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Abstract

Rare genetic variants make significant contributions to human diseases. Compared to common variants,
rare variants have larger effect sizes and are generally free of linkage disequilibrium (LD), which makes it
easier to identify causal variants. Numerous methods have been developed to analyze rare variants in a
gene or region in association studies, with the goal of finding risk genes by aggregating information of all
variants of a gene. These methods, however, often make unrealistic assumptions, e.g. all rare variants in
a risk gene would have non-zero effects. In practice, current methods for gene-based analysis often fail to
show any advantage over simple single-variant analysis. In this work, we develop a Bayesian method:
MIxture model based Rare variant Analysis on GEnes (MIRAGE). MIRAGE captures the heterogeneity
of variant effects by treating all variants of a gene as a mixture of risk and non-risk variants, and models
the prior probabilities of being risk variants as function of external information of variants, such as allele
frequencies and predicted deleterious effects. MIRAGE uses an empirical Bayes approach to estimate
these prior probabilities by combining information across genes. We demonstrate in both simulations and
analysis of an exome-sequencing dataset of Autism, that MIRAGE significantly outperforms current
methods for rare variant analysis. In particular, the top genes identified by MIRAGE are highly enriched
with known or plausible Autism risk genes. Our results highlight several novel Autism genes with high
Bayesian posterior probabilities and functional connections with Autism. MIRAGE is available at
https://xinhe-lab.github.io/mirage.

Introduction 1

Genome-wide association studies (GWAS) have successfully identified thousands of loci associated with 2

human complex traits [1–3]. However, in most of these loci, the causal variants and their target genes 3

remain unknown. Additionally, most common variants (with minor allele frequency greater than 5%) 4

discovered by GWAS have small effect sizes, modifying disease risk by less than two fold [2, 3]. 5

Sequencing studies focusing on rare variants have the potential to improve our understanding of complex 6

diseases beyond GWAS. Because of purifying selection, deleterious variants with large effects on disease 7

risks tend to be rare in the population, as seen in the cases of many Mendelian diseases [4–7]. 8
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Furthermore, linkage disequilibrium is much weaker for rare variants, making it less complicated to 9

fine-map causal variants. Exome sequencing studies have particular advantages because of their 10

relatively low costs, and the ability to directly implicate risk genes [8]. 11

Statistical association tests for individual rare variants are usually under-powered due to their low allele 12

frequency. This poses a significant challenge for rare variant analysis. A natural strategy is to aggregate 13

all rare variants in a genomic region or gene, to test the collective association of the region or gene with 14

phenotype [9]. Over the past decade, a number of methods have been proposed to perform rare variant 15

association tests, see [8] for a review. These methods can broadly be categorized as either Burden tests 16

or variance component tests. Burden tests collapse all rare, potentially deleterious variants in a gene, 17

and test the association of the total frequency of these variants (burden of a gene) with 18

phenotype [10–13]. Burden tests make the implicit assumption that aggregated variants are all risk 19

variants of the same magnitude of effects. The variance component test, exemplified by Sequence Kernel 20

Association Test (SKAT), relaxes the assumption of constant effect by treating variant effects as random 21

following a normal distribution. SKAT tests if the variance of the random effect is equal to 0 [14]. 22

Methods have also been developed as variations of these approaches [15,16] or to combine burden test 23

and variance component test, including SKAT-O [17]. 24

Despite these research efforts, relatively few exome sequencing studies have identified exome-wide 25

significant genes for complex traits. This is contrary to what researchers had expected: if rare risk 26

variants do have large effect sizes, we ought to be able to find them even with relatively small sample 27

sizes. The fact that this prediction is often not materialized, sometimes in large sequencing studies, 28

suggests that rare disease variants may be less frequent and have more heterogeneous effects than what 29

we had anticipated. Indeed, both burden tests and SKAT assume that if a gene is a risk gene, then most 30

variants in that gene should have some effects. In reality, it is likely that most rare variants will have no 31

effects. One way to address this challenge is to focus on variants with deleterious effects on protein 32

functions [18]. However, most existing methods are not designed to systematically leverage functional 33

information of variants. In practice, researchers may limit burden test or SKAT to variants that are 34

likely to be deleterious as predicted by bioinformatic methods. However, such predictions are far from 35

perfect, so the uncertainty and heterogeneity of variant effects are still not adequately addressed. 36

These limitations of current methods motivate the development of our new Bayesian statistical method 37

to better account for heterogeneity of variant effects of a gene, and to better prioritize putative risk 38

variants using external information. Our key idea is to model variants in a gene as a mixture of risk and 39

non-risk variants. Each variant has a prior probability of being a risk variant, which depends on the 40

functional annotations of the variant, e.g. conservation score, its effect on protein structure. This prior 41

probability is generally low, reflecting sparsity of risk variants, but also varies considerably across 42

variants based on their likely functions, reflecting heterogeneity of effects. The Bayesian strategy of 43

incorporating functional information as prior has significant advantages over simply filtering variants 44

based on their likely functions. In general, the external annotations have limited accuracy in predicting 45

functional effects, so a simple filter may lose many functional variants; and conversely, many variants 46

passing the filter may have no functional effects. For simplicity, we assume each variant belongs to one of 47

many non-overlapping groups, with the groups defined by functional annotations. Each group has a 48

different proportion of risk variants, with deleterious groups having higher risk proportions. To better 49

estimate these risk proportions, we pool information across all genes being analyzed using a Bayesian 50

hierarchical model. This strategy allows us to effectively account for uncertainty in estimating the effect 51

of risk variants and puts more emphasis on variants with putative functional effects. 52

We implement our statistical ideas into a method called, MIxture model based Rare variant Analysis on 53

GEnes (MIRAGE). The simpler version of MIRAGE tests if the proportion of risk variants in a given 54

variant set is greater than 0 (we denote it as MIRAGE-VS). This test is a straightforward mixture model 55

based analysis and can be used for assessing, for instance, all rare variants of a gene or a group of genes 56

(pathway). The full version of MIRAGE, would infer risk genes from genome-wide analysis or joint 57

analysis of a large number of genes. Using extensive simulations, we demonstrate that both 58

MIRAGE-VS and full MIRAGE are significantly more powerful than existing methods of gene or 59

pathway association tests. We then applied MIRAGE to a exome sequencing study of autism spectrum 60
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disorder (ASD). While standard burden test and SKAT-O identify no signals in this dataset, the top 61

genes of MIRAGE are highly enriched with putative ASD risk genes. 62

Results 63

Overview of MIRAGE 64

MIRAGE is designed to analyze rare variant data from case-control studies. It requires only the counts 65

of each variant in cases and controls respectively, assuming that cases and controls are well-matched. An 66

important case is pedigree sequencing studies of parent-child trios, where transmitted and 67

non-transmitted variants from parents to affected children would be free of population structure, and can 68

be viewed as perfect case-control studies [19,20]. We start by a description of the simpler MIRAGE-VS 69

test. Often, researchers are interested in testing whether a given set of variants, e.g. all rare missense 70

variants in a gene set, are more frequent in cases than in controls [21,22]. Such variant burden may 71

suggest that at least some of the genes in the gene set are associated with the disease risk. This is 72

especially important when no individual genes pass the threshold in rare variant association tests, which 73

is often the case in exome sequencing studies. Statistical testing of variant sets is often accomplished by 74

so-called Burden test, such as Fisher’s exact test, which compares variant counts in cases vs. controls. 75

