after which the aperiodic fit is subtracted from the power 271 

spectrum, creating a flattened (or aperiodic-adjusted) spectrum, wherein peaks were 272 

iteratively fitted by Gaussians modelled as: 273 

-. = 3 ∗ exp	(
−(: − ;)=

2?= ) 274 

where 3 is the amplitude, ; is the centre frequency, ? is the bandwidth of the Gaussian -, and 275 

: is the vector of input frequencies.  276 

Subsequently, a peak-removed power spectrum is calculated by subtracting all fitted 277 

Gaussians from the original power spectrum. Finally, an aperiodic signal is re-estimated from 278 

this peak-removed power spectrum, representing the cortical 1/#	background signal. Both the 279 

initial and final fit of the aperiodic component are fit as: 280 

* = @ − log	(D +	:') 281 

where @ is the broadband offset, ( is the slope, and D is the “knee” parameter, which indicates 282 

where the “bend” occurs in the 1/# component. In the current case of non-invasive MEG 283 

recordings, no knee was expected across the frequency range studied (Miller et al., 2009).  284 

The FOOOF model was fitted across the frequency range of 1 to 48 Hz in fixed (no spectral 285 

knee) mode (peak_width_limits = [0.5, 12], max_n_peaks = 10, min_peak_amplitude = 0, and 286 

peak_threshold = 2, aperiodic_mode = ‘fixed’). Goodness-of-fit of the FOOOF model is 287 

returned in terms of the E= of the fit.  288 

Two parameters - the Slope F and the Offset G – defining the aperiodic 1/#	background 289 

signal, and three parameters – the Centre Frequency H , Power I  and Bandwidth J  – 290 
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characterising the oscillations were returned by the FOOOF parameterisation, and entered 291 

permutation statistical comparisons between the two age groups.  292 

In addition, the final aperiodic signal returned from the FOOOF model was subtracted from 293 

the raw power spectrum, resulting in a flattened spectrum from which the absolute alpha and 294 

beta band power was estimated again using the conventional spectral approach.  295 

Statistical Analysis 296 

Statistical analyses were performed using permutation testing as implemented in the 297 

Resampling Statistical Toolkit for MATLAB 2017b 298 

(https://au.mathworks.com/matlabcentral/fileexchange/27960-resampling-statistical-toolkit). 299 

We used 50,000 permutations of group membership to empirically approximate the distribution 300 

for the null hypothesis (i.e., no difference between groups) for each contrast. For each 301 

permutation, t-values were derived for a contrast of interest, and any t-values for the original 302 

contrast that exceeded the significance threshold of 0.05 for the t-distribution were deemed 303 

reliable.  304 

In addition, Bayes Factors (alternative BF/null BF; Wagenmakers, 2007; Dienes, 2011) were 305 

estimated in JASP v0.9.2 ( Quintana and Williams, 2018; https://jasp-stats.org/) to further 306 

quantify the effect size, and to facilitate the interpretation of evidence for or against the null 307 

hypothesis when comparing to the alternative hypothesis. For the alternative hypotheses of 308 

measures being larger in adults than children and vice versa, a “unit information prior” was 309 

assumed with a default Cauchy prior with a scale parameter of 0.707 (Jeffreys, 1998). 310 

Bayesian correlation analyses, which allows inferences on the absence of a correlation 311 

between variables to be made, were also conducted in JASP. For testing the correlations, a 312 

prespecified alternative hypothesis with a flat beta prior width of 1 centred around K = 0 was 313 

used for a null hypothesis (K = 0). An illustration of the effects of assigning a range of different 314 

prior distributions (i.e., a Bayes factor robustness check) was conducted for all Bayesian tests. 315 
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BFs were thresholded > 3, > 10, and >100 as substantial, strong, and very strong/decisive 316 

evidence in favour of the alternative hypothesis, and BF < 1/3 and < 1/10 for substantial and 317 

strong evidence for the null hypothesis (Raftery, 1995; Jeffreys, 1998). BFs that fell in-between 318 

1/3 and 3 were taken as insufficient evidence for either hypothesis (Jeffreys, 1998; Dienes, 319 

