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Abstract:  

Functional interpretation of noncoding disease variants, which likely regulate gene expression, has 

been challenging. Chromatin accessibility strongly influences gene expression during 

neurodevelopment; however, to what extent genetic variants can alter chromatin accessibility in 

the context of brain disorders/traits is unknown. Using human induced pluripotent stem cell 

(iPSC)-derived neurons as a neurodevelopmental model, we identified abundant open-chromatin 

regions absent in adult brain samples and thousands of genetic variants exhibiting allele-specific 

open-chromatin (ASoC). ASoC variants are overrepresented in brain enhancers, transcription-

factor-binding sites, and quantitative-trait-loci associated with gene expression, histone 

modification, and DNA methylation. Notably, compared to open chromatin regions and other 

commonly used functional annotations, neuronal ASoC variants showed much stronger 

enrichments of risk variants for various brain disorders/traits. Our study provides the first snapshot 

of the neuronal ASoC landscape and a powerful framework for prioritizing functional disease 

variants. 
 

One Sentence Summary 

Allele-specific open chromatin informs functional disease variants 
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Main text: 

Most common disease risk variants implicated in genome-wide association studies (GWAS) 

are located in noncoding regions of the genome. Functional interpretation of putative causal 

variants at these loci is challenging. For neuropsychiatric disorders, despite recent progress on 

transcriptomic and epigenomic studies of human postmortem brains (e.g., PsychENCODE) (1-4), 

most disease causal variants/genes remain unknown. Because open/accessible chromatin often 

overlaps with regulatory DNA sequence (5, 6), co-localization of disease risk variants within open 

chromatin regions (OCRs) of human postmortem brains or iPSC-derived neurons can help 

prioritize putative functional noncoding risk variants for neuropsychiatric disorders (7-10). 

However, not all the variants within OCRs are functional, and as a result, the enrichment of GWAS 

signals in OCRs is often modest (8). It thus remains a challenge to precisely identify causal variants 

for neuropsychiatric disorders.  

One strategy to address this challenge is to identify functional variants that affect chromatin 

accessibility which influences gene expression. In this work, we focus on allele-specific open 

chromatin (ASoC) variants that display allelic imbalance in sequencing reads at heterozygous 

single nucleotide polymorphism (SNP) sites. By comparing the chromatin accessibility of both 

alleles within the same sample, our approach minimizes experimental variations to better detect 

functional variants. Compared to another common approach of mapping functional variants, 

expression quantitative trait loci (eQTL), ASoC mapping has the advantage of directly identifying 

putatively functional variants, rather than those in linkage disequilibrium (LD). Despite these 

advantages, the landscape of ASoC in major neuronal cell types and its functional relevance to 

neuropsychiatric disorders such as schizophrenia (SZ), remain unknown.  

Neuronal cells derived from iPSCs are a promising cellular model for neuropsychiatric 

disorders (11, 12), offering an alternative to human postmortem brains. iPSC can be derived from 

patients or healthy controls and then differentiated into different subtypes of neuronal cells of high 

purity in a controlled manner (12, 13). iPSC modelling may unravel unique functional genomic 

features pertaining to the developmental aspects of neuropsychiatric disorders, which may not be 

captured using postmortem brains. Here, we conducted a comprehensive mapping of ASoC 

variants in major iPSC-derived neuronal (iN) subtypes. These ASoC profiles provide a direct 

functional readout of noncoding risk variants of neuropsychiatric disorders. 

