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ABSTRACT  

Ligand-Gated Ion Channels (LGICs) are one of the largest groups of transmembrane 

proteins.  Due to their major role in synaptic transmission, both in the nervous system 

and the somatic neuromuscular junction, LGICs present attractive therapeutic targets.  

During the last few years several computational methods for the detection of LGICs 

have been developed.  These methods are based on machine learning approaches uti-

lizing features extracted solely from amino acid composition.  However, special topo-

logical characteristics of these proteins have not been utilized to date, which results in 

weaknesses regarding the correct class categorization of predicted proteins.  Here we 

report the development of LiGIoNs, a profile Hidden Markov Model (pHMM) meth-

od for the prediction and ligand-based classification of LGICs, utilizing their special 

topological characteristics.  The method consists of a library of 35 pHMMs, built 

from the alignment of transmembrane segments of representative LGIC sequences.  In 

addition,14 Pfam pHMMs are used to further annotate and correctly classify unknown 

protein sequences into one of the 10 LGIC subfamilies.  Evaluation of the method 

showed that it outperforms existent methods in the detection of LGICs.  On top of that 

LiGIoNs is the only currently available method that classifies LGICs into subfamilies.   

The method is available online at http://bioinformatics.biol.uoa.gr/ligions/. 
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ABBREVIATIONS 

LGIC(s): Ligand-Gated Ion Channel(s) 

VGIC(s): Voltage-Gated Ion Channel(s) 

pHMM(s): profile Hidden Markov Models 

TM: Transmembrane 

MSA: Multiple Sequence Alignment 

MCC: Matthew’s Correlation Coefficient 
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1. INTRODUCTION  

Typically, living cells exhibit a membrane potential at their plasma membrane [1].  

However, the lipid bilayer that forms the plasma membrane poses an immense energy 

barrier for charged particles.  To overcome this obstacle, cells use specialized 

transmembrane proteins that carry the ion current, known as ion channels [2].  These 

proteins are highly selective and can discriminate both between anions and cations as 

well as between monovalent and divalent ions [3].  Their gating is a result of either 

changes to the membrane potential or binding of specific ligands.  Thus, channels are 

classified, according to their gating trigger, into Voltage-Gated Ion Channels (VGICs) 

and Ligand-Gated Ion Channels (LGICs) [4].  They both are extremely diverse and 

are composed of numerous members further classified into various subfamilies. 

Many genes encode LGICs’ subunits and most of those form heteropolymers.  

The variety of combinations within each subfamily of LGICs, leads to a wide range of 

receptors with different pharmacological and biophysical properties and diverse ex-

pression patterns both within the nervous system and in other tissues [5].  Thus, 

LGICs emerge as attractive targets for the development of new therapeutic agents [6].  

By convention, LGICs comprise the excitatory, cation-selective, nicotinic acetylcho-

line receptors [7, 8], 5-HT3 receptors [9], ionotropic glutamate receptors [10], IP3 re-

ceptors [11], P2X receptors [12], epithelial sodium channels [13] and acid-sensing 

(proton-gated) ion channels [14] and the inhibitory, anion-selective, GABAA recep-

tors [15] and glycine receptors [16].  The nicotinic acetylcholine, 5-HT3, GABAA and 

glycine receptors (and an additional zinc-activated channel) form the family of Cys-

loop receptors [17].  The special structural characteristics of all LGIC subfamilies are 

shown in Table 1. 

Table 1.  Characteristics of the 10 LGIC subfamilies.  The number of subunits, transmembrane 

segments per subunit and average length of each subunit in amino acid residues is shown for each sub-

family.  Members of the Cys-loop family are marked with italics and underline in the table.  

LGIC subfamily 
Subunit 
Count 

Transmembrane (TM) 
segments per subunit 

Subunit 
Length 

Epithelial Sodium Channels (ENaCs) 3 2 ~650 

Ρ2Χ Receptors 3 2 ~435 

Acid-sensing Ion Channels (ASICs) 3 2 ~550 

Ionotropic Glutamate Receptors 4 3 ~950 
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LGIC subfamily 
Subunit 
Count 