2014).   320 
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RESULTS 321 

Raw Power Spectra With a priori Defined Frequency Bands 322 

Decreases in Low- and Increases in High-Frequency Power 323 

Figure 2A&B depicts the results of conventional spectral analyses, absolute power was 324 

computed in five a priori defined frequency bands (delta: 1–4 Hz, theta: 4–8 Hz, alpha: 8–13 325 

Hz, beta: 13-30 Hz, and lower gamma: 30–48 Hz). The PSD in Figure 2A shows a tendency 326 

of the grand average power for adults to be lower across lower frequency bands, and higher 327 

in higher bands, compared to children. Permutation statistics identified significantly lower 328 

power in the delta (Figure 2B, t(46) = -6��p < 0.01) and theta (t(46) = -3.78��p < 0.01) bands, 329 

and higher power in the beta (t(46) = 2.74��p < 0.01) and gamma bands (t(46) = -2.46��p = 330 

0.01) in adults compared to children. The right-corner panel in Figure2A shows that the peak 331 

frequency was significantly higher in adults (9.99 ± 1.30 Hz) than in children (7.58 ± 1.71 Hz, 332 

t(46) = 5.5��p < 0.01).  333 

In addition, the data were examined by estimating a Bayes factor (alternative BF/null BF), 334 

which indicates the fit of the data under the alternative hypothesis. Estimated BFs indicated 335 

decisive evidence for lower PSDs in the delta (BF > 100, 95% Confidence Interval = [-2.30, -336 

0.93]) and theta (BF = 119.80, 95% CI = [-1.58, -0.41) bands, higher PSDs in the beta (BF = 337 

10.66, 95% CI = [0.16, 1.26]) and gamma (BF = 6.13, 95% CI = [0.10, 1.18]) bands, and higher 338 

peak frequency (BF > 100 95% CI = [0.86, 2.13]) in adults than children. Bayes Factors 339 

suggested that there was strong evidence for the absence of a group difference in alpha band 340 

power (BF = 0.16, 95% CI = [0.01, 0.44]). 341 
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Parameterised Power Spectra Without a priori Defined Frequency Bands  342 

Increase in L/M	Slope and Decrease in L/M	Offset 343 

Figure 3A shows the aperiodic component of the grand average parameterised spectrum (i.e., 344 

peaks were removed from the power spectrum) for each age group. The aperiodic power 345 

spectrum was flatter in adults than in children. Permutation testing confirmed that the 346 

1/#	slope (Figure 3B) was significantly different (flatter) in adults compared to children (adults 347 

= -0.89 ± -0.12; children = -1.15 ± -0.09, t(46) = 8.59��p < 0.01), and the 1/#	offset was smaller 348 

(adults = 6.78 ± 0.15; children = 7.11 ± 0.17, t(46) = -6.99�� p < 0.01). Goodness-of-fit, as 349 

indexed by E= of the modelling fit was 0.99 ± 0.01 for adults, and 0.99 ± 0.01 for children (t(46) 350 

= -1.05��p > 0.05), suggesting that a difference in the model fit was not the cause of observed 351 

differences in the 1/# signal between groups. 352 

Bayes Factors indicated decisive evidence for flatter/more positive 1/#	slope (BF > 100, 95% 353 

CI = [1.66, 3.15]) and lower 1/#	offset (BF > 100, 95% CI = [-2.62, -1.20]) in adults compared 354 

to children.  355 

Correlation between Age and the Aperiodic L/M Component 356 

Bayes Factors revealed a decisive negative correlation between age and 1/#	offset (r = - 0.71, 357 

BF > 100, 95% CI = [-0.85, -0.39]), and a positive correlation between age and 1/#	slope (r = 358 

0.62, BF = 35.88, 95% CI = [0.26, 0.8]) in children. This trend became anecdotal in adults 359 

(offset: r = -0.4, BF = 1.56, 95% CI = [-0.67, 0.01]; slope: r = -0.5, BF = 3.7, 95% CI = [0.14, 360 

0.75]).  361 

Power and Bandwidth Increase for Beta Power Peaks 362 

Figure 4 shows the group comparisons for the periodic components - Centre Frequency, 363 

