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Abstract  

The completeness and accuracy of genome assemblies determine the quality of 
subsequent bioinformatics analysis. Despite benefiting from the medium/long-range 
information of third-generation sequencing techniques, current gap-closing tools to 
enhance assemblies suffer multi-alignments and high error rates, resulting in huge 
time and money costs. 
We developed a software tool, TGS-GapCloser that uses the low depth (>=10X) 
single molecule sequencing long reads without any error correction to close gaps. The 
algorithm distinguishes gap regions from the alignments of long reads against original 
scaffolds, corrects only the candidate regions, and assigns the best sequences to each 
gap. We demonstrate that TGS-GapCloser improves the contig N50 value of draft 
assembly by 25-fold on average, updating above 90% gaps with 93.96% positive 
predictive value. Despite of high error rate of raw long reads, improved assemblies 
archive Q50 (99.999%) single-base accuracy with only 11.8% decrement to inputs. 
Besides it could complete more gaps, and is also ~29-fold faster than mainstream gap-
closing tools. BUSCO analysis revealed that 3.4%-13.1% more expected genes were 
complete. TGS-GapCloser also shows its power to fill gaps for ultra large genome 
assembly of ginkgo (~12Gb) with 71.6% of gaps closed. The validation of inserted or 
merged gap sequences was conducted with NGS reads and reference genomes, 
respectively. The updated genome assemblies may promote the gene annotation, 
structure variant calling and thus improving the downstream analysis of ontogeny, 
phylogeny, and evolution. 
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1 Introduction 

1.1 Gap closure perfects current genome assemblies 
The development of genome sequencing techniques has reduced the cost and 
improved the throughput at a speed beyond Moore's Law over the last decade[1]. The 
genetic sequence databases have been drastically enriched, and progressively 
increasing focuses move from small bacterial and fungal genomes to large eukaryotes. 
The applications of state-of-the-art techniques, for instance, third-generation long 
reads (TGS)[2, 3], synthetic long reads (SLR)[4-8], Hi-C[9], and BioNano physical 
map[10], provide extra information on different length scales, resulting in the 
enhanced genome assemblies. However, all the complete assemblies are imperfect, 
even for human and model organisms, which contain unknown nucleic acids 
(represented by Ns), as the Bermuda Triangles areas in the scaffold island chains. The 
repetitiveness and polymorphism of the genomes, the limitation of sequencing 
techniques, and the trade-off of algorithms may lead to the Bermuda areas. Gap 
closure or gap filling can discover the sequences and extend contigs to entirely or 
partially missing gene-encoding area. Therefore, there is a need to develop tools to 
close gaps in de novo genome assemblies, and obtain more complete and accurate 
genomes, especially for large eukaryotic genomes with high complexity. 
 
1.2 Problems in Sangers/ NGS gap-closing tools 
The first effort to finish the gaps in draft genome assemblies was made using 
Fosmids, BACs libraries and Sanger reads for a large range of 1 to 100 kb[11]. But 
the manual or semi-automated processes limit the applications in consideration of 
huge costs. The next-generation sequencing (NGS) technologies along with paired-
end and mate-pair information of multiple insert sizes have overcome the financial 
problem, and several benchmarking tools have been designed to reach into gap 
regions [12-16], sharing similar kmer-extension or local reassembly algorithms, but 
suffer the same problems of CPU hour and memory consuming for large genomes. 
Besides, those strategies cannot span the repetitive DNA fragments such as tandem 
repeats, fail to handle with overlapped neighboring contigs in most cases and cause 
more misassemblies due to the short read/kmer length. 
 
