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 2

Abstract 1 

Recent advances in sequencing technology and accompanying bioinformatic 2 

pipelines have allowed unprecedented access to the genomes of yet-uncultivated 3 

microorganisms from a wide array of natural and engineered environments. 4 

However, the catalogue of available genomes from uncultivated freshwater 5 

microbial populations remains limited, and most genome recovery attempts in 6 

freshwater ecosystems have only targeted few specific taxa. Here, we present a 7 

novel genome recovery pipeline, which incorporates iterative subtractive binning 8 

and apply it to a time series of metagenomic datasets from seven connected 9 

locations along the Chattahoochee River (Southeastern USA). Our set of 10 

Metagenome-Assembled Genomes (MAGs) represents over four hundred 11 

genomospecies yet to be named, which substantially increase the number of 12 

high-quality MAGs from freshwater lakes and represent about half of the total 13 

microbial community sampled. We propose names for two novel species that 14 

were represented by high-quality MAGs: “Candidatus Elulimicrobium humile” 15 

(“Ca. Elulimicrobiota” in the “Patescibacteria” group) and “Candidatus Aquidulcis 16 

frankliniae” (“Chloroflexi”). To evaluate the prevalence of these species in the 17 

chronoseries, we introduce novel approaches to estimate relative abundance and 18 

a habitat-preference score that control for uneven quality of the genomes and 19 

sample representation. Using these metrics, we demonstrate a high degree of 20 

habitat-specialization and endemicity for most genomospecies observed in the 21 

Chattahoochee lacustrine ecosystem, as well as wider species ecological ranges 22 

associated with smaller genomes and higher coding densities, indicating an 23 
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overall advantage of smaller, more compact genomes for cosmopolitan 1 

distributions. 2 

 3 

Introduction 4 

Freshwater environments represent a major microbial habitat on Earth, hosting 5 

an estimated 1.3×1026 prokaryotic cells worldwide [1, 2]. The level of diversity in 6 

microbial freshwater communities is orders of magnitude lower than that of other 7 

major environments such as soil and seawater [3], making them a tractable but 8 

globally important model for studying microbial community ecology. However, the 9 

lack of comprehensive sets of reference genomes and low cultivation rates 10 

hinder the study of these communities. On average, a quarter of freshwater 11 

community members detected by 16S rRNA gene or metagenomic surveys 12 

belong to yet-uncultured phyla, with an additional two thirds belonging to 13 

uncultured genera, families, or classes [4]. In fact, only a tenth of freshwater 14 

microbial cells belong to cultivated species or genera, the smallest cultivated 15 

fraction among all major environments on Earth (i.e., environments with over 1025 16 

microbial cells estimated worldwide [4]; but see also [5]). Recent efforts to 17 

recover metagenome-assembled genomes (MAGs) from freshwater 18 

environments have largely targeted specific taxa [6–10]. A few recent attempts 19 

recovered MAGs from all Bacteria and Archaea present in freshwater 20 

communities and resulted in three collections of MAGs from a lake in Siberia 21 

(Lake Baikal) and three lakes in North America (Lake Mendota, Trout Bog Lake, 22 

and Upper Mystic Lake) [11–13], as well as two collections from rivers in India 23 
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(Ganges River) and Greece (Kalamas River) [14, 15]. The fraction of the 1 

communities captured by these MAGs or other reference genomes is typically 2 

moderate to low due to the high diversity of freshwater communities as well as 3 

the limitations of the underlying binning methods, which are not optimized for 4 

chronoseries datasets from natural habitats but rather for single or small sets of 5 

samples from the exact same microbial community. Temporal and spatial series 6 

from freshwater ecosystems are even sparser; yet, such data could provide a 7 

more complete picture of seasonal and biogeographic patterns of the 8 

corresponding microbial communities that are important for human activities.  9 

We introduce here a pipeline for the recovery of MAGs from sets of 10 

metagenomes through iterative subtractive binning and apply it to a 11 

metagenomic chronoseries from freshwater lakes and estuaries along the 12 

Chattahoochee River (Southeast USA). The abundance distribution of these 13 

population genomes in the meta-community was studied using two 14 

methodological innovations: an estimation of relative abundance controlling for 15 

completeness and micro-diversity issues in the genomes, and an ecologic 16 

preference score controlling for uneven sample representation. The collection of 17 

MAGs presented here captures 50-60% of the total source communities, which is 18 

about three times larger than previous binning efforts from comparable 19 

freshwater environments, and includes representatives from taxa yet to be 20 

named, ranging from novel species of previously described genera to novel 21 

phyla. 22 

 23 
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 5

Materials and Methods 1 

Additional information on software versions and parameters used is available in 2 

Table 1, and additional details are provided in the Text S1. 3 

 4 

Sample Collection and Metagenomic Sequencing 5 

All samples were collected from the lower epilimnion (typically 3-5m depth) of the 6 