Power, and Bandwidth - of the peak oscillation (i.e., the highest power peak across all 364 
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frequencies in FOOOF model). Figure 4A demonstrates that 95.83% of children and 58.33% 365 

of adults exhibited oscillatory peaks that fall within the alpha range, whereas only 4.17% 366 

children but 41.63% adults had a peak oscillation in the beta band. This suggests that more 367 

adults had oscillatory peaks outside of the canonical 8-13 Hz alpha range. Permutation 368 

comparisons showed that for the peak oscillation the centre frequency was significantly higher 369 

in adults compared to children (Figure 4B; adults = 13.52 ± 4.86, children = 10.25 ± 3.97, t(46) 370 

= 2.55, p = 0.01; BF = 7.36, 95% CI = [0.13, 1.21]), and the bandwidth was significantly larger 371 

in adults than in children (Figure 4D; adults = 3.63 ± 3.35, children = 1.80 ± 1.13, t(46) = 2.53, 372 

p = 0.01; BF = 7.07, 95% CI = [0.12, 1.2]).  373 

In order to make a valid comparison between parameterised oscillatory components and 374 

canonical narrowband analysis, the centre frequency, power, and bandwidth of the highest 375 

oscillatory component were also extracted independently for the alpha and beta bands from 376 

all individuals (Figure 5A). Figure 5B&E shows Gaussian curves obtained from the individual 377 

oscillatory component values of the FOOOF model for the alpha and beta bands. There is 378 

significant individual variability observable for both bands, which is further quantified in Figures 379 

5C, D, F and G. The aperiodic-adjusted beta peak oscillation (but not alpha) was significantly 380 

higher in power (Figure 5F; adults = 0.31 ± 0.11, children = 0.18 ± 0.09, t(46) = 4.37, p < 0.01; 381 

BF > 100, 95% CI = [0.51, 1.77]) and larger in bandwidth (Figure 5G; adults = 4.87 ± 3.44, 382 

children = 2.39 ± 2.58, t(46) = 2.83, p = 0.01; BF = 13.01, 95% CI = [0.15, 1.29]) in adults 383 

compared to children.  384 

Correlation between Age and Peak Oscillatory Components 385 

Bayesian analysis only identified a very strong positive correlation between age and bandwidth 386 

in all participants (r(46) = 0.47, BF = 43.08, 95% CI = [0.2, 0.65]), but no such evidence for 387 

the individual age groups (adults: r = 0.4, BF = 1.47, 95% CI = [-0.11, 0.67]; children: r(46) = 388 

0.26, BF = 0.51, 95% CI = [-0.16, 0.57]).  389 
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In addition, when analysing the periodic components in the beta and alpha bands, Bayes 390 

Factors revealed a very strong positive correlation between age and power in the beta band 391 

in all participants (r = 0.5, BF = 43.08, 95% CI = [0.2, 0.65]), but substantial evidence for the 392 

absence of such a correlation in individual age groups (adults: r = 0.08, BF = 0.27, 95% CI = 393 

[-0.31, 0.44]; children: r = 0.07, BF = 0.27, 95% CI = [-0.32, 0.43]).  394 

In children a strong positive correlation was found between age and centre frequency in the 395 

alpha band (r = 0.61, BF = 27.14, 95% CI = [0.24, 0.8]).  396 

Beta-specific Power Increase in the Flattened Parameterised Power Spectra  397 

Figure 2C&D displays the results of conventional spectral analysis applied to the flattened 398 

PSD, where the aperiodic signal was removed from the power spectrum, thereby leaving only 399 

the oscillatory components. Interestingly, unlike the multiple band-specific power differences 400 

found in the raw power spectra (Figure 2B), the permutation analysis only identified 401 

significantly increased beta power (Figure 2D, t(46) = 4.15, < 0.01) when comparing adults 402 

and children. The same frequency ranges (children: 5-13 Hz; adults: 8-13 Hz) as for the 403 

conventional analyses were applied when estimating peak frequencies in FOOOF. The right-404 

corner panel in Figure2B shows that there was no significant difference in the peak frequency 405 

between adults (8.78 ± 3.58 Hz) and children (9.42 ± 0.84 Hz, t(46) = -0.85, p = 0.4) in the 406 

flattened spectra.  407 

Bayes Factors revealed decisive evidence for larger aperiodic-adjusted power in the beta band 408 