1.3 Problems in current TGS assemblies and TGS gap-closing tools 
The single molecule TGS technologies, including Pacific Biosciences (Pacbio) and 
Oxford Nanopore Techniques (ONT) have the potential to solve these limitations as 
their reads (~10kb) are typically longer than most DNA repeats[17]. Although de novo 
genome assembly using long reads may allow incremental improvements, the higher 
expense and lower accuracy relative to NGS platforms prevent the popularization. 
Common TGS sequencing errors, insertions or deletions, may cause frameshifts in 
gene-coding regions, disrupting the gene annotations. There have been several hybrid 
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assemblers designed to combine advantages of both sequencing platforms since the 
TGS commercial platforms were released. Main principles include indiscriminately 
constructing final assembly graph by mixing NGS contigs and TGS long reads based 
on OLC or string graph algorithm[18], or scaffolding short contigs generated by NGS 
dependent on their alignments on long reads[19, 20] to utilize the medium-range 
information, but ignore the possible combination with long-range information 
provided by other techniques. Gap-closing algorithms, however, only upgrade the 
missing regions, reserving the majority of the existing assembly to considerably 
reduce the computing complexity and cost. PBJelly[21] was the first software to use 
PacBio dataset to close gaps through locally assembling the mapped long reads in gap 
regions. The number of gaps could also be efficiently reduced by FGAP[22], which 
aligned long reads to the gaps using BLAST algorithm[23]. More tools modified the 
algorithm and extended for different purposes[24-28]. However, most tools mentioned 
above share the same crucial shortcoming: they only accept pre-error-corrected long 
reads or alternative assembled contigs. It hampers the application of long-range 
information because the error correction using TGS data themselves needs sufficient 
coverage of expensive long reads, usually splitting them into short fragments and 
losing valuable length information, while that using NGS data requires huge memory 
consumption, not readily usable for large genomes. 
 
1.4 Key points in the design of TGS gap-closing tools 
Three key points are need to be considered to develop a TGS gap-closing algorithm. 
First, use TGS data as few as possible. Although the price of TGS has been 
decreasing[29], the efficiency is still the first priority, especially for those small labs 
or small projects. Thus, local reassembly or pre-error correction by overlapping long 
reads is not preferable. Another important factor is the accuracy in choices of long 
reads to fill the gaps. It has been demonstrated that the number of assembly errors 
caused by most gap-closing tools is higher than that of de novo assembled contigs 
[25]. High error rate and the existence of repeats may increase the probability of large 
misassembly events. Last but not least, the filled gaps should not diminish the single-
base level accuracy, which determines the quality of downstream analysis. There is 
still a need of error correction or polish for inserted sequences. Note that the most 
recent Pacbio improved its base-calling accuracy to 99.8%[30], which may directly 
simplify the problem, but drastically sacrifice the throughout and read length.  
In this work, we described a software tool, named TGS-GapCloser, that uses error-
prone long reads at low coverage to efficiently and accurately close gaps within a 
reasonable time. We applied it to three draft genome assemblies of human using ONT 
or Pacbio long reads[31, 32], improving the contig NG50 5.5 to 44.9-fold and NGA50 
5.1 to 30.7-fold, finishing above 90% gaps with 93.96% positive predictive value 
(PPV) and 65.97% sensitivity on average. 71.6% gaps in the ultra large genome 
assembly of ginkgo were also closed using 11.9 coverage of corrected Pacbio long 
reads, increasing the contig N50 from 48kb to 365kb. 
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2 Methods  

 

2.1 Genome assemblies and TGS datasets 
Three datasets of two large genomes were used to examine the gap-closing results by 
TGS-GapCloser. We sequenced Homo sapiens (NA12878) using MGIEasy single 
tube-Long Fragment Reads (stLFR) Library Prep Kit on BGISEQ-500 platform with 
the data size of 660 Gb, and reads mapped to the Chromosome 19 (Chr19) were also 
extracted for further analysis. NGS short reads were assembled using de Bruijn graph-
based assemblers, MaSuRCA[20] and Mercedes (inhouse tool) to obtain short but 
highly accurate contigs for each dataset, and the SLR long-range and paired-end 
information provided by stLFR technique was exploited to do further scaffolding by 
SLR-superscaffolder[31]. Supernova[33] was originally designed to assemble 10X 
Genomics data, but could be applied to stLFR format reads to obtain draft scaffolds. 
To test the generalization of TGS-GapCloser, we utilized both Pacbio RSII 
(SRR3197748) downloaded from GIAB and ONT MinION (rel3)[32] long reads to 
close the gaps. 
The input genome assembly of Ginkgo biloba female (estimated 12 Gb) was obtained 
from [34], which assembled using SOAPdenovo2[12] and updated using Hi-C data. 
The Pacbio reads for ginkgo were sequenced by Pacbio Sequel, with chemistry of 
Sequel Sequencing Kit 3.0 Bundle (4 rxn). The total data amount was 256 Gb with the 
average read length of 38,623 bp. Error-correction by Canu[35] reduced data to 126 
Gb, with the average read length of 10,722 bp. 
 