Transmembrane (TM) 
segments per subunit 

Subunit 
Length 

Nicotinic Acetylcholine Receptors 5 4 ~500 

5-ΗΤ3 Receptors 5 4 ~460 

GABAA Receptors 5 4 ~480 

Glycine Receptors 5 4 ~470 

Zinc-activated Channels (ZACs) 5 4 ~410 

IP3 Receptors 4 6 ~2750 

Considering the importance of ion channels for normal cellular function and 

their designated role as drug targets [18, 19], several methods have been developed 

for the prediction of these proteins using information encoded exclusively in their 

amino acid sequence [20-27].  Ion channel prediction is mainly based on SVMs, and 

several feature selection techniques have been used to train the machine learning clas-

sifiers, mainly for the prediction and classification of VGICs.  The main drawback of 

all methods is that the informative parameters used for training are amino acid, dipep-

tide and tripeptide compositions, while the special topological features of ion channels 

are not taken into consideration during method development.  On top of that, while 

IonChanPred [21], PSIONplus [22] and two recently developed machine learning 

classifiers by Tiwari and Srivastava [27] and by Han et al. [26] are the only methods 

that can detect the class of LGICs, neither those, nor any other method classifies 

LGICs into subfamilies.  

As suggested in the expert review by Lin and Chen [28] new ion channel pre-

dictors should utilize physicochemical characteristics, overrepresented motifs or func-

tional domains of these proteins during their training.  Taking this suggestion under 

consideration we decided to design and develop LiGIoNs, a sequence-based predictor, 

that identifies LGICs in proteomes with the use of profile Hidden Markov Models 

(pHMMs).  These pHMMs are created by utilizing the special topological characteris-

tics of LGICs, and specifically the amino acid sequence of the transmembrane seg-

ments of these proteins.  LiGIoNs is the first method that on top of detecting LGICs, 

performs a ligand-based classification into the 10 known subfamilies (Table 1).  We 

have also developed a web server to host the method, available at 

http://bioinformatics.biol.uoa.gr/ligions.  
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2. METHODS 

The LiGIoNs algorithm consists of two levels: a prediction (detection and classifica-

tion) and an annotation level.  For the prediction level of the method, a dataset of 

LGICs was collected and classified into subfamilies following the IUPHAR classifi-

cation scheme [29] already presented in Table 1.  For the creation of the training set, 

proteins were originally collected from the IUPHAR database [29].  However, since 

IUPHAR contains data only for human, mouse and rat proteins, the exclusive use of 

this source would greatly limit the diversity of the training dataset.  For this reason, 

we isolated all reviewed UniProt [30] entries for LGICs, and incorporated those in the 

final training dataset.  In addition, we cross-checked our dataset with entries in 

LGICdb [31].  However, this database has not been updated since 2007 and the only 

records that we hadn’t previously detected belonged to the unreviewed subset of 

UniProt entries (UniProt/TrEMBL), which we had already decided not to use to train 

our method.  Thus, we opted to not use this resource further.  The final dataset of pro-

tein sequences used for the LiGIoNs training dataset is shown in Supplementary Ta-

ble 1. 

The boundaries of all transmembrane regions of LGICs used in this study were 

extracted from information documented in UniProt.  These boundaries were used to 

extract transmembrane segments of proteins belonging to the same subfamily, which 

were aligned according to their arrangement in the sequence, i.e., the first 

transmembrane segment of a sequence was aligned with the first transmembrane seg-

ment of the remaining proteins of the same subfamily, the second to the second, and 

so on.  The procedure was applied to all transmembrane segments of each subfamily.  

HMMER [32] was then used to construct the respective pHMMs corresponding to 

each transmembrane segment.  Each LGIC subfamily has as many pHMMs as its 

transmembrane segments, as shown in Table 2. 

Table 2. pHMMs constructed for each LGIC subfamily.  A pHMM library (LGICslib) containing 

all these profiles was constructed and was incorporated in the prediction level of our method. 