Southeastern U.S. Lakes Lanier (GA), West Point (GA/AL), Harding (GA/AL), 7 

Eufaula (GA/AL), and Seminole (GA/FL) at least 10 m away from the littoral 8 

zone, and two locations in the Apalachicola estuary, off the coasts of 9 

Apalachicola and East Point (FL). Water samples were immediately stored at 4°C 10 

and processed typically within 1-4 h, and no more than a day post collection. 11 

Water was sequentially filtered with a peristaltic pump through 2.5 µm and 1.6 12 

µm porosity glass microfiber filters (Whatman), to capture large particles and 13 

eukaryotic cells, and microbial cells were eventually retained on 0.2 µm porosity 14 

Sterivex filters (Millipore). Thus, all sequenced metagenomes represent the 1.6-15 

0.2 µm cell size fraction, except LLGFA_1308A and LLGFA_1309A that 16 

represent the 2.5-1.6 µm fraction. Filters were preserved at -80°C. DNA 17 

extraction was performed as previously described [16] with minor modifications 18 

and samples were sequenced using Illumina MiSeq and HiSeq sequencers (see 19 

Text S1, Metagenomic Sequencing). In addition, we included in our metagenome 20 

collection previously obtained viral enrichments (viral metagenomes) from the 21 

same freshwater samples [17] that were found to be highly contaminated with 22 
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bacterial cells. Those viral metagenomes were included in the binning process, 1 

but not in subsequent analyses.  2 

 3 

Sequencing Data Processing 4 

All sequenced metagenomic datasets were subjected to quality control and those 5 

not passing minimum requirements were re-sequenced. Sequencing reads were 6 

trimmed and clipped using SolexaQA++ [18] and Scythe. Abundance-weighted 7 

average coverage of the datasets was estimated using Nonpareil [19]. A 8 

minimum dataset size of 1Gbp after trimming and 50% coverage were required 9 

for all samples in this study (Table S1). 10 

 11 

Iterative Subtractive Binning 12 

An initial binning methodology was implemented using metadata-dependent 13 

grouping of samples to recover high-quality metagenome-assembled genomes 14 

(MAGs; Fig. 1, top row). Specifically, we grouped and co-assembled all cell-15 

metagenomic samples from Lake Lanier (34 samples, 120 Gbp in total). The co-16 

assembly strategy consisted of initial individual assemblies (IDBA-UD [20]), 17 

cutting resulting contigs (FastA.slider.pl [21]), and reassembling the fragments 18 

from all samples (IDBA-UD). We binned the final contigs using MetaBAT [22] and 19 

evaluated genome quality with CheckM [23]. MAGs with estimated completeness 20 

above 75% and contamination below 5% were considered of high quality, and 21 

the resulting set was labeled LLD. 22 
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Next, we implemented a strategy to recover MAGs using the complete 1 

collection of samples (Fig. 1). Our samples consisted of a roughly continuous 2 

two-dimensional scheme (temporal/spatial components), making metadata-3 

based grouping of samples prone to subjective calls. Instead, we performed a 4 

sequence-based grouping by Markov Clustering (MCL) [21, 24] of Mash 5 

distances [25] using only values below 0.1. Each group was co-assembled 6 

(IDBA-UD), binned (MaxBin [26], Bowtie [27]), and evaluated using MiGA [28]. 7 

MAGs with estimated genome quality above 50 were considered of high quality 8 

(see below genome quality definition), and the first resulting set was labeled 9 

WB4. The resulting set of high-quality MAGs (LLD + WB4) was used as 10 

reference database to map reads from all samples (Bowtie), and unmapped 11 

reads (SAMtools [29]) were used as input for Mash/MCL clustering, iterating the 12 

process described above to produce sets WB5-WBB (Fig. 1). The number of 13 

iterations was determined by saturation of phylogenetic breadth and fraction of 14 

reads mapping (Fig. 2). Finally, two corrections were implemented targeting 15 

groups that typically generate quality underestimations. First, a correction for 16 

archaeal genomes in MiGA was used to recover high-quality genomes from 17 

Archaea in all iterations (WBC). Second, the Random-Forest classifier for 18 

Candidate Phyla Radiation (CPR) scripts in Anvi’o [30] were used to detect high-19 

quality genomes from CPR in all iterations, which didn’t yield any additional 20 

MAGs. The complete collection of high-quality MAGs is hereafter designated WB 21 

(Table S2). 22 

 23 
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 8

Genome Quality and Taxonomic Classification 1 

The quality and taxonomic classification of MAGs were evaluated using MiGA. 2 

Briefly, a composite index of genome quality was used, defined as 3 

“Completeness - 5×Contamination”, where both completeness and contamination 4 

were determined by the presence and copy number of genes typically found in 5 

genomes of Archaea and Bacteria in single copy [21, 28]. Taxonomy was 6 

determined by MiGA with the NCBI Genome Database, Prokaryotic section 7 

(henceforth NCBI_Prok; MiGA Online; Jan-2019) [28]. MiGA also performs a de-8 

replication of the collection by generating groups of genomes with ANI ≥ 95% 9 

using ogs.mcl.rb [21, 24]. These clusters, analogous to bacterial or archaeal 10 

species [31, 32] are hereafter termed genomospecies (gspp, singular gsp). 11 

 12 

Genome Phylogeny 13 

Two phylogenetic approaches were used to place the obtained MAGs in the 14 

context of the tree of Bacteria (only 4 distinct species of Archaea were 15 

recovered). First, we used PhyloPhlAn [33] to place the genomes in the context 16 