 
2.2 Algorithm of TGS-GapCloser 
TGS-GapCloser accepts any kind of TGS long reads or other pre-assembled contigs to 
automatically fill gaps in any kind of draft assembles in the following four steps 
shown in Figure 1: (i) determination of gap regions in the draft assembly; (ii) 
acquisition of candidates from the alignments of long reads against gaps; (iii) base-
level error correction of alternative sub-long reads; and (iv) gap closure with the error-
corrected candidates with the highest score for each gap or linkage of the neighboring 
contigs with overlap. 
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Figure 1. A schematic of TGS-GapCloser workflow. (A) A flow chart of overall algorithm, 

(B) A schematic describing the classification of gap regions, determination of candidate long 

read fragments, and error correction, (C) A detailed flow chart for gap filling or contig 

merging in a gap region used the most proper long-range information. 

 
2.2.1 Determination of gap regions 
The input scaffolds were firstly split into parts called scaftigs from the observed N 
position, and each two neighboring scaftigs according to their positions in the same 
scaffold were considered as a gap region waiting to be filled. TGS-GapCloser defaults 
the high the quality of inputs, including base-level accuracy, order and orientation of 
scaftigs, but not the estimated gap size. That is because the estimations based on the 
long-range information provided by SLR, Hi-C, or BioNano cannot reach a resolution 
below ~10kb, leading to a high probability of faults especially for short gaps.  
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2.2.2 Acquisition of long read candidates 
We used minimap2[36] to align the long reads against each gap region to obtain 
corresponding candidate fragments with the preset option -x ava-ont. The candidate 
for a specific gap is defined as the segment truncated from the aligned long reads in 
the area between two contigs along with 2kb flanking wings on both contigs. Each 
long read might provide several candidate sequences dependent on its spanning length 
and base-calling accuracy, but was limited to give at most one candidate for the same 
gap region to overcome the redundant alignments due to the algorithm’s nature of the 
aligner and high error rate of long reads. 
The alignment quality determined the efficiency and accuracy of gap closure. Thus, 
all alignments were filtered based on the aligned length and identity ratio. For each 
gap, up to ten sub-long reads with the highest scores were chosen as candidates for 
error correction, avoiding multi-alignments within the same area and dramatically 
suppressing the data amount for further analysis. The quality score (QS) is given by 

𝑄𝑆 𝑎 ∙ 𝑙𝑜𝑔𝐴 𝑏 ∙ 𝑙𝑜𝑔𝐼 𝑎 ∙ 𝑙𝑜𝑔𝐴 𝑏 ∙ 𝑙𝑜𝑔𝐼  
where letter A refers to the alignment length, letter I refers to the identity ratio for ith, 
i+1th contigs respectively in preliminary scaffolds; a and b are two arbitrary 
coefficients to distinguish A and I’s weights on the score, and have been tuned to 1:6 
for ONT dataset as default. To further reduce the complexity and save the 
computational resources, the overlapped candidates in the same long read were 
clipped and merged. 
 