LGIC subfamily pHMMs 

Epithelial sodium channels (ENaCs) Epithelial_1, Epithelial_2 

Ρ2Χ Receptors P2X_1, P2X_2 

Acid-sensing ion channels (ASICs) Acid_1, Acid_2 

Ionotropic Glutamate Receptors Ionotropic_1, Ionotropic_2, Ionotropic_3 
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LGIC subfamily pHMMs 

Nicotinic Acetylcholine Receptors Nicotinic_1, Nicotinic_2, Nicotinic_3, Nicotinic_4 

5-ΗΤ3 Receptors 5ΗΤ3_1, 5ΗΤ3_2, 5ΗΤ3_3, 5ΗΤ3_4 

GABAA Receptors GABAA_1, GABAA_2, GABAA_3, GABAA_4 

Glycine Receptors Glycine_1, Glycine_2, Glycine_3, Glycine_4 

Zinc-activated channels (ZACs) ZAC_1, ZAC_2, ZAC_3, ZAC_4 

IP3 Receptors IP3_1, IP3_2, IP3_3, IP3_4, IP3_5, IP3_6 

The following procedure is used to characterize an unknown protein sequence 

as an LGIC.  Initially, the unknown protein sequence is scanned against the library of 

all pHMMs (LGICslib) presented in Table 2.  This is followed by recording the num-

ber of pHMMs that align with the unknown protein sequence.  In order for an un-

known protein sequence to be characterized as a member of a specific LGIC subfami-

ly, at least half of the pHMMs corresponding to this subfamily (n≥(number of TM 

segments in subfamily)/2) must be aligned with the sequence, with a score higher 

than the threshold set for each pHMM.  The thresholds for each pHMM were set 

manually in order to maximize sensitivity and specificity, following the protocol in-

troduced by Ioannidou et al. [33]. 

For the creation of the annotation level of LiGIoNs, all characteristic pHMMs 

that are found on LGICs were identified and isolated from the Pfam protein family 

database [34].  This procedure preceded chronologically the construction of the 

pHMMs in LGICslib, in an attempt to identify known pHMMs that could be used to 

uniquely describe LGIC subfamilies.  However, this was not possible using data ex-

tracted exclusively from Pfam, as there is no combination of pHMMs deposited in the 

database that allows the successful classification of LGICs into subfamilies.  Never-

theless, pHMMs from Pfam (Table 3) in combination with those in LGICslib (Table 

2), allowed both an additional validation of the results obtained using LiGIoNs in pro-

teomes and the creation of the annotation level of the method. 

The characteristic pHMMs were collected from the Pfam cross-references pro-

vided in all UniProt entries of the LGICs training set (Supplementary Table 1).  As 

a result, 14 pHMMs were isolated from Pfam, which are presented in Table 3 and 

were used to create a second library, named PfamLGICslib.  HMMER was used once 

again to scan sequences – that have been previously characterized as LGICs by 
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LiGIoNs – against PfamLGICslib, and sequences that had a “hit” from pHMMs in the 

Pfam library were annotated with these domains. 

Table 3.  Correlation between pHMMs deposited in Pfam and LGIC subfamilies. 

LGIC subfamily pHMMs from Pfam 

Epithelial sodium channels (ENaCs) 
PF00858 (ASC) 

Acid-sensing ion channels (ASICs) 

Ρ2Χ Receptors PF00864 (P2X_receptor) 

Ionotropic Glutamate Receptors 

PF01094 (ANF_receptor) 

PF10562 (CaM_bdg_C0) 

PF10613 (Lig_chan-Glu_bd) 

PF00060 (Lig_chan) 

PF10565 (NMDAR2_C) 

Nicotinic Acetylcholine Receptors 

PF02931 (Neur_chan_LBD) 

PF02932 (Neur_chan_memb) 

5-ΗΤ3 Receptors 

GABAA Receptors 

Glycine Receptors 

Zinc-activated channels (ZACs) 

IP3 Receptors 

PF01365 (RYDR_ITPR) 

PF08454 (RIH_assoc) 

PF02815 (MIR) 

PF08709 (Ins145_P3_rec) 

PF00520 (Ion_trans) 

A jackknife cross-validation experiment was conducted to assess the perfor-

mance of LiGIoNs, by evaluating the performance of pHMMs in correctly classifying 

LGICs belonging to different subfamilies.  For each LGIC subfamily, one sequence 

was removed from the multiple sequence alignment (MSA) of the pHMM’s seed set, 

and a new pHMM was constructed from the remaining sequences of the MSA.  Then 

we measured the correct classification ability of the newly created pHMM, to the re-

moved sequence and to randomly selected sequences from three negative datasets.  

The three negative datasets consisted of (1) a set of all LGICs of the other subfami-

lies, (2) a set of non-LGIC transmembrane proteins and (3) a set of soluble proteins.  

