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Precision treatment of cancer relies on genetic alterations which are diagnosed by molecular 36 

biology assays.1 These tests can be a bottleneck in oncology workflows because of high turna-37 

round time, tissue usage and costs.2 Here, we show that deep learning can predict point muta-38 

tions, molecular tumor subtypes and immune-related gene expression signatures3,4 directly 39 

from routine histological images of tumor tissue. We developed and systematically optimized 40 

a one-stop-shop workflow and applied it to more than 4000 patients with breast5, colon and 41 

rectal6, head and neck7, lung8,9, pancreatic10, prostate11 cancer, melanoma12 and gastric13 can-42 

cer. Together, our findings show that a single deep learning algorithm can predict clinically ac-43 

tionable alterations from routine histology data. Our method can be implemented on mobile 44 

hardware14, potentially enabling point-of-care diagnostics for personalized cancer treatment 45 

in individual patients. 46 

Clinical guidelines recommend molecular testing of tumor tissue for most patients with advanced 47 

solid tumors. However, in most tumor types, routine testing includes only a handful of altera-48 

tions, such as KRAS, NRAS, BRAF mutations and microsatellite instability (MSI) in colorectal can-49 

cer. While new studies identify more and more molecular features of potential clinical relevance, 50 

current diagnostic workflows are not designed to incorporate an exponentially rising load of 51 

tests. For example, in colorectal cancer, previous studies have identified consensus molecular 52 

subtypes (CMS) as a candidate biomarker, but sequencing costs preclude widespread testing. 53 

While comprehensive molecular and genetic tests are hard to implement at scale, histological 54 

images stained with hematoxylin and eosin (H&E) are ubiquitously available. We hypothesized 55 

that these routine images contain information about established and candidate biomarkers and 56 

thus could be used for rapid pre-screening of patients, potentially alleviating the load of molec-57 

ular assays. To test this, we developed, optimized and validated a deep learning algorithm to 58 

determine molecular features directly from histology images. Deep learning with convolutional 59 

neural networks has been used for tissue segmentation in cancer histology15-17 or detecting mo-60 

lecular changes in circumscribed use cases in a single tumor type18-22, but our aim was to use 61 

deep learning in a pan-molecular pan-cancer approach. Our method is a ‘one-stop-shop’ work-62 

flow: we collected large patient cohorts for individual tumor types, partitioning each cohort into 63 
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three groups for cross-validation (Fig. 1a). Whole slide images were tessellated into an image 64 

library of smaller tiles20,21 which were used for deep transfer learning (Fig. 1b). We chose predic-65 

tion of microsatellite instability (MSI) in colorectal cancer as a clinically relevant benchmark task20 66 

and sampled a large hyperparameter space with different commonly used deep learning mod-67 

els16,18,20,21. Unexpectedly, ‘inception’23 and ‘resnet’24 networks, which had been the previous de-68 

facto standard, were markedly outperformed by ‘densenet’25 and ‘shufflenet’14 architectures, the 69 

latter demonstrating high accuracy at a low training time (raw data in Suppl. Table 1, N=426 pa-70 

tients in the “Cancer Genome Atlas” [TCGA] cohort). Shufflenet is optimized for mobile devices, 71 

making this deep neural network architecture attractive for decentralized point-of-care image 72 

analyses or direct implementation in microscopes26. We trained a shufflenet on N=426 patients 73 

in the TCGA-CRC cohort20 and validated it on N=379 patients in the DACHS cohort20 cohort, reach-74 

ing an AUC of 0.89 [0.88; 0.92] (Fig. 1d). This represents a marked improvement over the previous 75 

best performance of 0.84 in that dataset20. Subsequently, we tested the full workflow in breast 76 

cancer for detection of standard molecular pathology features which are usually measured by 77 

immunohistochemistry: Estrogen [ER] and progesterone [PR] receptor status and HER2 status 78 

were highly significantly detectable from histology alone, reaching AUCs of up to 0.82 in a three-79 

fold patient-level cross-validation (Fig. 1e).  80 

Having optimized our method in these use cases, we applied it to more than 4000 patients across 81 

ten of the most prevalent solid tumor types from the TCGA reference database. We aimed to 82 

predict all clinically and/or biologically relevant mutations with a prevalence above 2% and af-83 

fecting at least four patients. The list of candidate mutations (Suppl. Table 2) also included all 84 

point mutations targetable by FDA-approved drugs (www.oncokb.org). We found that in multiple 85 

major cancer types, the genotype of point mutations was predictable directly from images. For 86 

example, in lung adenocarcinoma (TCGA-LUAD8, N=464 patients), significant AUCs were achieved 87 

for TP53 mutational status (AUC 0.71, Fig. 2a) and EGFR mutational status (AUC 0.60), which is 88 

targetable by clinically approved treatments. Also in colon and rectal cancer (TCGA-COAD and 89 