(BF > 100, 95% CI = [0.45, 1.72]) in adults compared to children, insufficient evidence for any 409 

group difference in the delta and alpha bands (delta: BF = 0.35, 95% CI = [-0.64, -0.01]; alpha: 410 

BF = 0.92, 95% CI = [0.02, 0.85]), and strong evidence for the absent group differences in the 411 

theta and gamma bands (theta: BF = 0.17, 95% CI = [-0.46, -0.006]; gamma: BF = 0.28, 95% 412 

CI = [0.01, 0.59]). Bayes Factors further suggested substantial evidence for absence of group 413 

difference for alpha peak frequency (BF = 0.17, 95% CI = [0.01, 0.45]). 414 
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Positive Correlation between Aperiodic-adjusted Beta Power and Aperiodic L/M 415 

Component 416 

Based on the significant group differences in the aperiodic-adjusted power in the beta band 417 

and 1/# signal identified in the parametrised spectra, the presence of correlations between 418 

the beta power in the flattened spectra and the parameters of the 1/#	signal was assessed. 419 

Bayes Factors revealed a very strong correlation between the narrowband aperiodic-adjusted 420 

beta power in the flattened spectral and 1/# Slope (r = 0.5, BF = 94.36, 95% CI = [0.24, 0.67]), 421 

and 1/# Offset (r = -0.49, BF = 66.53, 95% CI = [-0.66, -0.22]), across all participants but not 422 

in individual age groups.  423 
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Figure 2. Power Spectral Density for Children (in red, N = 24) and Adults (in blue, N = 24). Grand average of the raw power 426 

spectrum (A) and flattened power spectrum (C) for children and adults, with 95% confidence intervals represented by 427 

shaded areas (Gaussian-distribution assumed). Violin plots of the peak frequencies identified in the raw power spectra for 428 

children (5-13 Hz) and adults (8-13 Hz) are shown in the top-right panels of Figure 2A&C. The white dots depict group mean 429 

values. Power (B) and aperiodic-adjusted power (D) in five a priori defined canonical frequency bands as colour coded 430 

regions with grey gradients. Each dot represents a child participant in read or an adult participant in blue. Horizontal lines 431 

indicate group mean and vertical lines standard deviations. * indicates group difference reaches statistical significance; ↑ 432 

and ↓ indicate significant increase and significant decrease in power, respectively. 433 
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Figure 3. Non-oscillatory Power Spectrum (i.e., oscillatory components have been removed) for Children (in red, N = 24) and 435 

Adults (in blue, N = 24). A: Grand average of the log-transformed power spectrum of the aperiodic signal for children and 436 

adults, with 95% confidence intervals represented by shaded areas (Gaussian-distribution assumed). B&C: Slope and Offset 437 

of the aperiodic power spectrum for both groups. Horizontal lines indicate group mean and vertical lines standard 438 

deviations. * indicates group difference reaches statistical significance; ↑ and ↓ indicate significant increase and significant 439 

decrease in power, respectively. 440 
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Figure 4. Dominant Oscillations in the Parameterised Power Spectrum for Children (in red, N = 24) and Adults (in blue, N = 442 

24). A: The power of the dominant oscillation (i.e., oscillation with the maximum power across the broadband power 443 

spectrum) by frequency for each individual, with the size of the circle representing the bandwidth of the dominant oscillation. 444 

B-D: Statistical comparisons of the centre frequency, power and the bandwidth of the dominant oscillation. Error bars 445 

represent standard error of the group means. * indicates group difference reaches statistical significance; ↑ and ↓ indicate 446 

significant increase and significant decrease in power, respectively. 447 
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448 

Figure 5. Alpha and Beta Band Parameterisation of the Power Spectrum for 449 

Children (in red, N = 24) and Adults (in blue, N = 24). Two-band models of the 450 

power spectrum (A) – alpha (red, 8–13 Hz) and beta (blue, 13-30 Hz). B&E show 451 

the maximum oscillatory power and the frequency at which this occurs for each 452 

individual. Statistical comparisons of the power (C&F) and the bandwidth (D&G) 453 

of the oscillations in the alpha and beta bands. Error bars represent standard 454 

error of the group means. frequency, power and the bandwidth of the peak 455 

oscillation components. Error bars represent standard error of the group means. 456 
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* indicates group difference reaches statistical significance; ↑ indicates 457 

significant increase in power. 458 
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DISCUSSION 459 