The number of sequences that were selected from each negative dataset at each run 

was equal to the number of sequences used to train the corresponding pHMM every 

time.  This was done to better balance the difference between the number of sequenc-

es in the positive and the negative datasets, while not compromising the validation 
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procedure.  At this point, it should be noted that it was not possible to perform this 

screening for ZACs, as only two protein members for this subfamily have been rec-

orded to date. 

The negative test set of non-LGIC transmembrane proteins was isolated by 

searching UniProt/SwissProt for transmembrane proteins with many transmembrane 

segments (subcellular location: “Multi-pass membrane protein”) not containing the 

keyword “Ligand Gated Ion Channel” in the entry’s text file.  This search returned 

52581 entries, which were subjected to homology reduction using the CD-HIT clus-

tering method [35, 36].  A 30% similarity threshold homology was used, and a repre-

sentative set of 1500 transmembrane proteins was isolated (Supplementary Table 2).  

The other negative dataset comprises of 300 globular proteins and is the same one 

used for the evaluation of performance for IonChanPred 2.0 [21] (Supplementary 

Table 2). 

In addition to the above evaluation, the method was compared with the 

IonChanPred 2.0 method to test its overall performance. It should be emphasized at 

this point that a comparison with the PSIONPlus method [22] and the classifiers de-

veloped by Tiwari and Srivastava [27] and by Han et al. [26] was practically impossi-

ble, as these methods are not available online.  It should also be mentioned that none 

of the above methods are capable of classifying LGICs into subfamilies. 

For the prediction performance of LiGIoNs five measures were used, namely 

Accuracy, Sensitivity, Specificity, Balanced Accuracy and Matthew’s Correlation 

Coefficient.  True/false positives (TP, FP) and true/false negatives (TN, FN) were 

counted on a per protein basis. 

Accuracy is the proximity of measurement results to the true value and is calcu-

lated as:  

FNFPTNTP

TNTP
ACC

+++
+= (2.1). 

Sensitivity, or true positive rate is:  

)( FNTP

TP
Sn

+
= (2.2), 

and Specificity, or true negative rate is:  
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)( FPTN

TN
Sp

+
= (2.3).  

Besides these measures, the balanced accuracy and Matthew’s Correlation Co-

efficient (MCC) were used to evaluate the performance of LiGiONs.  Balanced accu-

racy is the average of sensitivity and specificity and, together with MCC, is consid-

ered a better measure [37] when the data sizes of the positive and negative datasets 

are not balanced.  MCC is calculated as:  

))()()()(( FPTPFNTPFPTNFNTN

FNFPTNTP
MCC

+⋅+⋅+⋅+
⋅−⋅= (2.4). 

Moreover, LiGIoNs was applied to 30 selected reference eukaryotic proteomes 

(Supplementary Table 3) retrieved from UniProt (release: 2019_07) in order to fur-

ther assess the method’s ability to detect LGICs in proteomes from various eukaryotic 

kingdoms. 
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3. RESULTS AND DISCUSSION 

3.1. LiGIoNs algorithm 

The prediction level of LiGIoNs consists of a library of 35 pHMMs (LGICslib), creat-

ed from the MSAs of the protein’s transmembrane segments belonging to the 10 

LGIC subfamilies (Table 2).  For a protein to be characterized as a subunit of a spe-

cific LGIC subfamily, at least half of the pHMMs in LGICslib corresponding to this 

subfamily must score higher than the profile’s threshold.  For example, for a channel 

to qualify as a GABAA receptor, at least two of the four subfamily profiles (Table 2) 

must be detected in the sequence and score higher than the threshold set.  If multiple 

subfamilies meet the aforementioned conditions, the one with the highest overall 

score is chosen to characterize the unknown sequence.  For the annotation level, a li-

brary of 14 pHMMs containing characteristic LGIC domains recorded in Pfam was 

created (PfamLGICslib, Table 3).  This library is scanned in positive cases only – i.e. 