2.2.3 Error correction 
The merged candidate sequences were error corrected using Pilon[37] to enhance both 
the base-level accuracy and the precision of alignments. Pilon tried to fix individual 
base errors, small indels and local misassemblies with short but accurate NGS reads. 
The short reads were aligned to the candidates also using minimap2 but conducted 
with the option -k14 -w5 -n2 -m20 -s 40 --sr --frag yes tuned for short sequences. 
Although Pilon was originally designed for assembly polishing and has a requirement 
of 50x or deeper genome coverage of short reads, the sequences in the waiting list 
were split into several groups and each group was then error corrected with the same 
NGS dataset to guarantee the coverage.  
 
2.2.4 Gap filling/ contig merging 
The error correction would benefit not only the single-base accuracy but also the final 
choice of the candidates to fill the gaps on the basis of the hypothesis that candidates 
with higher-quality alignments could be mapped to a more precise position in the 
reference after error correction, while those with lower-quality alignments became to 
fail to be mapped. The error-corrected candidates were again split and aligned against 
their corresponding gaps, and finally the one with the highest QS would be employed 
to fill the gap. We discarded the flanking wings of candidates but used bases from 
contigs as many as possible considering the relative accuracy.  
If the best candidate gave a negative filling information instead, then the gap region 
would collapse to a single contig based on the overlapping relation. A portion of 
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contigs have overlaps with others because of incorrect path in assembly graph or too 
aggressive contig extension strategy. But most scaffolders fail to deal with the 
overlapping relations, leaving a number of Ns to represent the uncertainty, and so do 
the majority of gap closers. However, a single long read spanning the gap has the 
ability to solve the overlapping if two contigs are mapped to the correct positions. We 
took more care of “negative” gaps given by the best corrected candidates with extra 
strict criteria because most base-calling errors in TGS long reads, including indels and 
homopoly-meric repeats tend to cause untruthful overlapping. Gaps without any 
corresponding candidate would fail to be closed.  
 
2.3 Implementation 
TGS-GapCloser was coded in C++ programing language. It applies minimap2 to align 
long reads against gaps or short reads against candidates, and Pilon (a Java package) 
to, which requires Java runtime 1.7 or later. The acceleration and enhanced mapping 
quality of the algorithm partially originate from the aligner, as minimap2 showed 
great improvement in speed and overall higher mapping accuracy for error-prone long 
reads, than others used in similar tools, such as BLASR[38] especially for unique and 
repetitive hits[36]. The algorithm automatically determined gap areas and tried to find 
the best matched long read fragments to fill gaps or merge adjacent contigs based on 
the alignments. The details in each step were individually recorded, including gap 
determination, mapping, long read extraction, error correction, and gap filling or 
merging. The final output was reported in FASTA format, along with log files 
describing the detailed sequence insertion or merging information for each gap to 
trace all the improvements. TGS-GapCloser is available via GitHub at 
https://github.com/BGI-Qingdao/TGSGapFiller. 
 
2.4 Gap closing with other tools 
We compared the performance with two of the most popular gap-closing tools, 
PBJelly (version PBSuite_15.8.24) and FGAP (version 1.8.1) using the same human 
Chr19 dataset. For PBJelly, gap closure was performed with raw ONT reads and the 
default options, while FGAP was conducted with the default options and overlap 
detection option off and on. 
 
 
 