We investigated developmental changes in the aperiodic 1/# and the oscillatory components 460 

of MEG brain signals. The findings of our conventional analyses of narrowband power and 461 

peak frequency were remarkably similar to previous studies (Marcuse et al., 2008; Boersma 462 

et al., 2011; Cragg et al., 2011; Miskovic et al., 2015; Gomez et al., 2017; Rodriguez-Martinez 463 

et al., 2017). However, these results turned out to be mostly non-significant (except in the beta 464 

band) once the aperiodic 1/#	signal and the oscillations were disentangled, and once the 465 

narrowband power was assessed in the flattened power spectrum (that is after 466 

the	1/#	component had been removed as shown in Figure 2). In these non-conventional 467 

analyses, we observed distinct (complementary) developmental profiles for the 1/#	signal and 468 

oscillatory power, with compelling evidence of flatter 1/#	 signals and increased beta 469 

oscillations in the adults, as compared to the children. Moreover, the strong correlation 470 

between the 1/#	signal and beta oscillatory power suggested a co-maturation of the two 471 

neural phenomena during child development.  472 

Conventional versus Parameterised Power Spectral Analyses 473 

Previous developmental studies have shown power decreases in lower frequency bands 474 

(Puligheddu et al., 2005; Gomez et al., 2013; Schafer et al., 2014), and increases in alpha 475 

peak frequency throughout childhood (Marcuse et al., 2008; Boersma et al., 2011; Cragg et 476 

al., 2011; Smit, Boomsma, et al., 2012; Miskovic et al., 2015; Gomez et al., 2017; Rodriguez-477 

Martinez et al., 2017). By applying conventional methods, we were able to replicate these 478 

findings. However, none of these findings remained significant once careful adjudication 479 

between aperiodic 1/#  and oscillatory components was carried out using power spectra 480 

parameterisation (Haller et al., 2018).  481 

Interestingly, the peak frequency in the flattened spectra was found to correlate positively with 482 

age in the child participants only, but the peak frequency showed no differences between age 483 
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groups (Figure 2B), and neither did the aperiodic-adjusted power or frequency bandwidth in 484 

the alpha band (Figure 5C&D). These findings contrast with significant age differences found 485 

in the alpha band when not accounting for the aperiodic 1/#	signal, and suggest that the 486 

magnitude of these changes could be heavily conflated by the aperiodic 1/#	signal in the raw 487 

power spectrum. This is further supported by the significant correlation that was identified 488 

between the 1/#	signal (both offset and slope) and age, only in the child participants. These 489 

findings invite the conclusion that developmentally-related power decreases in lower 490 

frequency bands and peak frequency increases that have been revealed by standard methods 491 

are at least partially driven by the flattening of the 1/# component in the broadband spectrum 492 

(Voytek and Knight, 2015).  493 

Flatter Slope Indicates Increase in Neuronal Noise  494 

The slope of the 1/# signal was found to be flatter, or less negative, in adults than in children. 495 

According to the “Wiener-Khinchin theorem”, the power spectrum is equivalent to the Fourier 496 

transform of the autocovariance function (He, 2014). Therefore, a flatter slope in the frequency 497 

domain indicates a shorter/weaker autocorrelation in the time domain. Interestingly, the 498 

reduction of the autocorrelation in human brain activity has been found to correlate with the 499 

increasing demands for more efficient online information processing during cognitive load in 500 

working memory tasks (He, 2014; Voytek et al., 2015). Indeed, a reduced temporal integration 501 

span in brain activity would be expected to reflect the need for enhanced integration of 502 

information during brain development.  503 

There is also evidence that neuronal spiking statistics are relevant to the 1/# slope (Voytek 504 

and Knight, 2015; Gao, 2016), in that the slope of the aggregated local field potential becomes 505 

flatter when a large number of spikes occur asynchronously (Usher et al., 1995; Pozzorini et 506 

al., 2013; Voytek and Knight, 2015). This decoupling of neuronal population spiking from an 507 