an unknown sequence is characterized as an LGIC in the previous step – in order to 

provide the user with more information regarding the protein being studied.  The 

flowchart in Figure 1 depicts in detail how the LiGIoNs method works. 
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Figure 1.  Flowchart of the LiGIoNs algorithm.  A fasta formatted sequence is used as input.  A 

pHMM from the LGICslib is selected and is searched against the input sequence.  If the search is suc-

cessful, the transmembrane segment and the LGIC subfamily to which the selected pHMM corre-

sponds to is recorded and regardless of the result, the sequence is searched until all 35 pHMMs have 

been examined.  Afterwards, the subfamily where the sequence presents most successful hits (n) is 

selected and an additional test is performed to ensure that the number of successful hits is greater or 

equal than the number of transmembrane segments of the subfamily and that the maximum value of the 

score is over the profiles’ thresholds.  If these conditions are not met, then the sequence is character-

ized as a non-LGIC and the program exits.  On the other hand, if the conditions are met the sequence is 
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characterized as an LGIC and is later scanned against the library of Pfam profiles (PfamLGICslib).  

After all profiles have been searched against the sequence, the annotation procedure is over, and the 

results are presented to the user. 

3.2. User interface and website features 

A web interface has been created for LiGIoNs and the method is publicly available 

through http://bioinformatics.biol.uoa.gr/ligions.  Via the “Home” page, the user can 

access the query submission page (“Run”) and the “Manual” page.  Query submission 

can be performed either by submitting a single or a set of protein sequences in the 

textbox provided, or by uploading a file with fasta formatted sequences.  After a suc-

cessful query submission, users are transferred to the results page where they can 

gather information about their submission and download a file with the results.  In the 

same page users can perform a new query and download the results in a text file. 

At the “Results” page, all results are presented in a table format, where each line 

corresponds to a single protein and each column contains the basic characteristics of 

the proteins and the prediction of LiGIoNs (LGIC or no LGIC).  More details about 

each protein are provided, as shown in Figure 2.   

 
Figure 2.  Webpage results after a successful run of LiGIoNs against an unknown protein se-

quence.  The sequence of the GABAA receptor from Rattus norvegicus (Rat) is used in this example.  

The four pHMMs of LGICslib that correspond to GABAA receptors (Table 2), as well as two pHMMs 
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from PfamLGICslib, characteristic of LGICs that belong to the Cys-loop family (Table 3) are detected 

in the sequence.  Two lines under the sequence show the positions where the different domains have 

been detected in the sequence, using a different color and character for each one of them.  Positions 

where multiple domains have been detected, are marked with asterisks (*). 

The results text file contains a protein identifier, the protein subfamily that the 

protein belongs to – if it is a positive hit – the position and score of the transmem-

brane segments, Pfam domain(s) present in the protein and the protein sequence.  Us-

ers are provided with a JobID for each submission, which can be used for up to two 

weeks to retrieve results after a prediction has been performed.  LiGIoNs is fast, since 

for a query length the size of the human proteome the method produces results in ap-

proximately two hours, which makes it well-suited for proteomic scale applications. 

3.3. Method Evaluation 

As mentioned above, LiGIoNs was evaluated using jackknife cross-validation.  The 

workflow of the evaluation procedure is shown in Figure 3. 

 

Figure 3.  The workflow of the jackknife cross-validation experiment to assess the performance 

of LiGIoNs.  Initially a subfamily of LGICs is chosen and all entries used for the training of the specif-
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ic subfamily are selected.  One protein sequence is used each time, which is left out, and the rest are 

used to create an MSA, train a pHMM and scan it against this sequence, as well as, an equal randomly 

selected number of sequences of the three negative datasets (Supplementary File 2).  The method’s 

ability to correctly identify the sequences is calculated each time and the procedure is repeated until all 

entries belonging to all subfamilies have been checked.  The overall performance statistics of LiGIoNs 

are calculated afterwards. 

LiGIoNs performs very well during cross-validation, with high overall perfor-

mance metrics against all negative test datasets (Table 4, Table 5 and Table 6).  The 

results from the jackknife test showed the method’s ability to correctly identify pseu-

do-novel sequences as LGICs (Sensitivity over 90% in all cases), while not errone-

ously detecting non-LGICs as such (Specificity over 99% in all cases).  These values 

are indicative of the fact that pHMMs have a good ability to differentiate between 

LGICs and non-LGICs, however they have a slightly worse performance when classi-

fying LGICs into the right subfamily.  For that reason, the method was executed nor-

mally following the workflow described in Section 3.1, and proteins that have hits 

against multiple subfamilies are classified based on the highest overall score (see 

Figure 1).  The method’s accuracy and MCC are 100% in all cases when this type of 

validation is performed. 