MIRAGE-VS takes a different approach to variant set analysis. It is motivated by the observation that, 76

if the proportion of risk variants is low, we may not see significant difference in the total variant counts 77

between cases or controls. Thus MIRAGE-VS explicitly models all variants in the input set as a mixture 78

of risk and non-risk variants, and tests if the fraction of risk variants is greater than 0 (Figure 1A). 79

Specifically, for the j-th variant, let Xj and Tj be its allele count in cases and total allele counts in 80

cases and controls, respectively. If j is not a risk variant, Xj given Tj follows binomial distribution with 81

probability determined by case and control sample sizes (N1 and N0). If j is a risk variant, Xj 82

conditioned on Tj follows binomial distribution, with the parameter determined by both the effect of the 83

variant and sample sizes. Let Zj be an indicator of whether j is a risk variant, and we denote the prior 84

probability that j is a risk variant as P (Zj) = η. We can write the model as: 85

Xj |Tj , Zj = 0 ∼ Bin

(
Tj ,

N1

N1 +N0

)
Xj |Tj , Zj = 1 ∼ Bin

(
Tj ,

γjN1

γjN1 +N0

)
, (1)

where γj is the relative risk of variant j (γj > 1 for disease predisposing variants), modelled as a Gamma 86

distribution with mean γ̄. Our model defines a likelihood function of η, and we use the Expectation 87

Maximization (EM) algorithm [23] to estimate η given variant counts. We then test if η = 0 using 88

likelihood ratio test (Figure 1A). We note that the hyperprior parameter γ̄ is not estimated, but treated 89

as a user-defined parameter. In our simulation and analysis, we use values between 3 and 7, informed 90

from analysis of exome sequencing studies [19,24], though simulations show that MIRAGE-VS is quite 91

robust to the exact values of γ̄. 92

The full MIRAGE differs from MIRAGE-VS in two ways: first, a gene may consist of variants from 93

multiple functional categories, e.g. rare loss-of-function (LoF) variants or conserved missense variants. 94

The proportions of risk variants in these categories may vary substantially. Second, it is difficult to 95

estimate the values of η for all categories using data from a single gene because of sparsity of some of 96

these categories (e.g. a gene may have a single rare LoF variant). This motivates a hierarchical modeling 97

strategy, as we described below. 98

The input data of MIRAGE consist of case and control counts of all rare variants across all genes being 99

analyzed (Figure 1B), which could be all genes in the genome, or a subset of genes believed to be 100

enriched with disease susceptibility genes. In addition, we have functional features of these variants such 101

as predicted damaging effects, allele frequencies (AFs) in a large reference cohort, and evolutionary 102

conservation. We assume we can define disjoint categories of variants, which may be formed by 103

combining multiple features. MIRAGE models all input genes as a mixture of risk and non-risk genes, 104

with the proportion of risk genes δ. For non-risk genes, all the variants by definition are non-risk 105

variants, regardless of functional features, and their counts follow the binomial model defined above for 106
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Fig 1. Work flow of MIRAGE.(A) MIRAGE-VS for variant set analysis. The method test if the percent
of risk variants is equal to 0. (B) MIRAGE for identifying risk genes. It estimates the percent of risk
variants in risk genes in each variant class, and use these values to compute the Bayes factor (BF) of all
genes.

non-risk variants. For a risk gene, any of its variants has a prior probability of being a risk variant, with 107

the probability equal to ηc if the variant belongs to the category c. We assume ηc are shared among 108

variants in the category c of all risk genes. The full details are described in Methods. 109

MIRAGE first estimates the parameters, including δ and ηc for all categories, by maximizing likelihood 110

over the entire dataset of all genes (Figure 1B). Then for each gene, it assesses its evidence of association 111

with the phenotype using all its variants by computing its Bayes factor (BF). BF is similar to likelihood 112

ratio test, comparing the null model (non-risk gene) and the alternative model (risk gene). BF of a gene 113

naturally combines the evidence of all its variants, with larger contributions from more functionally 114

important categories (those with larger values of ηc). Multiple testing is controlled by a Bayesian False 115

Discovery Rate (FDR) approach [25]. 116

MIRAGE-VS improves variant set analysis in simulations 117

We first use simulations to assess the performance of MIRAGE in detecting the presence of risk variants, 118

in a given variant set, mimicking the gene set analysis commonly used in practice. We simulate 119

case-control data of a mixture of risk and non-risk variants. The count of a variant in controls follows 120

Poisson distribution, with the rate depending on sample size and baseline allele frequency. For non-risk 121

variants, their rates in cases follow the same distribution (adjusting for sample size). For a risk variant, 122

its count in cases also follows Poisson distribution, but the rate would be generally higher. In our 123

simulations, the relative risk of a variant is treated as random, and is sampled from a common 124

distribution shared among all risk variants, with mean relative risk γ̄ > 1. Most often a variant increases 125

the risk, but a small percent of variants may be protective. We choose the values of γ̄, in the range of 3 126

to 7, that are informed by empirical rare variant studies, in particular exome sequencing studies of 127

ASD [19,26]. We vary the sample size N1 = N0, the proportion of risk variants η, and the mean relative 128

risk γ̄ in simulations (see Methods for details), and assess the performance of MIRAGE in estimating 129

and testing if η > 0. 130

We confirm that MIRAGE-VS is able to accurately estimate η under various values of sample sizes, 131

ranging from 1000 to 5000 and γ̄ (Suppl. Figure 8). We next assess type I error of MIRAGE, by 132
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Fig 2. Comparison of power at p < 0.05, of different methods for variant set analysis. η is the
proportion of risk variants in simulations.

performing 1000 simulations under η = 0 (i.e. no risk variants) and varying sample sizes. For 133

comparison, we run MIRAGE-VS, Burden test (Fisher’s exact test) and SKAT-O on each simulated 134

variant set. We found that all three methods effectively control type I error at p < 0.05, with 135

MIRAGE-VS being the most conservative (Suppl. Figure 9). To compare the power of the three 136

methods, we generated simulated data under η = 0.1, 0.2, 0.3, with other parameters the same as before. 137

As we expect, the power at p < 0.05 increases at larger sample sizes and η. In all parameter settings, 138

MIRAGE-VS has significantly higher power than burden test and SKAT-O (Figure 2). 139

In simulations above, we assumed that MIRAGE-VS knows the true value of γ̄, the prior mean of 140

relative risk, used in generating the simulated data. To evaluate the effect of mis-specified γ̄, we 141

performed sensitivity analysis in the studies of both type I error and power. We set γ̄ = 5 in simulations, 142

but used γ̄ = 3, 4, 5, 6 in MIRAGE-VS. Type I error of MIRAGE-VS is robust to mis-specified values of 143

γ̄ (Figure 10). Similarly, the power of MIRAGE-VS does not vary significantly with the value of γ̄, and 144

remains higher than Burden test and SKAT-O in all settings even if it uses mis-specified value of γ̄ 145

(Figure 11). The robustness of MIRAGE to γ̄ is perhaps not surprising, as the value is only used in 146

specifying the prior distributions of variant effects. Indeed, the distributions under different values of γ̄ 147

overlap significantly. 148

MIRAGE is more powerful in identifying risk genes than existing methods 149

in simulations 150

We next perform simulations that mimic a real exome sequencing study with the goal of identifying 151

specific risk genes. We fix sample sizes at N1 = N0 = 3000. We simulate data of 1000 genes, with the 152

proportion of risk gene, δ, varying from 0.01, 0.05, 0.1, to 0.2. For simplicity, we assume every gene has 153

the same number of variants (100, however, the actual number may be smaller because a variant with 154

count 0 and 0 in cases and controls from simulations will be filtered). For a risk gene, its variant belongs 155

to one of three categories with the proportions 60%, 30%, 10%, respectively. These categories mimic, 156

roughly, synonymous and benign missense variants, damaging missense variants and LoF variants. The 157

prior mean relative risk, γ̄, is set at 3 for the first two categories and 5 for the last category. The 158

proportions of risk variants, ηc, are 0.05, 0.2 and 0.5 for the three categories, respectively. 159