TCGA-READ27, N=590 patients), standard-of-care genetic biomarkers28 BRAF (AUC 0.66) and KRAS 90 

(AUC 0.60) were significantly detectable, as were oncogenic driver mutations linked to tumor 91 

aggressiveness, including CDC2729 (AUC 0.70, Fig. 2b). Similarly, in breast cancer (TCGA-BRCA5, 92 
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N=1007 patients), gene mutations of TP53 (AUC 0.75), MAP2K4 (which is a potential biomarker 93 

for response to MEK inhibitors30, AUC 0.66) as well as PIK3CA (which is directly targetable by a 94 

small molecule inhibitor31, AUC 0.63) were significantly detectable (Fig. 2c). In gastric cancer 95 

(TCGA-STAD13, N=363 patients), mutations of MTOR – a candidate for targeted treatment32 – 96 

were significantly detectable with a high AUC of 0.80 (Fig. 2d) as were a range of driver mutations 97 

including BRCA2 (AUC 0.67), PTEN (AUC 0.66), PIK3CA (AUC 0.65) among others. In head and neck 98 

squamous cell carcinoma (TCGA-HNSC7, N=424 patients), genotype of CASP8, which is linked to 99 

resistance to cell death33, was significantly detected with a high AUC of 0.72 (Suppl. Fig. 1a). In 100 

other tumor types such as melanoma (TCGA-SKCM12, N=429 patients), or lung squamous cell car-101 

cinoma (TCGA-LUSC9, N=412 patients), few mutations were significantly detected (Suppl. Fig. 1b-102 

c). Lung squamous cell carcinoma is known for its difficulty in molecular diagnosis and few mo-103 

lecularly or genetically targeted treatment options even in clinical trials. Thus, it is plausible that 104 

tumor histomorphology was not well correlated to mutations. In pancreatic adenocarcinoma 105 

(TCGA-PAAD10, N=166 patients), identifying KRAS wild type patients is of high clinical relevance 106 

because these patients are potential candidates for targeted treatment. Our method significantly 107 

identified KRAS genotype with AUC 0.66 (Suppl. Fig. 1d). Lastly, in prostate cancer (TCGA-PRAD11, 108 

N=402 patients), our method detected targetable mutations from histology – most remarkably 109 

PIK3CA, which was significantly detected with an AUC of 0.75 (Suppl. Fig. 1e). Furthermore, 110 

CDK12, which is linked to immune evasion in prostate cancer34 was detected with an AUC of 0.71. 111 

Together, these data show that deep learning can detect a wide range of targetable and poten-112 

tially targetable point mutations directly from histology across multiple prevalent tumor types.  113 

Next, we applied our method to a broader set of molecular signatures beyond single mutations. 114 

We chose features with known biological and potential clinical significance which are currently 115 

not part of clinical guidelines in most solid tumors. A major group of such features are immune-116 

related gene expression signatures3 of CD8-positive lymphocytes, macrophages, proliferation, in-117 

terferon-gamma (IFNg) signaling and transforming growth factor beta (TGFb) signaling. These bi-118 

ological processes are involved in response to cancer treatment, including immunotherapy. De-119 

tecting their morphological correlates in histology images could facilitate the development of 120 

more nuanced treatment strategies. Indeed, in lung adenocarcinoma signatures of proliferation, 121 
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macrophage infiltration and T-lymphocyte infiltration were significantly detectable from images 122 

with high AUCs (Fig. 3a).  Similarly, significant AUCs for these biomarkers were achieved in colo-123 

rectal cancer (Fig. 3b), breast cancer (Fig. 3d) and gastric cancer (Fig. 3d). In gastric cancer, we 124 

additionally investigated a signature of stem cell properties (stemness) which was highly detect-125 

able in images (AUC 0.76, Fig. 3d). Recent studies have clustered tumors into comprehensive 126 