oscillatory regime, which has been broadly defined as “noise”, can be driven by increases in 508 

the ratio between local excitation/inhibition (Cremer and Zeef, 1987; McIntosh et al., 2010; 509 
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Hong and Rebec, 2012; He, 2014; Voytek et al., 2015). In fact, the inhibitory regulation of the 510 

synchronisation between pyramidal neurons from the GABAergic neurons has been found to 511 

undergo prolonged changes into adolescence (Hashimoto et al., 2009).  512 

The increase of neuronal noise during brain development has also been reported in studies 513 

adopting a simplistic method that uses the variability of brain signals as a proxy for neuronal 514 

noise. Such efforts have consistently identified increasing variability of both spontaneous and 515 

evoked brain activity to correlate with more stable and accurate behaviour during development 516 

(McIntosh et al., 2010; Fransson et al., 2013). Of direct relevance to our findings, a cross-517 

sectional EEG study comparing children aged 8-15 years with young adults reported that the 518 

variability of evoked face responses increased with age. This variability turned out to be 519 

positively correlated with intrasubject response accuracy but negatively correlated with 520 

reaction-time variability (McIntosh et al., 2008). This increase in neuronal noise in the 521 

developing brain appeared to be more global, as compared to a more local noise increase 522 

with aging (McIntosh et al., 2010). Speculatively, neuronal noise during childhood shapes the 523 

brain from a deterministic system into one that is more stochastic and adaptive to an uncertain 524 

environment (Knill and Pouget, 2004; Stein et al., 2005). Brain noise in the aging population 525 

continues to increase, but the pattern of changes can be more focal and is often in parallel 526 

with diminished neuroplasticity (Li et al., 2006; Garrett et al., 2010). Such speculation 527 

regarding the network level gains support from our recent analysis of brain network topology 528 

in the same dataset, where pervasive decreases in connectedness were revealed (i.e., nodal 529 

centrality) in most cortical regions, with increasing global network segregation (He et al., 2019). 530 

The same approach, however, has also identified quite focal changes in hub regions as the 531 

driving force of large-scale network abnormalities in various neurological diseases (Stam et 532 

al., 2009; Crossley et al., 2014; DeSalvo et al., 2014; Tewarie et al., 2014; Yu et al., 2017). 533 
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Smaller Offset Indicates Reduction in Broadband Power  534 

Accumulating evidence suggests that the offset of the 1/#	signal reflects the broadband power, 535 

which in turn is associated with the aggregated spiking activity of the underlying neuronal 536 

populations (Manning et al., 2009; Miller et al., 2009; Miller et al., 2014). We found a significant 537 

reduction in the offset of the 1/# signal for adults as compared to children, which could indicate 538 

a reduction in broadband power. Broadband power reductions have been reported 539 

consistently in developmental MEG/EEG studies (Miskovic et al., 2015; Gomez et al., 2017; 540 

Rodriguez-Martinez et al., 2017). This finding also corroborates a previous report on the 541 

developmental parallelism between the reduction in spectral power and cortical thickness 542 

(Whitford et al., 2007). It is understood that brain development begins with neuronal 543 

proliferation and synaptogenesis, followed by synaptic pruning during which synapses are 544 

selectively eliminated (Marsh et al., 2008). Computational work has shown that MEG signals 545 

represent spikes and the envelope of membrane de-/hyper-polarisation, predominantly from 546 

pyramidal neurons (Murakami and Okada, 2006). Therefore, one possible mechanism 547 

underlying the observed offset decreases is “regressive” cortical organisation due to the loss 548 

of grey matter (Giedd et al., 1999; Sowell et al., 2003).  549 

We note here that our interpretation of the reduced 1/# offset needs to be taken with caution. 550 

This is because slope and offset of the 1/# signal are highly correlated (Haller et al., 2018), 551 

and thus any change in slope would be accompanied by a change in the offset, regardless of 552 

the offset shifts caused by broadband power reductions. Future studies are needed to clarify 553 

the extent to which the observed offset differences between age groups were caused over 554 

and above those expected from slope shifts.  555 

Co-maturing Beta Oscillations during Childhood 556 

Analyses of oscillatory power revealed larger beta power in adults, as compared to children, 557 

and the difference remained significant once the 1/# signal was removed from the broadband 558 
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power spectrum (Figures 6). The automatic parameterisation algorithm also revealed age-559 

group differences in both peak oscillatory power and bandwidth in the beta band (Figures 5). 560 