When running MIRAGE (full version), we first estimate the model parameters including the proportion 160

of risk genes δ and ηc for each of the three categories using the EM algorithm applied to the entire 161

dataset. We then compute the BF of each gene. We compared MIRAGE to SAKT-O and several 162
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Fig 3. ROC curves of different methods for classifying risk genes. We simulate 1000 genes with varying
proportion of risk genes, δ = 0.01, 0.05, 0.1, 0.2. AUC values are shown in the bracket. Solid black
reference line is in the diagonal.

variations of burden test, including Burden (baseline version), CMC [10] and ASUM [27]. In practice, 163

Burden test is often applied to different categories of variants of a gene separately to increase the power. 164

We thus consider two other versions of burden test as well, including Burden-adj which tests each of the 165

three categories separately, and returns the minimum p value of three tests; and Burden-combine which 166

combines three p values by Fisher’s method. The results of these two tests in simulations, however, are 167

very similar to the baseline Burden test (Suppl. Figure 12), so we consider only the baseline version here. 168

We compare the performance of the methods in distinguishing risk from non-risk genes, using the ROC 169

curves (Figure 3). When δ = 0.01, all methods except MIRAGE behaves close to random guesses, while 170

MIRAGE works well with AUC about 0.8. At larger values of δ, all methods perform better, but 171

MIRAGE still significantly outperforms all other methods. SKAT-O and CMC are ranked next, with 172

similar performance in terms of AUC. These results thus demonstrate the advantages of MIRAGE, in 173

treating variants as mixture of risk and non-risk variants, and in taking into account the functional 174

importance of variants. 175

In practice, when applying MIRAGE for gene discovery, it would be desirable to control the false 176

discovery rate (FDR). MIRAGE does this by using a Bayesian FDR approach that converts BFs to 177

posterior probabilities. We thus perform additional simulations to assess if the Bayesian FDR is 178

calibrated, and whether the FDR is sensitive to mis-specification of γ̄. To make simulations simpler, we 179

run similar simulations as before, but use a common value of γ̄ for all three variant categories. For each 180

true value of γ̄, ranging from 3 to 6, we used the true value and three mis-specified values of γ̄ in 181

MIRAGE, and computed Bayesian FDR. Our results show that Bayesian FDR are generally close to true 182

FDR and only slightly inflated when true γ̄ is large (greater than 5) (Suppl. Figure 13). 183
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MIRAGE-VS identifies variant sets associated with ASD 184

We applied MIRAGE to whole exome sequencing (WES) data of 4315 trios of parents and children 185

affected with ASD. Following a method we developed earlier for analyzing trio-sequencing data, we treat 186

transmitted alleles as “case” and non-transmitted ones as “controls” [19]. Risk variants are expected to 187

be transmitted more often than expected (1/2 by chance). We note that the transmission data naturally 188

avoids population structure that may confound case-control comparison. We consider only rare variants 189

with allele frequency (AF) below 5% in our analysis. Additionally, we filter all synonymous variants from 190

analysis except those close to exon-intron boundaries. 191

We first annotate the functional features of variants using ANNOVAR [28]. We identify loss-of-function 192

(LoF) variants as the union of stop loss, stop gain, frameshift indels and splice site substitutions. For 193

missense variants, we use PolyPhen, CADD and SIFT to define likely deleterious variants (PolyPhen 194

score greater than 0.957, CADD score top 10% or SIFT score < 0.05) [29–31]. For comparison, we also 195

include “non-damaging” variants according to PolyPhen (score less than 0.957), as a variant annotation. 196

Since AFs of variants are highly informative of deleteriousness of variant effects [32], we also stratify 197

variants by their AFs in ExAC [33]. 198

We perform variant set analysis using MIRAGE. In addition to the variant level features described 199

above, we have gene-level features for variants. We use 10 gene sets that have been implicated as 200

potentially involved in ASD. Combining variant annotations, MAFs and gene-level features, we define a 201

total of 5× 3× 10 = 150 overlapping variant sets (Figure 14). 202

We run MIRAGE-VS on each of the 150 variants sets, testing if the fraction of risk variants is greater 203

than 0 (Figure 4). For comparison, we also perform the Burden test. At the Bonferroni threshold 204

(0.05/150), MIRAGE identifies 7 significant variant sets, while burden test finds only one. At a less 205

stringent threshold of FDR < 0.05, MIRAGE has an even larger advantage over Burden test (Figure 4, 206

see Table S? for complete result). Notably, a number of significant sets from MIRAGE are missense 207

variants, which are generally more difficult to study than LoF variants and are completely missed by the 208

burden test (Figure 4). These results thus highlight the substantially higher sensitivity of MIRAGE-VS 209

to identify variant sets associated with diseases, than the standard Burden test. 210

We observed several broad trends from the variant set results (Figure 4), largely consistent with what 211

we expect. Most of the sets with large η (fraction of risk variants) are LoF variants. Significant missense 212

variant sets, in contrast, have very low fractions of risk variants, generally below 5% (Figure 4). This 213

highlights the sparsity of risk variants, even among those deemed deleterious by bioinformatic tools. 214

Additionally, all high confidence missense variant sets have very low AF (< 0.1%), confirming the 215

importance of using AF to prioritize risk variants. Comparing variant sets that differ only in PolyPhen 216

annotation (damaging vs. non-damaging), we notice that the annotation generally improves statistical 217

significance of top missense variant sets (Figure 4). 218

MIRAGE identifies putative risk genes of ASD 219

While variant set analysis above demonstrates that MIRAGE is able to highlight some candidate variant 220

and gene sets associated with ASD, our ultimate goal is to find specific risk genes of ASD. Given the 221

relatively small sample size of the current study, we focus on a set of 1003 most constrained genes (top 222

10% by pLI scores) that are known to be enriched with ASD risk genes [34]. This allows us to enhance 223

the signal and reduces the burden of multiple testing. For each gene in this set, we divide their variants 224

into eight non-overlapping categories by combining functional effects and AFs. These include two LoF 225

categories (0.01 < AF < 0.05 and AF < 0.01), and six missense categories combining two functional 226

groups (damaging and non-damaging by PolyPhen) and three AF categories (0.01 < AF < 0.05, 227

0.001 < AF < 0.01 and AF < 0.001). 228

We first confirm that the ASD data is challenging for current methods, even after we limit to highly 229

constrained genes. We applied Burden test and SKAT-O on each of the 1003 genes. The QQ plots of p 230

values show that neither method is able to detect any significant gene (Figure 5A and B). Indeed, none 231

of the genes would pass any meaningful FDR threshold (say 0.3). We also perform burden and SKAT-O 232

tests on the subsets of variants that are likely deleterious, including LoF and damaging variants (by 233
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Fig 4. Variant set analysis by Burden and MIRAGE-VS. Red and blue horizontal lines correspond to
Bonferroni and FDR thresholds at 0.05, respectively. Each variant set is colored and shaped according to
its functional effects and AF.

PLOS 8/27

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 1, 2019. ; https://doi.org/10.1101/828061doi: bioRxiv preprint 

https://doi.org/10.1101/828061


Fig 5. (A)QQ plot of 1003 constraint genes by Burden. (B) QQ plot of SKATO. (C) Parameter

estimates: the proportion of risk genes δ̂, and the proportion of risk variants in eight variant categories.
(D) Enrichment of putative ASD genes in the top 10 genes found by MIRAGE. Strong ASD: score 1S
and 2 by SFARI Gene; plausible ASD: score 3 by SFAIR Gene; DNM: top 1000 genes by TADA based on
DNMs.