3 Results 

3.1 Gap closure in human genome using different assemblies and long read 
datasets 
Three genome assemblies and two long read datasets were used to assess the utility of 
TGS-GapCloser in gap closing or contig merging in preliminary scaffolds for Homo 
sapiens (NA12878). Using the same dataset, the whole genome was assembled by: (1) 
contigs by MaSuRCA[20] + scaffolds by SLR-superscaffolder[31]., (2) contigs by 
Mercedes+ scaffolds by SLR-superscaffolder, and (3) contigs and scaffolds by 
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Supernova[33] to take full use of barcoded long-range information. Although 
MaSuRCA itself can assemble both contigs and scaffolds, the lack of stLFR 
information used in the assembler results in short scaffolds. It is necessary to employ 
SLR-superscaffolder to obtain comparable scaffold NG50 against Supernova. To 
declare the efficient usage of long reads, we randomly extracted ~10 coverage from 
rel3[32] dataset with claimed 84.06% of median read identity[32]. The gap regions in 
the draft assemblies have been investigated to be fully covered by at least one long 
reads. Figure 2 describes the improvements after gap closure with our method. The 
contig NG 50 increased from 13.2kb to 593.4kb for assembly (1), 15.3kb to 660.7kb 
for assembly (2), and 109.6kb to 1193.4kb for assembly (3); while corresponding 
contig NGA50 grew from 13.1kb to 402.0kb, 15.2kb to 405.7kb, and 105.5kb to 
724.9kb for three assemblies. Note that our current algorithm did not split or merge 
draft scaffolds to remain the existing long-range information. 91.8% of total 191,189, 
94.8% of total 129,408, and 82.2% of total 42,359 gaps were successfully finished by 
TGS-GapCloser, respectively. After gap filling, genome fraction against the reference 
was improved by 1.4%, 3.1% and 0.4% for different inputs. The large-scale (>1kb) 
misassemblies were only increased by 17.4% and 9.7% in assembly (2) and (3), and 
even decreased by 10.7% in assembly (1) due to the more precise mapping position of 
scaffolds/contigs against the reference induced by the filling sequences. In spite of 
error correction, the local misassemblies (<1kb) still present an increment of 1.2-
fold`, 7.4-fold, and 1.1-fold dependent on the single-base accuracy of filled 
sequences. Benchmarking Universal Single-Copy Orthologs (BUSCO)[39] (version 
3.0.2) analysis indicated the possible enhancements for further analysis such as gene 
annotation after gap filling. The genome was queried against the vertebrata_odb9 
database. It revealed that 90.5% [S: 89.3%, D:1.2%], 89.7% [S: 88.4%, D:1.3%], and 
94.1% [S: 92.4%, D:1.7%] of the expected vertebrate genes were complete after gap 
filling, improved from the original 86.2% [S: 84.8%, D:1.4%], 76.6% [S: 75.6%, 
D:1.0%], and 90.7% [S: 89.1%, D:1.6%], respectively.  
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Figure 2. Gap filling improvements and effects on initial draft assembly produced by TGS-

GapCloser for different inputs: (A) contig NG50, (B) contig NGA50, (C) number of 

remaining gaps, (D) genome fraction, (E) misassemblies and (F) local misassemblies 

estimated by QUAST[40]. 
 
The Chr19 datasets were extracted from the whole genome and assembled following 
the same steps for convenience. Using 28.6 mapped coverage of rel3 reads, the gap 
number in three preliminary scaffolds dropped to 97, 322, and 207, thus reducing the 
unknown regions by 95.6%, 87.6% and 84.8% for assembly (1), (2), and (3), 
respectively. The contig NG50 and NGA50 were also improved by 22.8 and 14.0 
times on average. The increased genome coverage indicated that updated gap regions 
were mapped to reference’s new area. The increasing ratio of misassemblies and local 
misassemblies were consistent with the whole genome results, 17.2% and 2.9-fold. 
The gap length distribution of filled gaps is consistent with that of draft assemblies 
(Figure S1). 
In addition, we tested the Pacbio dataset for Chr19 with 21.2 mapped coverage, with 
the acknowledged average read accuracy of 85%[21]. Applied to three assemblies 
with same parameters, TGS-GapCloser decreased the gap number by 90.4%, 74.7% 
and 81.1%, respectively. As a result, the contig NG50 and NGA50 were enhanced to 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 5, 2019. ; https://doi.org/10.1101/831248doi: bioRxiv preprint 

https://doi.org/10.1101/831248


12.3- and 8.5-fold on average. After filling, the ratio of induced misassemblies and 
local misassemblies against inputs were 18.4% and 39.9%. The overall results were 
worse than those using ONT reads, for which shorter read length and lower read 
coverage might be responsible.  
 