Our findings add to previous developmental evidence for an increase in beta power using 561 

resting-state MEG/EEG (Puligheddu et al., 2005; Gomez et al., 2013; Schafer et al., 2014; 562 

Khan et al., 2018), and concurrent EEG-fMRI (Luchinger et al., 2011). These findings are also 563 

in accord with our recent longitudinal MEG study of motor development in children, which 564 

demonstrated linear increases in amplitude and mean frequency of beta (but not gamma) in 565 

movement (Johnson et al., 2019). Indeed, the beta band has been found to be heavily 566 

engaged in a wide range of processes such as cognitive control (Buschman and Miller, 2014), 567 

which develop well into adolescence (Luna et al., 2015) and changes with aging (Xifra-Porxas 568 

et al., 2019). 569 

It is also worth noting that, in contrast to functional resonance imaging (fMRI), the MEG signal 570 

has a more direct relationship with neuronal activity and, compared to EEG signal, is less 571 

contaminated by age-related changes of structures external to the brain, such as the 572 

decreasing electrical conductivity of the human skull with age (Hamalainen et al., 1993; 573 

Hoekema et al., 2003; Baillet, 2017). Therefore, the increased absolute beta power detected 574 

by MEG reinforces the neuronal origin of the maturational power change reported by EEG and 575 

fMRI (Gasser et al., 1988; Marcuse et al., 2008; Boersma et al., 2011; Cragg et al., 2011; Smit, 576 

Boomsma, et al., 2012; Bathelt et al., 2013; Fransson et al., 2013; Miskovic et al., 2015; 577 

Gomez et al., 2017; Rodriguez-Martinez et al., 2017; Vandenbosch et al., 2019). In future work, 578 

we plan to determine if the current findings can be replicated in larger (longitudinal) data sets, 579 

and we will attempt to establish a more fine-tuned cortical representation of the 1/#  and 580 

oscillatory signals from power spectra parameterisation. We encourage others to collect or 581 

reanalyse their resting-state data using the techniques we have employed (e.g., 582 

https://github.com/fooof-tools/fooof/), as well as other open source tools, to help establish 583 

norms of neuronal oscillations and aperiodic signals that are characteristic of healthy brain 584 

development. 585 
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Limitations 586 

There are some limitations to the present study. First, although our study provides valuable 587 

insights into age-group differences in key measures of neuronal activity, the cross-sectional 588 

nature of the study did not permit us to observe longitudinal changes at an individual level. A 589 

large longitudinal sample with balanced gender would be expected to replicate the current 590 

findings. Second, we assessed age-related differences based on 15 clean trials per participant. 591 

This was done to counteract differences in the number of clean trials between the adult and 592 

child participants. Data from the younger participants were prone to a greater number of 593 

artefacts, such as in-scanner motion. Future study should make use of a more efficient data 594 

acquisition approach (e.g., using calming video clips (Vanderwal et al., 2015)) to obtain larger 595 

data samples with improved quality in young children (Rapaport et al., 2019).  596 

Conclusions 597 

By carefully modelling the power spectra of source-space electrophysiological data in adults 598 

and in children aged 4 to 12 years, the present study demonstrated strong evidence of 599 

correlated increases in the 1/# signal and beta power during child brain development. Our 600 

findings suggest that the reported power decreases in low-frequencies and the reported power 601 

increases in high-frequencies (other than the beta band) in many previous studies could have 602 

been caused by a flattening of the 1/# signal, instead of an authentic power change in the 603 

oscillations. In addition, our findings provide empirical support for the theory that neuronal 604 

noise increases with normal brain maturation (McIntosh et al., 2010). This change may shape 605 

the brain into a more stochastic system with balanced neuronal excitation/inhibition, greater 606 

complexity, and greater capacity for information processing (Knill and Pouget, 2004; Stein et 607 

al., 2005). Overall, the findings of the present study suggest that co-increasing beta 608 

oscillations and aperiodic brain signals accompany brain maturation during childhood.  609 
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