PolyPhen). The QQ plots show essentially the same pattern (Suppl. Figure 15). 234

We then applied MIRAGE to this gene set. MIRAGE estimates that about 18% of these genes are ASD 235

risk genes (Figure 5C). MIRAGE also estimates the proportion of risk variants in each of the eight 236

variant categories (Figure 5C). The category of LoF variants with low AF (< 10−2) shows the highest 237

proportion at 40%. And very rare missense variants (AF < 0.001) also show non-zero proportions at 238

around 15%. Somewhat unexpectedly, the proportions are similar between damaging and non-damaging 239

groups. With the estimated parameters, we calculated Bayes factor for every gene and perform Bayesian 240

FDR control. At FDR < 0.2, MIRAGE is able to identify three genes. This number increases to nine at 241

a more relaxed threshold of FDR < 0.3. These results thus support much higher sensitivity of MIRAGE 242

in detecting risk genes, comparing with current methods in use. 243

We evaluate the findings using two sources of ASD risk genes, all independent of the data we used in 244

this study. We focus on the top 10 genes by MIRAGE (posterior probability of risk genes > 0.5). The 245

statistical evidence and supporting information are provided in Table 1. None of these genes show any 246

evidence by Bruden and SKAT-O tests. The majority of these 10 genes are involved in ASD, according 247

to SFARI Gene [35]. CHD8 and TRIP12 are known ASD genes (SFARI score 1S). SRCAP and 248

CACNA1D are strong candidates of ASD (score of 2). Four other genes show suggestive evidence (score 249

of 3), including CYFIP1, EP400, FBN1 and DYNC1H1. We found strong evidence of enrichment of 250

SFARI ASD genes in this list, comparing with all 1003 constrained genes (Figure 5D). Even two 251

remaining genes not curated by SFARI Gene show some connection with ASD. DOCK4 is a component 252

of Wnt signaling, a key pathway of neurodevelopment. DOCK4 has been associated with ASD and 253

Schizophrenia [36,37]. ABCA2 has been implicated as a candidate gene of Schizophrenia from multiple 254

lines of evidence [38]. We also assess the connection of these genes with ASD using a list of top 1000 255

genes ranked by TADA using de novo mutations (DNMs [26]). Comparing with all 1003 genes, our list is 256

highly enriched with DNM candidate genes (Figure 5D). These independent evidence thus strongly 257
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Table 1. Top 10 genes identified by MIRAGE. BF: Bayes factor. Posterior: Bayesian posterior
probability of being a risk gene.

Gene BF Posterior
SKAT-O
(p-value)

Burden
(p-value)

SFARI
score

Evidence [PMID]

CYFIP1 27.4 0.858 0.857 1 3
FMR1 (fragile X mental
retardation) interacting

protein [30784587])
EP400 15.3 0.771 0.857 1 3

FBN1 11.9 0.722 0.857 1 3

SRCAP 9.8 0.683 0.857 1 2

retarded speech
development and

intellectual disability
[30425916]

DYNC1H1 9.5 0.675 0.863 1 3
De novo mutation

associated with cortical
development [28193117]

ABCA2 8.9 0.662 0.857 1

candidate gene of
Schizophrenia from

multiple lines of evidence
[26666178]

DOCK4 8.5 0.650 0.907 1 4

Wnt signaling, associated
with ASD, Schizophrenia,
Developmental Dyslexia

[23083465, 26184631]

CACNA1D 6.3 0.579 0.857 1 2
postsynaptic signaling,
ASD and epilepsy gene

[28472301]

CHD8 5.2 0.532 0.863 1 1S
a top ASD gene from de

novo mutation data

TRIP12 4.8 0.513 0.857 1 1S
de novo mutation in this

gene may cause ASD
[25418537]

supports the pathological roles of the genes identified by MIRAGE. 258

We highlight the result of our top gene CYFIP1 to better understand how it was found by MIRAGE 259

(posterior probability of 0.86), but not Burden or SKAT-O (p value > 0.8 for both). This gene has high 260

posterior probability of being a risk gene (0.85), and is supported by multiple line of evidence from 261

literature, including association (copy number) with Autism, Schizophrenia and Intellectual Disability, 262

and its role in regulating synaptic activity and in mediating the function of FMR1, a well-known risk 263

gene of a syndromic form of Autism [39–41]. The signal of CYFIP1 is largely driven by a single very rare 264

(AF < 0.1%) damaging missense variant that occurs 8 times in cases but 0 in controls (Figure 6). Other 265

variants are mostly singletons and do not show clear enrichment in cases vs. controls. Still, MIRAGE is 266

able to derive some evidence from the remaining variants, as the BF remains greater than 1 (2.3) even if 267

we remove the top variant. Indeed, for the remaining variants, 25 are more common in cases than in 268

controls, and only 18 has the opposite pattern. The results of CYFIP1 thus demonstrate two key 269

benefits of MIRAGE: first, by borrowing information across genes via a hierarchical model, MIRAGE is 270

able to learn to focus only on likely deleterious variants (AF < 0.1% in this case); and second, by 271

modeling the heterogeneity of variants effects, MIRAGE allows a small number of variants to drive the 272

results while also leveraging the collective burden that may be present in other variants. 273
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Discussion 274

In this work, we propose a novel method, MIRAGE, for rare variant association test. Despite the 275

importance of rare variants, current methods are not effective at extracting statistical signals from rare 276

variants, and sequencing-based rare variant studies have achieved few successes. MIRAGE addresses two 277

main limitations of current methods. By treating all variants as a mixture of risk and non-risk variants, 278

it better models the heterogeneity of variant effects, particularly the sparsity of risk variants. 279

Furthermore, it provides a framework to assess functional annotations in prioritizing deleterious variants, 280

and to leverage these annotations in identifying risk genes. We provide two implementations of 281

MIRAGE, MIRAGE-VS for detecting burden in variant set analysis and MIRAGE full version for 282

identifying specific risk genes. This makes it flexible for researchers to use MIRAGE in different ways. 283

Simulations under various scenarios confirm the effectiveness of our method. In application to a WES 284

dataset of ASD, we find that MIRAGE-VS is much better at identifying the presence of risk variants in 285

various gene sets than the standard burden analysis. At the level of individual genes, even though 286

current methods fail to find any signal, the results of MIRAGE are highly enriched with ASD risk genes, 287

confirmed by independent evidence. 288

How to effectively analyze rare variants is a key challenge of the field. The success of MIRAGE in the 289

study of ASD allows us to draw some general lessons that will help address this challenge. First, the 290

effects of rare variants are likely very heterogeneous, and this is better captured by a sparse model where 291

most rare variants have no effects on disease risk. One can see this point clearly from our low estimated 292

fractions of risk variants (Figures 4 and 5C), and from the analysis of individual gene (Figure 6). Our 293

observation is contrary to a common, implicit belief in developers of rare variant association test, that in 294

a risk gene, all rare variants tend to have some effects. Secondly, using external information of variants is 295

critical to improve the signal to noise ratio. In particular, allele frequencies from large population 296

reference are very helpful in separating functional from non-functional variants (Figures 4 and 5C). 297

Variant annotation is an active area of research, and we think some recent methods, e.g. those based on 298

deep learning, may further boost the power of MIRAGE [42]. Finally, to identify specific disease genes, it 299

would be helpful to focus on a set of genes that are enriched with putative risk genes. In our study of 300