‘immune subtypes’3, but again this classification system relies on deep molecular profiling una-127 

vailable in a clinical setting. We found that our method could detect these immune subtypes with 128 

up to AUC 0.75 in lung adenocarcinoma (Fig. 3a), up to AUC 0.72 in colorectal cancer (Fig. 3b) 129 

and up to AUC 0.71 in breast cancer (Fig. 3c). Together, these findings show that immunological 130 

processes that are quantifiable by molecular profiling are also accessible to deep-learning-based 131 

histology image analysis.  132 

Finally, we investigated the use of deep learning on conserved molecular classes of tumors such 133 

as recently identified TCGA subtypes3, pan-gastrointestinal subtypes4 and consensus molecular 134 

subtypes of colorectal cancer6. Few of these classification systems are currently incorporated in 135 

clinical workflows, mainly because of the high cost and logistic effort associated with sequencing 136 

technology. In our experiments, TCGA molecular subtypes LUAD1-6 were highly detectable in 137 

histology images of lung adenocarcinoma (Fig. 3a) with AUCs of up to 0.74. In colorectal cancer 138 

(Fig. 3b) and gastric cancer (Fig. 3d), the pan-gastrointestinal (GI) subtypes GI-hypermutated-139 

indel (GI-HM-indel), GI genome stable (GI-GS), GI-chromosomally instable (GI-CIN), GI-hypermu-140 

tated-single-nucleotide variant predominant (GI-HM-SNV) and GI Epstein-Barr-Virus-positive (GI-141 

EBV) were significantly detectable from histology. Correspondingly, in colorectal cancer, ‘consen-142 

sus molecular subtypes’6 were detectable by deep learning (Fig. 3b). These findings could open 143 

up fundamentally new options for clinical trials of cancer: While accumulating evidence shows 144 

that molecular clusters of tumors are correlated to biologically and clinical outcome, deep mo-145 

lecular classification of these tumors is usually not available to patients in clinical routine or to 146 

patients within clinical trials. Detecting these subtypes merely from histology would immediately 147 

allow for these subtypes to be analyzed in clinical trials directly from routine material, potentially 148 

helping to identify new biomarkers for treatment response. A full description of the methods is 149 

available in the “Extended Methods” section. 150 
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Together, our results demonstrate the feasibility of pan-cancer deep learning image-based test-151 

ing. We show that a unified workflow yields reliably high performance across multiple clinically 152 

relevant scenarios. Compared to conventional genetic tests, our methodology enables detailed 153 

prediction of the spatial heterogeneity of genotypes which is not possible in molecular bulk test-154 

ing of tumor tissue. An example of this visualization is shown in (Fig. 4a-g): Based only on a rou-155 

tine histological image of colorectal cancer (Fig. 4a), deep learning classifiers correctly predicted 156 

CDC27 mutational status (Fig. 4b-c) and consensus molecular subtype (Fig. 4d-g) with a high prob-157 

ability, while assigning a low probability to competing classes.  158 

Image-based genotyping could be used for definitive testing once performance surpasses previ-159 

ous tests, potentially disrupting clinical workflows Suppl. Fig. 3a-c. A limitation of our method is 160 

the low AUC values for some molecular features, but re-training on larger cohorts with up to 161 

10,000 patients per tumor type is expected to increase performance.16 Another limitation is that 162 

for very unbalanced features – for scarce molecular features – the uncertainty of the AUC esti-163 

mate is high. Thus, before clinical implementation, multicenter validation is essential, requiring 164 

collaborative efforts. Together, our results show that deep learning can consistently unlock 165 

dormant patterns in widely available histology images, potentially improving current workflows 166 

for molecularly targeted therapy of cancer. 167 

  168 
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 169 

Fig. 1: Transfer learning workflow for histology images. (a) Patient cohorts are split into three 170 
partitions for cross-validation of deep classifiers (b) Pre-trained networks re re-trained with only 171 
the deepest layers trainable, speeding up computation while enabling state-of-the-art perfor-172 
mance. (c) A hyperparameter sweep with multiple networks shows that shufflenet consistently 173 
yields high accuracy and speed for detection of microsatellite instability (MSI) in colorectal cancer 174 
(N=426 patients), raw data in Suppl. Table 1. (d) External validation of the best shufflenet on the 175 
DACHS cohort (N=379 patients). (e) Validation of the workflow by prediction of estrogen receptor 176 
(ER), progesterone receptor (PR), HER2 status and tumor mutational burden (TMB) in breast can-177 
cer, assessed by cross-validated area under the receiver operating curve (AUC). 178 
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 179 