We derived iPSC lines from 20 subjects selected from the Molecular Genetics of 

Schizophrenia (MGS) cohort (Table S1). These 20 subjects were chosen for being enriched for 

heterozygous (i.e., informative for the allele-specific assay) index SNPs (p < 5  10-8) at ~70/108 

SZ GWAS loci (14, 15) (Fig. S1, Methods). The iPSC lines were first differentiated into neural 

progenitor cells (NPC), and subsequently to early-stage (day-15) glutamatergic (iN-Glut) (16), 

GABAergic (iN-GA), and dopaminergic (iN-DN) (17, 18) neurons, with high purity (75-90%) 

(Fig. 1A, Fig. S2A-C). We carried out Assay for Transposase-Accessible Chromatin using 

sequencing (ATAC-seq) and RNA-sequencing (RNA-seq) in each cell type for 8 lines (“core 8” 

lines). To maximize the power of detecting ASoC for the study of disease GWAS variants, we 

performed ATAC-seq for 12 additional lines in NPCs and iN-Glut (Fig. 1A). We obtained 49-

100M 50-bp paired-end (PE) ATAC-seq reads and 20-30 million 150-bp PE RNA-seq reads for 

each sample (Table S2). All analyzed ATAC-seq samples passed standard quality control based 

on the characteristic nucleosomal periodicity of fragment size distribution and high signal-to-noise 

ratio around transcription start sites (TSS) (Fig. S3). All ATAC-seq and RNA-seq samples were 

confirmed for individual identity using VerifyBamID, and the absence of chromosomal 
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abnormality of each cell culture was verified by RNA-seq-based eSNP-karyotyping (Fig. S2D, 

Methods). 

To call OCR peaks, we pooled the reads of all 8 ATAC-seq samples within each cell type. 

We identified 256~337 K OCR peaks (FDR< 0.05) in each cell type (Fig. S4A, Table S3). iPSCs 

had the highest number of peaks, consistent with the highly permissive chromatin state in 

pluripotent stem cells (19). Peak intensities (normalized ATAC-seq read counts) were highly 

correlated between samples within a cell type (R > 0.9) (Fig. S4B), confirming the high data quality. 

We estimated that the total peaks called from 8 samples accounted for ~70% of all possible peaks 

(Fig. S4C, Methods). The median OCR length was 335 bp, and OCR peaks in each cell type 

covered 4-5% of the genome (Fig. S4D, Table S3).  

We first confirmed the OCRs for some known cell-type-specific genes, such as GAD2, 

encoding an enzyme responsible for the synthesis of GABA in iN-GA, and NANOG, encoding a 

transcription factor (TF) essential for maintaining pluripotency in iPSCs (Figs. 1B and S4E). We 

then clustered 40 ATAC-seq samples (8 samples each  5 cell types) using quantile-normalized 

reads of a common set of 666,614 non-overlapping peaks. We found strong cell-type-specific 

clustering, consistent with that from using RNA-seq data (Figs. 1C and S5A-C). Using the same 

set of OCR peak intervals, we further carried out principal component analysis (PCA) to compare 

our ATAC-seq data with publicly available open chromatin datasets from fetal cortical organoids 

(3), fetal brains (20), and PsychENCODE adult brains (8). We found that iPSCs formed a most 

distant cluster, while our iPSC-derived neural cells were more similar to fetal brains and day-30 

cortical organoids than to adult brains (Fig. 1D), suggesting our dataset better captures early stages 

of neurodevelopment than adult brains.  

We next evaluated whether our neuronal OCR peaks were comparable to PsychENCODE 

brain ATAC-seq peaks (n = 117,935) (8). We defined the overlapping peaks as those reciprocally 

sharing at least 25% of their peak intervals. We found that OCRs of individual neuronal cell types 

(NPC, Glut, DN, or GA) overlapped with 45-55% of the PsychENCODE brain peaks (64% for the 

combined neuronal peaks, Table S3). However, peaks overlapping with PsychENCODE data only 

account for ~20% of our OCRs, i.e., most of our neuronal OCRs are not found in PsychENCODE 

brains. Using a more stringent peak calling cut-off (FDR < 1%) gave similar results (Table S3). 

Our result is consistent with fetal cortex possessing about two-fold more enhancers than developed 

cerebral cortex (3). These observations suggest that OCRs in our iPSC cellular model capture a 

majority of regulatory elements in adult brain, and also expand the repertoire of regulatory 

elements activated only during early development.  