ASD, we limit our analysis to 1,003 constrained genes. We suggest a possible strategy for future studies: 301

first use MIRAGE-VS to learn gene sets with burden signals, then take the union of these genes for full 302

MIRAGE analysis. 303

We find that the ASD genes we identified using inherited rare variants are often supported by 304

independent evidence, particularly from studies using de novo mutations (DNMs). The implication is 305
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that allelic heterogeneity, i.e. multiple types of variants targeting the same gene, can be exploited to 306

improve detection of risk genes. This idea has been developed in our earlier work, TADA, which 307

combines DNMs with transmitted variants [19]. However, the transmission model of TADA is 308

over-simplified, similar to a typical burden analysis. We think integrated analysis of multiple types of 309

variants is particularly promising in whole-genome sequencing studies, where one can potentially 310

combine coding and non-coding variants, single nucleotide variants (SNVs) and copy number variants 311

(CNVs), affecting the same gene targets. We have demonstrated the feasibility of such an approach in 312

earlier studies with DNMs [26,43]. We think similar work in the context of whole genome association 313

studies would be important to realize the full potential of whole genome sequencing. 314

MIRAGE can be further developed in several important directions. First, MIRAGE is designed for 315

analysis of case-control (or transmission) studies. Extending it to association studies of quantitative 316

traits would greatly broaden its applications. One possible strategy is that: instead of modeling 317

mutation counts of individual variants, we can model some form of summary statistics, e.g. Z-scores 318

measuring variant association with quantitative traits. This will allow us to change only the likelihood 319

model of MIRAGE while using the same mixture prior of variant effects. Secondly, MIRAGE does not 320

accommodate sample covariates in analysis, such as age, gender, and population ancestry. Population 321

stratification is of particular concern as it may lead to false positive findings. It is generally difficult to 322

address this issue in generative models such as MIRAGE. One possible strategy is to regress out all the 323

sample covariates, and treat the residuals as quantitative traits so that we can reduce the covariate 324

adjustment problem to the quantitative trait problem just described. Lastly, MIRAGE currently 325

supports only disjoint functional groups as annotations. This simplifies the mathematical model, but 326

restricts the number and types of annotations one may use. A future direction is to extend the prior 327

model of MIRAGE so that the prior probability of a risk variant may depend on a large number of 328

potentially overlapping annotations in a regression model. This type of prior has been successfully used 329

in GWAS and in studies aimed at detecting functional elements in human genome (cite). 330

Materials and Methods 331

MIRAGE-VS model 332

The input data of MIRAGE-VS consist of allele counts of a group of variants in well-matched 333

case-control samples, with sample sizes N1 (cases) and N0 (controls). We denote Xj and X
(0)
j the 334

number of rare alleles of variant j in cases and in controls, respectively. We also denote Tj = Xj +X
(0)
j 335

the total allele count. MIRAGE-VS models these variants as a mixture of risk and non-risk variants. Let 336

Zj be an indicator of whether the variant j is a risk variant (Zj = 1) or not (0). Zj follows Bernoulli 337

distribution with mean η. The goal of MIRAGE-VS is to estimate η and test if it is equal to 0. 338

For a rare variant, its allele count in a set of samples can be described by a Poisson distribution. We 339

denote qj the allele frequency of variant j in controls. If j is a non-risk variant (Zj = 0), its allele 340

frequency in cases would also be qj . So we have: 341

Xj |Zj = 0 ∼ Pois(qjN1), X
(0)
j |Zj = 0 ∼ Pois(qjN0). (2)

If j is a risk variant (Zj = 1), its allele frequency in cases would generally be elevated. Let γj be the fold 342

increase of allele frequency. It can be interpreted as the relative risk of variant j, as shown in [19]. So we 343

have: 344

Xj |Zj = 1 ∼ Pois(γjqjN1), X
(0)
j |Zj = 1 ∼ Pois(qjN0). (3)

It is generally difficult to estimate γj for individual rare variants, so following TADA [19], we treat γj as 345

random, following Gamma(γ̄, σ). The hyper-parameter γ̄ is the prior mean of relative risk of risk 346

variants, and σ is the dispersion parameter. 347

We note that qj is a nuisance parameter of no primary interest. So we take advantage of the property 348

of Poisson distribution that the conditional Poisson random variable follows Binomial distribution. This 349
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Fig 7. Models of MIRAGE-VS (A) and full MIRAGE (B), in the notations of probabilistic graphical
models. See text for definitions of variables and parameters. (A) The box corresponds to one variant in a
variant set. (B) The outer box corresponds to one gene, and the inner box one variant in a gene.

allows us to eliminate qj : 350

Xj |Tj , Zj = 0 ∼ Bin

(
Tj ,

N1

N1 +N0

)
Xj |Tj , Zj = 1 ∼ Bin

(
Tj ,

γjN1

γjN1 +N0

)
, (4)

We marginalize γj in evaluating the probability of allele counts for risk variants: 351

P (Xj |Tj , Zj = 1) =

∫
Bin

(
Xj ;Tj ,

γjN1

γjN1 +N0

)
Gamma(γj ; γ̄, σ)dγj . (5)

The full model can be shown as a probabilistic graphical model (Figure 7A). We assume the 352

hyperparameters are given. Let X be the vector of Xj for all variants and T be the vector of Tj ’s. The 353

likelihood function of η is given by: 354

P (X|T, η) =
∏
j

[(1− η)P (Xj |Tj , Zj = 0) + ηP (Xj |Tj , Zj = 1)], (6)

where we assume the variants are independent. Since we focus on variants with AF < 5%, this 355

assumption is generally valid. 356

The parameter estimation is performed by Expectation Maximization (EM) algorithm [23]. The details 357

are provided in the Supplementary Notes. Once we have maximum likelihood estimation (MLE) of η, we 358

test if η = 0 by the likelihood ratio test (LRT). The p-value of the test is determined from the χ2
359

distribution. 360

MIRAGE model 361

The full MIRAGE model differs from MIRAGE-VS in two ways. First, it analyzes the data of a large 362

number of genes (potentially the whole exome). Only a subset of these genes are risk genes. Secondly, a 363

single risk gene may have multiple distinct variant groups, with different values of η (proportion of risk 364

variants). For instance, the LoF variants of a risk gene probably are more enriched with risk variants 365

than its missense variants. We assume each variant belongs to one of multiple, disjoint, categories. 366

MIRAGE model is shown as a probabilistic graphical model in Figure 7B. We denote Ui the indicator 367

of whether gene i is a risk gene. Ui is a Bernoulli random variable with mean δ. For variant j of gene i, 368

we denote Xij its rare allele count in cases and Tij its total allele counts in cases and controls. Each 369

variant belongs to one variant category, denoted as cij for variant j of gene i. Similar to the 370
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MIRAGE-VS model, we denote Zij the indicator of whether variant j of gene i is a risk variant. The 371

conditional distribution of Xij given Tij and Zij is exactly the same as above, following Equations (4) 372

and (5). Unlike MIRAGE-VS, the prior distribution of Zij is not the same for all variants, instead, it 373

depends on the variant category cij and the gene indicator Ui. When Ui = 0 (non-risk gene), none of 374

gene i’s variants would be risk variant, so Zij = 0 for all j. When Ui = 1 (risk gene), Zij would depend 375

on the variant category cij . We denote ηc the proportion of risk variants for variant category c. Then 376

Zij follows Bernoulli distribution with mean ηcij . 377

Similar to the description of MIRAGE-VS model above, we denote X and T as the set of allele counts 378

in cases, and in cases and controls combined. We also denote C as the set of variant annotations cij ’s. 379