Fig. 2: Prediction of point mutations directly from histological images. Deep networks predicted 180 
genotype directly from histological images in (a) lung adenocarcinoma, (b) colorectal, (c) breast 181 
cancer and (d) gastric cancer. Patient cohorts were randomly split for cross validation and classi-182 
fiers were assessed by the area under the receiver operating curve (AUC, horizontal axis) with a 183 
95% bootstrapped confidence interval. Genotype was predicted from histology with a high AUC 184 
for multiple clinically actionable mutations. (*) denotes all cases where the lower confidence 185 
bound exceeds a random classifier (AUC 0.5). “n” denotes the number of patients. Mutations 186 
with an AUC<0.55 are not shown. For a full list of all tested alterations, see Suppl. Table 2. 187 

  188 
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 189 
Fig. 3: Prediction of gene expression signatures directly from histology. Deep networks were 190 
trained to predict clinically relevant gene expression signatures directly from histological images 191 
in (a) lung adenocarcinoma, (b) colorectal, (c) breast cancer and (d) gastric cancer. Classifiers 192 
were assessed by the cross-validated area under the receiver operating curve with bootstrapped 193 
confidence intervals (AUC under ROC, horizontal axis). Continuous signatures were binarized at 194 
the mean. Variables with an average AUC<0.55 are not shown. (*) denotes all cases where the 195 
lower confidence bound exceeds a random classifier (AUC 0.5). “n” denotes the number of pa-196 
tients. For a full list of all tested alterations, see Suppl. Table 2. “subtype” denotes TCGA molec-197 
ular subtypes.  198 
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 199 

 200 

Fig. 4 Multiplex genotype maps with local predictability uncovered by deep learning. (a) A 201 
whole slide image of a colorectal cancer from the TCGA cohort was used for genotype prediction 202 
by deep learning classifiers. (b) A prediction map for CDC27 wild type status and (c) a prediction 203 
map for CDC27 mutated status, correctly predicting that this particular patient is mutated. Simi-204 
larly, prediction maps for consensus molecular subtype (CMS) classes (d) CMS1, (e) CMS2, (f) 205 
CMS3 and (g) CMS4 correctly show that deep learning robustly predicts CMS from histology alone 206 
while highlighting potential intratumor heterogeneity. 207 

 	208 
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Extended	methods	229 

All experiments were conducted in accordance with the Declaration of Helsinki and the Interna-230 

tional Ethical Guidelines for Biomedical Research Involving Human Subjects. Anonymized 231 

scanned whole slide images were retrieved from The Cancer Genome Atlas (TCGA) project 232 

through the Genomics Data Commons Portal (https://portal.gdc.cancer.gov/). Tissue samples 233 

from the DACHS trial35,36 were retrieved from the tissue bank of the National Center for Tumor 234 

diseases (NCT, Heidelberg, Germany) as described before.20 235 

Scanned whole slide images of tissue slides stained with hematoxylin and eosin were acquired in 236 

SVS format. Magnification was between 20x and 40x and corresponding resolution was between 237 

0.25 and 0.51 micrometers per pixel (µm/px). All images were manually reviewed by a trained 238 

observer who discussed non-trivial cases with an expert pathologist. After review by the expert 239 

pathologist, only those images with tumor tissue on slide were used for downstream analysis. 240 