To identify SNPs that may affect chromatin accessibility and possibly regulate gene 

expression, we tested which heterozygous SNPs exhibited allelic imbalance of ATAC-seq reads 

(i.e., ASoC) in each cell type (Fig. S6, Methods). We observed that the directionality of the allelic 

imbalance of candidate ASoC SNPs (binomial p < 0.05) was highly concordant between 

individuals (Fig. S7A), and thus we adopted a pooling approach (21, 22) to increase the power to 

detect ASoC. Specifically, we pooled the allele counts of heterozygous SNPs of the core 8 cell 

lines for each cell type to call ASoC (Fig. S6). We identified 920~2,392 ASoC SNPs in each cell 

type (Fig. 2A, Tables S4-8). Most OCR peaks contained a single ASoC SNP (Fig. S7B, Table S9). 

The proportion of heterozygous SNPs showing ASoC was similar in each cell type (~1.5%) except 

for iN-Glut (3.9%), and the larger number of ASoC SNPs in iN-Glut (n = 2,392) was unlikely due 

to the difference of sequencing depth (Fig. S7C, Table S11).  
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The ASoC data allowed us to investigate how regulatory variants differ across 5 cell types. 

Simple comparison of ASoC SNPs (at FDR < 0.05) between cell types revealed abundant cell-

type-specific ASoC SNPs, in particular between neuronal cell types and iPSC (Fig. 2A). However, 

this analysis may underestimate the extent of ASoC sharing, because the detection power of ASoC 

in each cell type is less than 100%. Similar to cross-tissue eQTL studies (23, 24), we used Storey’s 

π1 analysis to estimate pairwise ASoC sharing (25). We ascertained ASoC SNPs in one cell type 

(FDR < 0.05) and estimated the fraction of them that are also ASoC in the second cell type (Fig. 

2B). As expected, we found that neuronal cell types shared a much higher percentage of ASoC 

SNPs with each other than with iPSC (30~70% vs. 10~20%, Fig. 2B). Even among neuronal cells, 

there were large fractions of ASoC SNPs unique to one cell type. For SNPs that were identified as 

ASoC in multiple cell types, the direction of allelic imbalance was highly correlated between cell 

types (R = 0.77~0.95; Fig. S7D), suggesting conserved regulatory mechanisms of chromatin 

accessibility for a large subset of ASoC SNPs across cell types.  

The observed abundance of cell-type specific ASoC SNPs may be driven by either cell-

type-specific OCRs or different SNP effect sizes (i.e., allelic ratios) across cell types. To 

distinguish these two possible mechanisms, we compared ASoCs in each neuronal cell type vs. 

iPSCs. We ascertained neuron-specific ASoC SNPs as those with FDR < 5% in one neuronal cell 

type but had low read depth (<20 reads) or insignificant allele imbalance (binomial test p > 0.05) 

in iPSCs (Fig. S8). We found that about 38~52% of neuron-specific ASoCs were associated with 

OCRs that are likely neuron-specific, defined as > 2-fold (at FDR < 5%) higher peak intensity than 

that in iPSC (Fig. S9). On the other hand, a large number of neuron-specific ASoC SNPs also 

showed insignificant allele imbalance in iPSCs, despite high sequencing depth (> 100 reads) in 

iPSC (Fig. S8), reflecting cell-type-specific allelic effect size. For example, the neuron-specific 

ASoC SNP that showed the strongest association with SZ, rs2027349 in the 5’-UTR of VPS45, 

exhibited ASoC in iN-Glut, iN-DN, and NPC but not in iPSCs or iN-GA, largely due to different 

allelic effect sizes across cell types (Fig. 2C). These results suggest that variations of both OCR 

intensities and SNP effect sizes play play significant roles in driving cell-type specific ASoC.  