Our primary parameters of interest are δ, the proportion of risk genes, and η, the vector of ηc’s for all 380

variant categories. The likelihood function is given by: 381

P (X|T,C, δ, η) =
∏
i

[(1− δ)P (Xi|Ti, Ui = 0) + δP (Xi|Ti, Ci, Ui = 1, η)], (7)

where Xi, Ti, Ci are the relevant data of all variants in gene i. The first probability term in the equation 382

is the likelihood of a non-risk gene, and is simply given by: 383

P (Xi|Ti, Ui = 0) =
∏
j

Bin

(
Xij ;Tij ,

N1

N1 +N0

)
. (8)

The second probability term is the likelihood of a risk gene: 384

P (Xi|Ti, Ci, Ui = 1, η) =
∏
j

[
(1− ηCij )Bin

(
Xij ;Tij ,

N1

N1 +N0

)
+ ηCijP (Xij |Tij , Zij = 1)

]
, (9)

where P (Xij |Tij , Zij = 1) is given by Equation (5) (adding gene index i in that equation, adding index i 385

only in that single equation could be confusing, unless in the whole section, so do you want to do that?). 386

The parameters δ and η are estimated by EM algorithm (see EM Algorithm in the Supplements). 387

Given the MLE δ̂ and η̂, we can determine the Bayes factor of a gene i, Bi, and its posterior probability 388

of being a risk gene, PPi, as: 389

Bi =
P (Xi|Ti, Ci, Ui = 1, η̂)

P (Xi|Ti, Ui = 0)
, PPi =

δBi
1− δ + δBi

. (10)

It is easy to show that Bi can be related to the evidence at the single variant level: 390

Bi =
∏
j

[(1− ηCij ) + ηCijBij ], Bij =
P (Xij |Tij , Zij = 1)

P (Xij |Tij , Zij = 0)
, (11)

where Bij is the BF of variant j of gene i. From this equation, one can see that the more deleterious 391

variant categories with larger values of ηc will contribute more to the gene level evidence. 392

Once we determine BF and posterior probability of all genes, we control for multiple testing by 393

performing Bayesian FDR control [19]. 394

Simulation procedure 395

Simulation for MIRAGE-VS analysis: We simulate case-control counts of a variant set, for given sample 396

sizes (N1 and N0 for cases and controls, respectively) and given proportion of risk variants η. For each 397

variant in the set, we repeat the following steps. (1) We sample the risk variant status Zj for variant j (1 398

if it is a risk variant, and 0 otherwise): Zj ∼ Bernoulli(η). And if Zj = 1, we also sample the relative 399

risk γj ∼ Gamma(γ̄, σ). Both γ̄ and σ are set as user-specified parameters. We use σ = 1 in the paper in 400

all simulations. (2) We sample the allele frequency qj from a Beta distribution. If Zj = 0, we sample 401

from Beta(α0, β0). We set α0 = 0.1, β0 = 1000 in our simulations. If Zj = 1, we assume variants would 402
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be even rarer, so we sample from Beta(α, β), where α = 0.1, β = 2000 (so mean AF is two times lower 403

than non-risk variants). (3) We sample the total allele count in the data by Tj ∼ Pois(N1 +N0, qj). It is 404

possible that Tj is 0, and such variants are filtered. (4) We split the total variant count Tj into cases and 405

controls by Binomial distribution. If Zj = 0, we split the count according to sample sizes, so the 406

probability in cases is equal to N1/(N1 +N0). If Zj = 1, the probability in cases is
N1γj

N1γj+N0
. 407

Simulation for MIRAGE analysis: We simulate a set of genes under given case-control sample sizes 408

N1, N0 and the proportion of risk genes δ. We assume each gene has a mixture of variants in different 409

categories, with fixed proportions of variant categories. In the simulations of the paper, we use three 410

categories mimicking LoF, deleterious missense variants and the rest, with fractions 10%, 30% and 60% 411

respectively. Each category is allowed to have different mean relative risks γ̄ and different proportion of 412

risk variants, ηc for category c. We use γ̄ = 5 for LoF and 3 for missense categories, and ηc 0.5, 0.2 and 413

0.05 for the three categories, respectively. Our simulation starts with sampling the risk status for gene i, 414

Ui ∼ Bernoulli(δ). When Ui = 0, all variants would be non-risk variants. When Ui = 1, we sample the 415

risk variant status Zij for each variant j of gene i. For a variant j in a category c, its probability of 416

being a risk variant Zij ∼ Bernoulli(ηc). Once we have sampled the risk variant status of all variants, 417

the rest follows the same procedure above for sampling variant counts in cases and controls. 418

WES data of ASD families 419

Transmitted variants from parents to affected children were obtained from 4,315 autism families in De 420

Rubies et al [24], provided by Autism Sequencing Consortium. 421

Annotating variants 422

The software package annovar was used to query the dbNSFP database of functional effect predictions. 423

We annotate with several popular programs including PolyPhen, CADD and SIFT [29–31]. This suite of 424

generic variant annotations was then augmented with 10 gene sets associated with a variety of 425

neuropsychiatric traits (listed in Figure 14). High confidence ASD and moderate confidence ASD genes 426

are defined by the q-values of TADA analysis [19, 26], using q < 0.1 and 0.1 ≤ q < 0.3, respectively. The 427

other gene sets are collected from literature (with PMIDs listed in the figure). All the 10 gene lists can 428

be found in Supplementary Table ? 429

Applying MIRAGE to ASD data 430

For MIRAGE-VS analysis of variant sets, we analyze each variant set separately. The hyperprior 431

parameter for relative risk, γ̄, is set at 6 for LoF and 3 for missense variant sets. In the EM algorithm for 432

estimating the parameter η, the fraction of risk variants, we randomly choose initial values, and the 433

algorithm converges if the change of parameter estimates in two iterations is less is less than 10−5. 434

For MIRAGE analysis of 1003 constrained genes, we create 8 variant categories as described in Results. 435

We use the same hyperprior parameter for LoF and missense variants, as described above. The EM 436

algorithm is used to estimate δ, the proportion of risk genes, and ηc, the percent of risk variants for each 437

category c. Running of EM is similar as above. Once these parameters are estimated, their values are 438

assumed to be known, and are used in calculating BF of each gene. 439

Running other programs 440

We used method SKAT-O in R package SKAT (version 1.3.2.1) without covariates, setting method of 441

SKATO. We used R package AssotesteR for methods CMC and ASUM, and for CMC, we used three 442

MAF cutoffs 5× 10−6, 2× 10−5, 5× 10−5 to partition the variants. ASUM uses permutation test to get 443

p values, and we set the number of permutations to be 100 as larger number of permutations doesn’t 444

make a big difference. For burden test, Fisher’s exact test from the R function-fisher.test was used. 445
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Supporting information 446

EM Algorithm We describe the EM algorithm below for Maximum Likelihood parameter estimation 447

of MIRAGE-VS and the full MIRAGE. 448

EM for MIRAGE-VS MIRAGE-VS maximizes the likelihood of η, as defined in Equation 6 in 449

Methods. For simplicity of notation, we drop T or Tj in the probability or conditional probability terms. 450

We assume the hyperprior parameters γ̄ and σ are given, so we also drop them in the notations. We note 451

though it is possible to estimate the hyperparameters by ML. We denote θ = (η) as parameter of interest 452

and θ(t) as its value in the t-th iteration (this is for generality, as θ would represent a set of parameters 453

in full MIRAGE). 454

We denote Bj as the BF of variant j: 455

Bj =
P (xj |Zj = 1)