The observer manually delineated tumor tissue on the slide which in most cases included more 241 

than half of the total tissue. This region was then tessellated into square tiles of 256 µm edge 242 

length. For the benchmark task, these images were resized 1.14 µm/ pixel to be consistent with 243 

a previous study20; for all subsequent tasks, images were processed at 0.5 µm/pixel. Some pa-244 

tients in the TCGA archive had more than one slide per patient and in these cases, tiles from all 245 

slides were pooled on a per-patient basis. From every slide, only a subset of tiles was used for 246 

neural network training and prediction (default 1000 tiles per slide; values explored in hyperpa-247 

rameter sampling: 250, 500 and 750). A target variable (e.g. a particular mutation) was matched 248 

to each patient (see below) and all tiles corresponding to that patient inherited the label. The 249 

patient cohort was then randomly split in three parts in such a way that each part contained 250 

approximately the same number of patients with each label. These three parts of the patient 251 

cohort were then used for three-fold patient-level cross-validation. Before training, each cohort 252 

was randomly undersampled in such a way that the number of tiles per label was identical for 253 

each label. For training, we used on-the-fly data augmentation (random x-y-reflection and ran-254 

dom horizontal and vertical shear of 5 px). No color normalization was used.  255 
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Molecular labels are listed in Suppl. Table 2 and were retrieved from the following sources: Basic 256 

clinical and pathological data was retrieved through http://portal.gdc.cancer.gov. Mutational 257 

status (wild type or mutated) and high-level amplification were acquired through http://cbiopor-258 

tal.org. In that database, we used “PanCancerAtlas” or “TCGA Provisional” project, whichever 259 

contained more patients in that particular tumor type. High-level data on gene expression signa-260 

tures was retrieved from Thorsson et al. (10). For breast and endometrial cancer, additional data 261 

on tumor subtypes were retrieved from Berger et al. (27). For gastric and colorectal cancer, tumor 262 

subtype data was retrieved from Liu et al. (11).  263 

Hyperparameter selection was performed for five deep neural networks which were pre-trained 264 

on ImageNet: resnet18, alexnet, inceptionv3, densenet201 an shufflenet. The sampled hyperpa-265 

rameter space was as follows: learning rate (fixed) 5e-5 and 1e-4, maximum number of tiles per 266 

whole slide image: 250, 500 and 750, number of hot layers (Fig. 1b): 10, 20 and 30. The number 267 

of epochs was four with a mini batch size of 512, similar to previous experiments.20 268 

All algorithms for whole slide image processing, including tessellation of images and visualization 269 

of spatial activation maps, were implemented in QuPath v0.1.2 in Groovy 270 

(http://qupath.github.io). All deep learning algorithms, including training and prediction, were 271 

implemented in Matlab R2018b (Mathworks, Natick, MA, USA).  272 

All images from the TCGA cohort are available at https://portal.gdc.cancer.gov/ . All source codes 273 

are available at https://github.com/jnkather/DeepHistology  274 
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Supplementary	Figures	354 

 355 

 356 

Suppl. Fig. 1: Mutation prediction from histology in additional tumor types. Our method signif-357 
icantly predicted oncogenic mutations from histology in (a) Head and neck squamous cell cancer, 358 
(b) Melanoma, (c) Lung squamous cell carcinoma, (d) Pancreatic cancer and (e) Prostate cancer. 359 
The horizontal axis shows three-fold cross-validated area under the receiver operating curve 360 
(AUC) as mean +/- 95% bootstrapped confidence interval.  361 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 8, 2019. ; https://doi.org/10.1101/833756doi: bioRxiv preprint 

https://doi.org/10.1101/833756


 
18 

 

 362 

Suppl. Fig. 2: Prediction of high-level gene expression signatures in additional tumor types. Our 363 
method significantly predicted high level gene expression signatures from histology in (a) Head 364 
and neck squamous cell cancer, (b) Melanoma, (c) Lung squamous cell carcinoma, (d) Pancreatic 365 
cancer and (e) Prostate cancer. The horizontal axis shows three-fold cross-validated area under 366 
the receiver operating curve (AUC) as mean +/- 95% bootstrapped confidence interval. 367 
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 369 

Suppl. Fig. 3: Proposed clinical workflow. (a) Starting with ubiquitously available routine histol-370 
ogy slides, our method relies on a tessellation of digitized images (“image library preparation”) 371 
which are passed to a deep convolutional neural network. The network predicts features on a 372 
tile level and the predictions are pooled on a patient level. (b) Histology-based testing can be 373 
applied to standard of care pathological biomarkers, driver mutations, and other features such 374 
as tumor expression subtypes. (c) We suggest that clinically meaningful findings of deep learn-375 
ing networks could be discussed in a tumor board, validated by orthogonal methods and ulti-376 
mately guide targeted treatment.  377 
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