3.2 Gap closure in ultra large genome of ginkgo 
Gingko is a best-known living fossil that has remained its form and structure over 270 
million years, taking a unique position in the evolutionary tree of life[41]. We applied 
TGS-GapCloser to improve the chromosomal-level assembly of the Ginkgo 
biloba[34] by incorporating 11.9 coverage of error-corrected PacBio data. The 
updated assembly had been assigned to13 chromosomes of 9,570,195,624 bp, with 
613,821 gaps in total. In this case, the long reads were pre-corrected by Canu. After 
gap filling which only consumed ~541 CPU hours, 71.6% of the gaps were closed, 
and thus the total contig size increased by 411,608,879 bp, 4.3% of total. The contig 
N50 was also enhanced from 57.1kb to 364.8kb. Note that most tools have been only 
used for several bacterial and fungal genomes or small eukaryotes (<1Gb) 
previously[22, 25, 27], and it is doubt that it could be applied to this ultra large 
genome using reasonable computing resources. 
 
3.3 Validation of gap-closing sequences 
As a sanity check, we generated ideally filled sequences for all gaps using the 
reference of Chr19 and compared the theoretically filling results to gap sequences 
created by TGS-GapCloser. Table 1 lists the complete statistics for the evaluation of 
TGS-GapCloser’s improvements. By comparing actual filling sequences to the 
reference validated sequences, the PPV ranged from 99.1% for MaSuRCA+SLR-
superscaffolder+ONT combinations to 77.3% for Supernova+ONT, and sensitivity 
from 87.4% to 55.2%, respectively. 
In terms of single-base level accuracy, the consensus quality value (QV) with the 
method in [32] was decreased by the inserted sequences, contig QV down from 51.7 
to 36.2, with error-corrected filled QV of 16.3 on average. The final result with 
comparably lower single-base quality, however, was still better than the ONT final 
assembly QV, 21.5, assembled by Canu[35], error correction by nanopolish[42] and 
polishing by Pilon. 
 
Table 1. Gap Filling accuracy statistics for TGS-GapCloser. Sensitivity is defined as the 

ratio of the number of actually filled gaps that the reference also successively fills to the total 

number of gaps that the reference can fill. PPV is defined as the ratio of the number of 

actually filled gaps that can be uniquely mapped to the reference-filled gaps to the total 

number of filled gaps. Note that short sequences might introduce multi-alignments or mis-

alignments, thus sequences shorter than 100bp were filtered out for this purpose. QV was 

evaluated in Phred format for all sequences instead. All datasets were run with 16 threads. 

 

Long Read Choosing Accuracy 
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Input data 
# of closed 

gaps 

# of closed gaps 

in theory  
PPV 

Sensitivi

ty 
Runtime 

Peak 

memory 

MaSuRCA+SLR-

superscaffolder+ONT 
942 971 98.3% 87.4% 2h04min 8.22 GB 

Mercedes+SLR-

superscaffolder+ONT 
1,335 1,565 99.1% 79.3% 1h01min 7.41 GB 

Supernova+ONT 858 895 77.3% 55.2% 37min 6.78 GB 

 

Single Base Level Accuracy 

Input data 
# of closed 

bases (bp) 

# of closed 

bases in theory 

(bp)  