We next compared the genomic/epigenomic features of shared vs. cell-type specific ASoC 

variants. For this analysis, we defined shared ASoC variants as those found in three or more cell 

types, and cell-type specific variants as those unique to one cell type. While ~80% of cell-type-

specific ASoC SNPs were found to be intergenic or intronic, the majority of the shared ASoC 

SNPs were in promoter-TSS regions (Fig. 2D-E). We further annotated SNPs using ChromHMM-

based genomic features in brain such as promoters and enhancers (7). We found a higher 

percentage of cell-type-specific ASoC SNPs (30% vs. 16% of the shared SNPs) in enhancers (Fig. 

S10A). Using a binomial test implemented in GREAT (26), we found that both types of ASoC 

SNPs were enriched in promoters and enhancers (Fig. S10B). This was not unexpected, because 

differentially accessible chromatin regions across brain regions were also found to be enriched for 

both promoters and enhancers (27). Our analysis of differentially accessible OCRs across cell 

types revealed similar finding (Fig. S4F-H). However, compared to shared ASoCs, cell-type-

specific ASoCs showed ~2-fold higher enrichment in enhancers overall (Fig. S10B), and an overall 

stronger enrichment in different subtypes of brain enhancers (Fig. S10C-F). Furthermore, 

comparing the relative distribution of ASoC SNPs in enhancers vs. promoters (Fig. S10A), cell-

type-specific ASoC SNPs were found strongly enriched in enhancers (odds ratio [OR] = 2.13, 

p=7.3 x 10-7, Fisher’s Exact Test), while the shared ASoCs were enriched in promoters (OR = 4.6, 

p=4.3 x 10-35, Fisher’s Exact Test). These results suggest that ASoC SNPs are often associated 
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with regulatory activities in the brain, with cell-type-specific ASoCs more associated with 

enhancer activities.  

A major mechanism of regulatory variants is alternation of chromatin accessibility to TFs 

(5, 28). We thus mapped TF-binding site (TFBS) footprints from ATAC-seq data and examined 

their enrichment of ASoC SNPs (Methods). In iN-Glut neurons, we identified 612,373 TFBSs for 

a set of 579 TF motifs from the JASPAR Vertebrate database (29). Out of the 2,392 ASoC SNPs, 

622 (26%) were found inside TFBSs, representing a 1.8-fold enrichment (vs. non-ASoC SNPs, p 

= 9.110-34, Fisher’s exact test; Fig. 2F). Other cell types also gave similar results (Fig. S11). This 

is consistent with a previous report that only 12% of the genetic variants affecting TF-binding are 

located in TF-binding motifs (30). However, most ASoC variants are still within 200 bp of the 

nearest footprint (Fig. 2F), an interval enriched with SNPs showing allele-specific TF occupancy 

(30), suggesting ASoC variants may commonly affect TF-binding; although other mechanisms 

may also play roles. 

To explore the relevance of neuronal ASoC SNPs to gene regulation in the brain, we jointly 

analyzed our data with QTL data for other molecular phenotypes in the brain. As expected, the 

number of detected ASoC SNPs linearly increases with sample size (Fig. S12A), we thus used 

ASoC SNPs of all 20 lines (for NPC and iN-Glut) to maximize the power. We identified 5,611 and 

3,547 ASoC variants (1,690 shared, FDR < 5%) in iN-Glut and NPCs, respectively (Fig. 3A, 

Tables S12-13). We first explored the regulatory relevance of these ASoC variants using 

PsychENCODE high-confidence enhancers of fetal brain organoids and adult brains (1, 3). We 

found ASoC SNPs in both iN-Glut and NPCs were enriched in fetal brain organoid enhancers (p 

= 1.810-12 and 2.410-24 respectively; Fisher’s exact test). Interestingly, ASoC SNPs in iN-Glut, 

but not NPCs, showed enrichment in adult brain enhancers (p = 9.510-9, Fisher’s exact test, Fig. 