P (xj |Zj = 0)
, (12)

where the two probabilities are given by Equations (4) and (5). 456

• E step: calculating the expectation of the log likelihood conditioned on the observed data and θ(t). 457

Q(θ|θ(t)) = EZ|X,θ(t) logP (x, Z|θ) = EZ|X,θ(t) log(P (Z|θ)) + EZ|X,θ(t) log(P (x|Z, θ))

=
∑
j

[E(Zj |x, θ(t)) log(πj(η)) + (1− E(Zj |x, θ(t))) log(1− πj(η))]

+
∑
j

[(1− E(Zj |x, θ(t))) log(1− πj(η)) + E(Zj |x, θ(t))(log(πj(η)) + logBj)].

where πj(η) = P (Zj = 1|xj , η), is the posterior probability that variant j is a risk variant. 458

The derivations are based on:

logP (Z|θ) =
∑
j

[Zj log(πj(η)) + (1− Zj) log(1− πj(η))]

P (x|Z, θ) =
∏
j

P (xj |Zj , θ) =
∏
j

∑
Zj

P (xj , Zj |θ) =
∏
j

[πj(η)P (xj |Zj = 1) + (1− πj(η))P (xj |Zj = 0)]

∝
∏
j

[I(Zj = 1)πj(η)×Bj + I(Zj = 0)(1− πj(η))] =
∏
j

[(πj(η)B
Zj
j × (1− πj(η))1−Zj ]

Thus

P (x|Z, θ) ∝
∏
j

[(πj(η)Bj)
Zj × (1− πj(η))1−Zj ]

log(P (x|Z, θ)) = c+
∑
j

[Zj(log(πj(η)) + log(Bj)) + (1− Zj) log(1− πj(η))]

where Bj is given in (13). 459

E(Zj |x, θ(t)) = P (Zj = 1|x, θ(t)) =
P (x|Zj = 1, θ(t))P (Zj = 1|θ(t))

P (x|θ(t))

=
P (xj |Zj = 1, θ(t))P (Zj = 1|θ(t))

P (xj |θ(t))
=
cj(θ

(t))Bj(θ
t)πj(η

(t))
∏
k 6=j P (xk|θ(t))

P (xj |θ(t))×
∏
k 6=j P (xk|θ(t))

=
cj(θ

(t))Bj(θ
(t))πj(η

(t))

πj(η(t))cj(θ(t))Bj(θ(t)) + (1− πj(β(t)))cj(θ(t))
=

πj(η
(t))Bj(θ

(t))

πj(η(t))Bj(θ(t)) + (1− πj(η(t)))

Denote cj = P (xj |Zj = 0, θ). Then P (xj |Zj = 1, θ) = cjBj . Bj is the Bayes factor for variant j. 460
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• M step updates θ by θ(t+1) that maximizes Q(θ|θ(t)). That is

θ(t+1) = arg maxθ Q(θ|θ(t))

Then, taking derivatives leads to

∂Q

∂η
= 2

∑
j

[
E(Zj |x, θ(t))

πj(η)
− 1− E(Zj |x, θ(t))

1− πj(η)
]
∂πj(η)

∂η

∂Q

∂γ̄
=
∑
j

E(Zj |x, θ(t))

Bj

∂Bj
∂γ̄

∂Q

∂σ
=
∑
j

E(Zj |x, θ(t))

Bj

∂Bj
∂σ

Setting these equations equal to 0 yields 461

η(t+1) =
1

J

∑
j

E(Zj |x, θ(t))

where J is the total number of variants in a variant set. For parameters γ̄, σ, there are no closed 462

form solutions for γ̄(t+1), σ(t+1). Instead, we fix γ̄, σ. 463

EM for MIRAGE Let θ denote all parameters and θ(t) be the parameter estimate at the tth 464

iteration. 465

• E step: calculates the expectation of the log likelihood of parameter θ conditional on the observed
data and θ(t).

Q(θ|θ(t)) = EU,Z|X,θ(t) logL(θ|x, U, Z) = EU,Z|X,θ(t) log(P (x, U, Z|θ))
= EU,Z|X,θ(t) log(P (U,Z|θ)) + EU,Z|X,θ(t) log(P (x|U,Z, θ))

= log(δ)
∑
i

E(Ui|x, θ(t)) + log(1− δ)
∑
i

(1− E(Ui|x, θ(t)))

+
∑
i

∑
j

[E(UiZij |x, θ(t)) log(πij(η)) + (E(Ui|x, θ(t))− E(UiZij |x, θ(t))) log(1− πij(η))]

+
∑
i

∑
j

[(E(Ui|x, θ(t))− E(UiZij |x, θ(t))) log(1− πij(η)) + E(UiZij |x, θ(t))(log(πij(η)) + log(Bij))]

where δ = P (Ui = 1|θ). The last equation holds because

log(P (U,Z|θ)) = log(P (U |θ)× P (Z|U = 1, θ))

= log(
∏
i

δUi(1− δ)1−Ui) + log[
∏
i

∏
j

πij(η)Zij (1− πij(η))1−Zij ]Ui

=
∑
i

Ui log(δ) +
∑
i

(1− Ui) log(1− δ) +
∑
i

∑
j

[UiZij log(πij(η)) + (Ui − UiZij) log(1− πij(η))]

and

P (x|U,Z, θ) =
∏
i

∑
Ui

P (xi|U, θ) =
∏
i

[I(Ui = 0)P (xi|Ui = 0, θ) + I(Ui = 1)P (xi|Ui = 1, θ)]
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Denote di = P (xi|Ui = 0, θ). Hence gene i is non-risk gene and di should be Binomial probability

with γ = 1, then P (xi|Ui = 1, Zi, θ) = di × P (xi|Ui=1,θ)
P (xi|Ui=0,θ) = di ×Bi. Note at gene level, Zij is useless.

Bi is the Bayes factor for gene i. Thus

P (x|U,Z, θ) ∝
∏
i

[P (xi|Ui = 1, Zij , θ)]
Ui

When gene i is a causal gene, i.e. Ui = 1, the likelihood can be decomposed further into variant
level

P (xi|Ui = 1, Zij , θ) =
∏
j

P (xij |Ui = 1, Zij , θ) =
∏
j

∑
Zij

P (xij , Zij |Ui = 1, θ)

=
∏
j

[πij(η)P (xij |Ui = 1, Zij = 1) + (1− πij(η))P (xij |Ui = 1, Zij = 0)]

=
∏
j

P (xij |Ui = 1, Zij = 0)[I(Zij = 1)πij(η)×Bij + I(Zij=0)(1− πij(η))]

∝
∏
j

[I(Zij = 1)πij(η)×Bij + I(Zij = 0)(1− πij(η))]

=
∏
j

[(πij(η)Bij)
Zij × (1− πij(η))1−Zij ]

where Bij is the Bayes factor for j-th variant in i-th gene and πij(η) = P (Zij = 1|Ui = 1, η).
Combining together across all the genes yields

P (x|U,Z, θ) ∝
∏
i

{∏
j

[(πij(η)Bij)
Zij × (1− πij(η))1−Zij ]

}Ui

log(P (x|U,Z, θ)) = c+
∑
i

∑
j

[(UiZij)(log(πij(η)) + log(Bij))

+ (Ui − UiZij) log(1− πij(η))]

c is a constant free of parameters. Now look at expectation terms,

E(Ui|x, θ(t)) = P (Ui = 1|x, θ(t)) =
P (x, Ui = 1|θ(t))

P (x|θ(t))

=
P (x|Ui = 1, θ(t))P (Ui = 1|θ(t))