Table 4.  Results from the cross-validation of LiGIoNs using the jackknife technique against the 

300 globular proteins negative dataset. 

LGIC subfamily 
Accuracy 

(%) 
Sensitivity 

(%) 
Specificity 

(%) 
MCC 
(%) 

Epithelial Sodium Channels 
(ENaCs) 

99.92 97.22 100.00 98.56 

Ρ2Χ Receptors 99.69 92.00 100.00 95.76 

Acid-sensing Ion Channels (ASICs) 99.82 95.65 100.00 97.71 

Ionotropic Glutamate Receptors 99.96 96.67 100.00 98.30 

Nicotinic Acetylcholine Receptors 99.99 99.14 100.00 99.56 

5-ΗΤ3 Receptors 100.00 100.00 100.00 100.00 

GABAA Receptors 100.00 100.00 100.00 100.00 

Glycine Receptors 100.00 100.00 100.00 100.00 

Zinc-activated Channels (ZACs) - - - - 

IP3 Receptors 99.52 92.86 100.00 96.12 
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Table 5.  Results from the cross-validation of LiGIoNs using the jackknife technique against the 

1500 transmembrane proteins of the negative dataset. 

LGIC subfamily 
Accuracy 

(%) 
Sensitivity 

(%) 
Specificity 

(%) 
MCC 
(%) 

Epithelial Sodium Channels 
(ENaCs) 

99.85 97.22 99.92 97.15 

Ρ2Χ Receptors 99.69 92.00 100.00 95.76 

Acid-sensing Ion Channels (ASICs) 99.64 95.65 99.81 95.46 

Ionotropic Glutamate Receptors 99.96 96.67 100.00 98.30 

Nicotinic Acetylcholine Receptors 99.99 99.14 100.00 99.56 

5-ΗΤ3 Receptors 100.00 100.00 100.00 100.00 

GABAA Receptors 99.98 100.00 99.98 99.35 

Glycine Receptors 100.00 100.00 100.00 100.00 

Zinc-activated Channels (ZACs) - - - - 

IP3 Receptors 99.52 92.86 100.00 96.12 

Table 6.  Results from the cross-validation of LiGIoNs using the jackknife technique against 

LGICs belonging to other subfamilies than the one validated. 

LGIC subfamily 
Accuracy 

(%) 
Sensitivity 

(%) 
Specificity (%) 

MCC 
(%) 

Epithelial Sodium Channels 
(ENaCs) 

99.92 97.22 100.00 98.56 

Ρ2Χ Receptors 99.69 92.00 100.00 95.76 

Acid-sensing Ion Channels (ASICs) 99.82 95.65 100.00 97.71 

Ionotropic Glutamate Receptors 99.96 96.67 100.00 98.30 

Nicotinic Acetylcholine Receptors 99.99 99.14 100.00 99.56 

5-ΗΤ3 Receptors 100.00 100.00 100.00 100.00 

GABAA Receptors 94.62 100.00 94.55 42.66 

Glycine Receptors 84.31 100.00 83.39 46.70 

Zinc-activated Channels (ZACs) - - - - 

IP3 Receptors 99.52 92.86 100.00 96.12 

Even though all results presented above appear excellent, it should be empha-

sized that they are probably products of overfitting, especially, since the datasets for 

some LGIC subfamilies are extremely small (Supplementary File 1).  Moreover, re-

sults could not be produced for Zinc-activated Channels due to the small number of 

protein sequences belonging to this subfamily (only two sequences).  The improve-

ment of the method’s ability to identify and characterize more proteins belonging to 

these subfamilies will be realized in the future, if LGICs belonging to proteomes that 

are evolutionary distant to mammals are annotated as such and are subsequently used 

during the creation of pHMMs.  This is discussed further in Section 3.4. 
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LiGIoNs was also compared with IonChanPred 2.0 [21].  Based on the results 

presented in Table 7, it is obvious that our method outperforms IonChanPred 2.0 in 

the detection of LGICs.  The datasets that were used to compare the two methods are 

the same as those presented in the original IonChanPred 2.0 publication [21].  It 

should be noted that the two methods have different abilities, since, while 

IonChanPred 2.0 can detect LGICs, it lacks the ability to classify them into subfami-

lies.  For this reason, the two methods are only compared for their ability to predict if 

a protein is an LGIC or not. 