S12B, Tables S12-14), consistent with the fact that iN-Glut represents a more mature neuronal 

state than NPCs. We next assessed the enrichment of ASoC SNPs for regulatory variants 

associated with gene expression, histone modification, and DNA methylation from an adult brain 

QTL study (Fig. 3B, Tables S15-16) (31). We focused on iN-Glut because of its relevance to SZ 

(32, 33) and its stronger enrichment (vs. NPC) in adult brain enhancers (Fig. S12B). Enrichment 

analysis of QTL data, however, faces two challenges: SNPs passing statistical cut-offs may not be 

causal variants but their LD proxies, and many causal SNPs do not pass stringent statistical cutoffs. 

To address these issues, we used TORUS (34), a tool based on a Bayesian hierarchical model, to 

perform the enrichment analysis, as recently done in large eQTL studies (24). We found that ASoC 

SNPs were highly enriched (30~90-fold) for putatively causal QTL variants of expression (eQTL), 

histone marks (haQTL), and DNA methylation (meQTL) (Fig. 3B). The observed enrichments of 

iN-Glut ASoC SNPs for brain QTLs were also confirmed by using independent eQTL and meQTL 

data sets (Fig. S12D) (1, 8, 35). Altogether, our results support the regulatory effects of ASoC 

SNPs and suggest that some neuronal ASoC variants may have lasting functions at later 

developmental stages.  

Having shown the functional relevance of neuronal ASoC SNPs in the brain, we assessed 

the utility of ASoC in inferring functional noncoding risk variants for neuropsychiatric disorders. 

We and others have previously shown that disease risk variants are modestly over-represented in 

OCRs (10, 36, 37). We hypothesized here that ASoC variants were further enriched for functional 

disease variants. We first examined the enrichment of iN-Glut ASoC SNPs (n = 20 lines) in 

variants associated with SZ (15) (Fig. 3C, Tables S17-18). We found 21 of the 5,611 ASoC SNPs 

were GWAS index SNPs or their LD proxies at 17 independent SZ loci (nearest genes: VPS45, 
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BCL11B, GALNT10, RERE, UBE2Q2P1, PCDHA1, NGEF, DPYD, BAG5, BTA3A2, 

LOC100507431, KMT2E-AS1, PBRM1, ZSCAN16-AS1, STAT6, LINC000637 and PPP1R16B), 

representing a 5.2-fold enrichment (p = 1.510-8, Fisher’s exact test, Fig. 3C). To account for LD 

and uncertainty of causal variants as described above for the QTL enrichment analysis, we applied 

TORUS (34) to SZ GWAS summary statistics (15) (Fig. 3D, Methods). We found that neuronal 

(iN-Glut or NPC) ASoC SNPs showed remarkably higher enrichment for SZ risk variants than 

OCRs and other functional annotations, such as conservation and brain eQTL (50~90 vs. 2.5~6-

fold, Fig. 3D).  

We expanded the TORUS enrichment analysis of GWAS risk variants to 9 other brain 

disorders and traits (Fig. 3E, Fig. S13). Similar to SZ, we observed much higher enrichment of 

GWAS variants for intelligence, educational attainment, and neuroticism in both iN-Glut and NPC 

ASoC variants than in OCRs. For bipolar disorder (BP) and major depressive disorder (MDD), we 

observed strong enrichment of their respective GWAS variants in neuronal ASoC SNPs, but not 

in OCRs. For neurodegenerative disorders, we found significant enrichment of ASoC SNPs (but 

only in iN-Glut) in Alzheimer’s disease (AD), but not Parkinson’s disease (PD), although OCRs 

did show weak enrichment for PD. For comparison, we included GWAS datasets of body mass 

index (BMI), height, and inflammatory bowel disease (IBD). BMI and IBD variants showed no or 

low enrichment in neuronal ASoC SNPs or OCRs. We observed strong enrichment of height risk 

variants in neuronal ASoC SNPs, which may reflect the highly polygenic nature of height and the 

genetic correlation between human height and intelligence (38). We note that the failure to detect 

enrichment in ASoC or OCRs for some diseases may reflect underpowered disease GWAS (e.g., 

attention deficit hyperactivity disorder [ADHD] and autism spectrum disorder [ASD]), weaker 

disease relevance of the assayed cell types (e.g., for AD and PD), or the limited power of our study 

with only 20 cell lines. Nonetheless, neuronal ASoC SNPs overall showed much stronger 

enrichment of risk variants for brain-related phenotypes than other commonly used annotations 

such as OCRs and conservation (Figs. S12C and S13). Together, these results suggest that ASoC 

is a highly effective predictor of functional noncoding variants for various brain disorders and 

traits. 