P (x|Ui = 1, θ(t))P (Ui = 0|θ(t)) + P (x|Ui = 0, θ(t))P (Ui = 0|θ(t))

=
δ(t)P (xi|Ui = 1, θ(t))

δ(t)P (xi|Ui = 1, θ(t)) + (1− δ(t))P (xi|Ui = 0, θ(t))
=

δ(t)Bi(θ
(t))

δ(t)Bi(θ(t)) + (1− δ(t))
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E(UiZij |x, θ(t)) = P (Ui = 1, Zij = 1|x, θ(t))

=
P (x|Zij = 1, Ui = 1, θ(t))P (Zij = 1|Ui = 1, θ(t))P (Ui = 1|θ(t))

P (x|θ(t))

=
P (xi|Zij = 1, Ui = 1, θ(t))P (Zij = 1|Ui = 1, θ(t))P (Ui = 1|θ(t))

P (xi|θ(t))

=
cij(θ

(t))Bij(θ
t)πij(η

(t))
∏
k 6=j P (xik|Ui = 1, θ(t))δ(t)

P (Ui = 1|θ(t))P (xi|Ui = 1, θ(t)) + P (Ui = 0|θ(t))P (xi|Ui = 0, θ(t))

=
cij(θ

(t))Bij(θ
t)πij(η

(t))
∏
k 6=j P (xik|Ui = 1, θ(t))δ(t)

δ(t)P (xi|Ui = 1, θ(t)) + (1− δ(t))P (xi|Ui = 0, θ(t))

=
cij(θ

(t))Bij(θ
t)πij(η

(t))
∏
k 6=j P (xik|Ui = 1, θ(t))δ(t)

δ(t)P (xij |Ui = 1, θ(t))×
∏
k 6=j P (xik|Ui = 1, θ(t)) + (1− δ(t))P (xi|Ui = 0, θ(t))

=
cij(θ

(t))Bij(θ
(t))πij(η

(t))δ(t)

δ(t)[πij(η(t))cij(θ(t))Bij(θ(t)) + (1− πij(η(t)))cij(θ(t))] + (1− δ(t)) P (xi|Ui=0,θ(t))∏
k 6=j P (xik|Ui=1,θ(t))

Denote cij = P (xij |Ui = 1, Zij = 0, θ). Then P (xij |Ui = 1, Zij = 1, θ) = cijBij , Bij is the Bayes
factor for variant j in gene i,

Bij =
P (xij |Ui = 1, Zij = 1)

P (xij |Ui = 1, Zij = 0)

Note here xij is the counts of only cases. So we consider the conditional distribution of 466

x1ij |x1ij + x0ij , which is 467

Bij =
P (x1ij |x1ij + x0ij , Ui = 1, Zij = 1)

P (xij |x1ij + x0ij , Ui = 1, Zij = 0)

=

∫
Bin(x1ij |x1ij + x0ij ,

γN1

γN1+N0
) 1

Γ(γ̄σ)σγ̄σ γ
γ̄σ−1e−

γ
σ dγ

Bin(x1ij |x1ij + x0ij ,
N1

N1+N0
)

(13)

Because

P (xi|Ui = 0, θ(t))∏
k 6=j P (xik|Ui = 1, θ(t))

=
P (xij |Ui = 1, θ(t))P (xi|Ui = 0, θ(t))∏

j P (xij |Ui = 1, θ(t))
= P (xij |Ui = 1, θ(t))× 1

Bi(θ(t))

= [πij(η
(t))cij(θ

(t))Bij(θ
(t)) + (1− πij(η(t)))cij(θ

(t))]× 1

Bi(θ(t))

thus we have

E(UiZij |x, θ(t))

=
Bij(θ

(t))πij(η
(t))δ(t)

δ(t)[πij(η(t))Bij(θ(t)) + (1− πij(η(t)))] + (1− δ(t))[πij(η(t))Bij(θ(t)) + (1− πij(η(t)))]× 1
Bi(θ(t))

=
Bij(θ

(t))πij(η
(t))δ(t)

[δ(t) + 1−δ(t)

Bi(θ(t))
]× [πij(η(t))Bij(θ(t)) + (1− πij(η(t)))]

• M step updates θ by θ(t+1) that maximizes Q(θ|θ(t)). That is

θ(t+1) = arg maxθ Q(θ|θ(t))
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Taking derivatives with respect to θ leads to

∂Q

∂δ
=

∑
iE(Ui|x, θ(t))

δ
−
∑
i(1− E(Ui|x, θ(t)))

1− δ

Suppose there are C annotation groups. η = (η1, η2, · · · , ηC) is a vector. The variant (i, j)
belonging to group c has the prior probability of being causal πij(η) = ηc with group prior. Use
v(i, j) = c to denote variant (i, j) in group c.

∂Q

∂ηc
=
∑
i

∑
j:v(i,j)=c

[
E(UiZij |x, θ(t))

ηc
− E(Ui|x, θ(t))− E(UiZij |x, θ(t))

1− ηc
]

∂Q

∂γ̄
=
∑
i

∑
j

E(UiZij |x, θ(t))

Bij

∂Bij
∂γ̄

∂Q

∂σ
=
∑
i

∑
j

E(UiZij |x, θ(t))

Bij

∂Bij
∂σ

Setting these equations equal to 0 yields

δ(t+1) =
1

I

∑
i

E(Ui|x, θ(t))

I is the total number of genes.

η(t+1)
c =

∑
i

∑
j:v(i,j)=c

E(UiZij |x, θ(t))∑
i

∑
j:v(i,j)=cE(Ui|x, θ(t))

For parameters γ̄, σ, there are no closed solutions for γ̄(t+1), σ(t+1). Instead, we fix γ̄, σ based on 468

empirical evidence. 469
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Fig 8. Parameter estimates by MIRAGE-VS across 100 simulations with varying sample size
N1 = N0 = 1000, 3000, 5000 and varying γ̄ = 2, 3, 4, 5. Every data set has 1000 variants with the
proportion of risk variants, η = 0.1.
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Fig 9. False positive rates at p < 0.05, across 1000 simulations generated under null hypothesis. Every
simulated data set has 100 variants with η = 0. True γ̄ = 5.
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Fig 10. False positive rate of MIRAGE-VS with mis-specified γ̄: Fix N1=N0=3000. 1000 variant sets
are randomly generated with η = 0, each having 100 variants and true γ̄ = 5. Different values of γ̄ are
used to calculate p values by MIRAGE-VS. Y-axis shows the false positive rate at p value less than 5%.
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Fig 11. Sensitivity of power of MIRAGE-VS to the value γ̄. We simulated data sets with true γ̄ = 5
and calculate power with γ̄ = 3, 4, 5, 6. We perform this analysis for 1000 random data sets with different
sample size N1 = N0 = 1000, 3000, 5000.
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Fig 12. Power of several variations of burden test: burden (basic version), burden-min (we calculate p
value for each variant category separately, then take the minimum p value) and burden-combine
(combine category-specific p values by Fisher method).
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Fig 13. Sensitivity of false discovery rate (FDR) to mis-specified γ̄. For each true γ̄ = 3, 4, 5, 6, we use
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vertical line is the mean of actual FDR with standard deviation across 20 replications. N1 = N0 = 3000,
10% of 1000 genes are risk genes. Every gene has 100 variants in three variant groups with proportion of
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Fig 14. Definition of variant sets in MIRAGE-VS analysis of ASD. We combine features at two levels,
variant and gene set. For variant features, we combine predicted effects and MAF. ID: intellectual
disability. PSD: post-synaptic density.
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