Input contig 

QV 

Output 

contig QV 
Filled QV 

MaSuRCA+SLR-

superscaffolder+ONT 
3,429,789 5,313,738 60.00 38.83 16.50 

Mercedes+SLR-

superscaffolder+ONT 
8,015,998 14,861,676 42.84 30.20 15.55 

Supernova+ONT 1,286,976 1,826,150 52.22 39.55 16.70 

 
3.4 Comparison with other tools 
We did not compare TGS-GapCloser to NGS gap-closing tools because the utilization 
of long/medium-range information provided by long reads spans repetitive or 
complicated regions that kmer-based extension cannot reach and congenitally creates 
better results as revealed in previous studies[22, 25]. In this work, we chose PBJelly 
and FGAP software in the gap closure analysis and applied to the Chr19 
Mercedes+SLR-superscaffolder assembly with ONT dataset to compare gap filling 
performance. Other subsequent tools did not display obvious improvements in 
efficiency and accuracy of gap filling[27].  
The evaluation of outputs showed that the gap-closing efficiency of TGS-GapCloser 
was considerably higher than that of other tools, leaving only 322 gaps compared to 
1,730 for PBJelly default, 1,016 gaps for FGAP default and 782 for FGAP  
with overlap option on (Table 2), thus enhancing the contig NG50 and NGA50 from 
11.4kb to 165.2kb and 9.3kb to 117.6kb, respectively, 3.4-6.1-fold than PBJelly and 
FGAP. The induced misassemblies were less than that of PBJelly and FGAP default 
but comparable with FGAP (overlap on), whereas FGAP (overlap on) showed the 
least local misassemblies. Considering the common existence of overlapped adjacent 
contigs in input scaffolds, the overall result of FGAP with overlap option on was 
better than that of default settings. The number of mismatches indels per 100kb 
varied, but larger than that of draft scaffolds, especially for the indels because of the 
nature of ONT sequencing platform. Note that PBJelly might elongate scaffolds by 
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local reassembly but required sufficient data coverage. 
 
Table 2. Gap filling statistics for TGS-GapCloser, PBJelly and FGAP. All datasets were 

run with 16 threads. 

 

 
We also measured the running time and memory consumption of each tool (Table 2). 
TGS-GapCloser surprisingly ran approximately 20-40-fold faster than PBJelly and 
FGAP. The maximal memory used by TGS-GapCloser was comparable. Note that the 
memory consumption by Pilon was not considered since it used up all memory 
provided. 
 
 
 

4 Discussion 

4.1 Computational resource consumption 
We have presented a new tool for updating a draft genome assembly based on 
currently available long reads fast and accurately. This method is widely applicable to 
many genome projects for thousands of research groups, benefiting from its flexibility 
of using different sequencing technologies or different assemblies. TGS-GapCloser 
requires only low coverage of expensive long reads without pre-error correction, 
making this approach more costly effective and suitable for small budgets. With 
respect to the human whole genome, it consumed 4,498 CPU hours in total and the 
peak memory was 58.1 GB excluding Pilon on average, correcting only relatively 
short fragments in gap regions. Even Pilon ran successfully with 1TB memory 
provided for a 3.2 Gb genome, although it was recommended 3.2 TB at least[37]. The 
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gap-closing algorithm is more costly effective compared with the de novo assembly of 
30× long reads with Canu, which requires ~40K CPU hours for ONT and ~62K CPU 
hours for Pacbio[32]. The speed and memory usage are further improved without 
error correction. It took only ~541 CPU hours for ginkgo’s large genome using pre-
error-corrected Pacbio reads.  
 
4.2 Future direction 
A number of improvements for future versions of TGS-GapCloser have been put on 
the agenda. The accuracy of inserted sequences largely depends on the performance of 
the aligner. Minimap2 performs well in most cases, however, gets worse when 
handing with a small portion of overlapping relations for long sequences and short 
reads against long sequences although it has been tuned somewhat. We hope that the 
problem will be solved by applying other aligners or sufficient parameter tuning. In 
addition, the computational consumption by Pilon is still considerable although the 
algorithm has tried to reduce the input data size as much as possible. It is convenient 
to replace it with other error-correction tools when available. Longer reads with 
higher quality are promised by ONT and Pacbio, which help us get rid of this 
annoying step. Last but not least, we trusted the input scaffolds as well as the 
orientation and order of contigs in each scaffold to retain the existing assembly 
information, but neglected the assembly errors in reality. We are planning to use the 
long/medium-range information provided by TGS reads to correct the improper 
relation of contigs in the same scaffold and link different scaffolds if there is 
overlapping.  
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