Table 7.  Comparison of LiGIoNs with IonChanPred 2.0 in their ability to detect LGICs from 

their amino acid sequence. 

Method Accuracy (%) Sensitivity (%) Specificity (%) Balanced 
Accuracy (%) MCC (%) 

LiGIoNs 99.85 1 99.75 99.87 99.71 

IonChanPred 2.0 98.72 1 97.08 98.54 97.43 

3.4. Application in eukaryotic reference proteomes 

The application of LiGIoNs in 30 eukaryotic reference proteomes showed that, ca. up 

to 0.5% of proteins in these proteomes are potential LGICs (Supplementary Table 

3).  The percentages vary significantly based on the kingdom and phylum in which 

these organisms belong.  Specifically, in all proteomes of organisms from non-

metazoan kingdoms – except for Dictyostelium discoideum and Capsaspora 

owczarzacki – no protein belonging to the ten LGIC subfamilies is detected by 

LiGIoNs.  In addition, in both these proteomes, the proteins designated as LGICs are 

very few and account for 0.02-0.05% of the total number of proteins.  On the other 

hand, results are quite different for Metazoa, where LGICs of these subfamilies ac-

count for 0.2-0.5% of the proteomes.  There is no statistically significant difference 

regarding the percentage of LGICs between the different metazoan phylums, with 

Arthropoda and Cephalochordata presenting lower absolute values of protein repre-

sentatives in their proteomes, a finding that could be easily attributed to their overall 

smaller proteome size. 

The inability of the method to detect LGICs in other kingdoms beyond 

Metazoa, further establishes our fears regarding the overfitting of the method to cur-

rently available data.  It is thus extremely difficult to apply the method to other prote-

omes, as is.  The performance of good manual annotation of proteomes belonging to 
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other kingdoms, like plants or fungi, would allow the retraining of the pHMMs we 

have created to contain data derived from all eukaryotic kingdoms and phylums.  For 

this purpose, we have developed programmatic scripts that recreate the 35 pHMMs 

when a new training dataset is provided, thus allowing for the constant training of the 

method with new data, when those become available.  The scripts are available 

through the home page of LiGIoNs at http://bioinformatics.biol.uoa.gr/ligions/.  Cur-

rently, due to the method’s inability to detect and annotate proteins in the majority of 

the 30 eukaryotic reference proteomes, it was considered untimely to apply LiGIoNs 

to all eukaryotic reference proteomes or to prokaryotic proteomes, as any attempt to 

comment on the results could lead to biased conclusions. 
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4. CONCLUSIONS 

LiGIoNs is a fast and accurate method, which can detect Ligand-Gated Ion Channels 

from sequence alone and is therefore applicable to entire proteomes.  LiGIoNs is the 

only publicly available method that classifies LGICs into one of the ten known sub-

families of these proteins, using information encoded in their special topological fea-

tures.  Moreover, LiGIoNs annotates predicted LGICs with information from Pfam, 

providing a full description of each sequence’s characteristics to the method’s users. 

LiGIoNs exhibits very high specificity and sensitivity rendering it a prototype 

for the detection of homologous multi-pass transmembrane proteins belonging to any 

of the several known classes and families of the same protein type.  The small number 

of proteins used to train the method is an additional feature that allows the extension 

of its application to many other families of transmembrane proteins, both of prokary-

otic and eukaryotic origin.  The programmatic scripts we provide through our 

webpage can be used to train predictors for other families – if appropriate changes are 

applied – where multiple “domains” can be used to detect proteins belonging to the 

same group. 

In addition, the method we have developed is retrainable if more LGIC se-

quences become available in sequence databases.  Retraining LiGIoNs when more 

LGICs are annotated, will allow us to overcome the issues we have faced when apply-

ing the method to evolutionary distant proteomes than those used in the creation of the 

35 core pHMMs.  We plan to update the LGIClib pHMM library of LiGIoNs when 

new sequences are available, and this will allow us to build more descriptive profiles 

in the future and render the method more broadly applicable.  Moreover, if new do-

mains describing LGICs are added in Pfam, we plan to incorporate them in our meth-

od, as well.  LiGIoNs is available at http://bioinformatics.biol.uoa.gr/ligions/. 
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