In summary, we have provided the first snapshot of the ASoC landscape in an iPSC-based 

neurodevelopmental model and demonstrated that ASoC is a direct functional readout of 

noncoding risk variants of brain disorders/traits. The enrichments of neuronal ASoC SNPs for 

brain enhancers, TFBSs, and brain QTLs suggest mechanistic links between chromatin 

accessibility and gene expression. Given the strong enrichment of ASoC variants for GWAS 

signals of SZ and other brain disorders/traits, our study provides a useful resource and perhaps 

more importantly, an effective framework for functional interpretation of noncoding disease risk 

variants.  
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Fig. 1. Mapping open chromatin regions (OCRs) by ATAC-seq in iPSC and neuronal cells. (A) 
Schematic of iPSC differentiation strategies. Scale bar: 100 µm in iPSC and 25 µm for others. (B) OCR 
peaks for GAD2 in different cell types, showing increased chromatin accessibility in GABAergic 
neurons (iN-GA). (C) Hierarchical clustering and heatmap of normalized ATAC-seq reads within OCR 
peaks of different cell types. (D) Principal component analysis (PCA) of OCR peak intensities shows 
the separation of different cell types/tissues as well as the higher similarity between iNs and fetal 
brains/day-30 fetal organoids than postmortem (PTM) adult brain. All data were ATAC-seq except 
for fetal brain being DNase-seq.   
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Fig. 2. Characteristics of ASoC SNPs. (A) Venn diagram of ASoC SNP numbers (n = 8 samples per 
cell type). (B) Heatmap of pairwise 1 estimation of ASoC SNPs among five cell types. Each number 
in the matrix represents the proportion of non-null tests (1) estimated from binomial p values in 
the matched cell type for ASoC SNPs (FDR < 0.05) obtained from the leading cell type. (C) ATAC-seq 
peaks near rs2027349, the strongest neuronal ASoC SNP that is also associated with SZ, in each cell 
type. The high-resolution read pileups flanking the SNP (from 4 heterozygous samples) and allelic 
ratio differences are shown in the dashed box. (D-E) The proportion of ASoC SNPs that are cell type-
specific (D) or shared between at least three cell types (E) in different types of genomic regions. (F) 
Histogram of the ASoC SNPs based on their distances (bp) to the nearest TF footprint. 
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Fig. 3. Enrichments of ASoC variants for brain QTLs and genetic risk of SZ and other complex 
disorders/traits. (A) Volcano plot of the reference allelic ratio of all heterozygous SNPs from 20 iN-
Glut samples. Red: ASoC SNPs (FDR<5%). (B) Enrichment of iN-Glut ASoC SNPs for brain QTLs (eQTL: 
expression QTL, mQTL: DNA methylation QTL, haQTL: histone acetylation QTL). (C) Venn diagram of 
all heterozygous SNPs and ASoC SNPs in 20 iN-Glut samples, showing the enrichment ASoC SNPs for 
SZ GWAS SNPs. (D) Enrichments of for SZ GWAS SNPs for different annotations after accounting for 
SNP LD. The red dot indicates the log2 odds ratio of enrichment, and the bar-range represents 95% 
confidence interval. (E) Bubble plot showing the enrichment of GWAS associations of 13 
disorders/traits (see Methods) in ASoC SNPs and OCRs. Dot color indicates the log2 odds ratio of 
enrichment, and dot size denotes its corresponding significance. SZ: Schizophrenia, BP: Bipolar, MDD: 
Major depression disorder, ADHD: Attention-deficit/hyperactivity Disorder, BMI: Body mass index, 
IBD: Inflammatory bowel disease. 
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