of a general-purpose widely used genome collection. Next, we generated a 17 

phylogenetic reconstruction using the high-quality MAGs in this study classified 18 

as Bacteria, and all best-match entries (highest AAI) of our set against five 19 

collections of genomes available in MiGA Online at http://microbial-20 

genomes.org/projects. Namely, a manually curated collection of MAGs from 21 

various projects (GCE), a set of MAGs recovered from the Tara Oceans 22 

expedition (TARA) [34], a collection of MAGs recovered from various 23 
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environments excluding human microbiome (UBA) [35], all complete genomes 1 

available in NCBI (NCBI_Prok), and all available genomes (complete or draft) 2 

from type material (TypeMat) [36]. Marker proteins were extracted from all the 3 

abovementioned genomes (HMM.essential.rb [21]), and those present in at least 4 

80% of the genomes were selected and independently aligned (Clustal Omega 5 

[37]). Next, maximum likelihood gene trees were constructed for individual 6 

alignments using RAxML [38] with model selected using ProtTest [39]. Finally, a 7 

species tree was estimated from the best-scoring ML trees reconstructed for 8 

each gene using ASTRAL-III [40]. 9 

Both final trees (PhyloPhlAn and ASTRAL) were used to estimate 10 

phylogenetic gain for the WB collection using Faith’s Phylogenetic Diversity (PD 11 

[41]; Picante [42]): 12 

���������	
� �
� �  1 � 
���	��� �����	 ������
�� ���

���������	� 	����
 

In the ASTRAL tree, branch lengths for all terminal nodes were set to zero 13 

in this analysis. The taxonomic classification reported by NCBI for the genomes 14 

in the collections TypeMat, NCBI_Prok, and UBA was recovered by MiGA, and 15 

used to calibrate taxonomic limits in coalescent units by identifying the median 16 

values between taxonomic ranks. In addition, this taxonomic information was 17 

used to decorate the rooted ASTRAL species tree (tax2tree [43]). The tree was 18 

visualized using FigTree. 19 

 20 

Genome annotation 21 
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 10

Functional annotation of all genomes was performed using Prokka [44]. Protein 1 

annotations from COG (Cluster of Orthologous Groups of proteins) were mapped 2 

to COG categories using eggNOG [45]. Gene coding density, G+C content, and 3 

other descriptive statistics, as well as genome completeness, contamination, and 4 

quality were calculated using MiGA [28]. Growth rate and optimal growth 5 

temperature were predicted using growthpred [46]. Extracellular proteins were 6 

predicted using PSORTb with Gram staining predicted by Traitar [47, 48]. 7 

 8 

Abundance and Alpha Diversity 9 

The abundance of each gsp was estimated using the MAG of highest genome 10 

quality as representative. For each metagenomic dataset, the sequencing depth 11 

was estimated per position (Bowtie [27], bedtools [49]) and truncated to the 12 

central 80% (BedGraph.tad.rb [21]), a metric hereafter termed TAD (truncated 13 

average sequencing depth). Abundance was estimated as TAD normalized by 14 

the genome equivalents of the metagenomic dataset (MicrobeCensus [50]), 15 

resulting in units of community fraction. A gsp was considered to be present in a 16 

sample if the TAD was non-zero (equivalent to sequencing breadth ≥ 10%, 17 

previously shown to correspond to confidence of presence > 95% [51]). The 18 

alpha-diversity was estimated using the sequence diversity Nd projected to 19 

Shannon diversity H’ (Nonpareil [3]), as well as H’ on the gspp abundance profile 20 

(AlphaDiversity.pl [21]). Additional details are available on Text S2. 21 

 22 

Preference Scores 23 
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In order to determine the preferential presence of a gsp in a given set of samples 1 

while accounting for the geographic and environmental biases in the dataset 2 

collection used here, we devised a preference score accounting for the expected 3 

abundance of a gsp in a given dataset (see Text S1, Preference Score). Briefly, 4 

we first estimated the observed bias (i.e., over- or under-representation) in 5 

presence frequency of a gsp in a given set of samples compared to the rest of 6 

the samples. Next, we estimated the expected bias assuming that there is no 7 

preference by normalizing by both gsp presence frequency across all samples as 8 

well as the presence frequency of all gspp in each sample. This is achieved by 9 

estimating the expected frequency of each MAG in a metagenome as the 10 

frequency of MAGs in that metagenome multiplied by the frequency with which 11 

the MAG is observed across metagenomes. Finally, we calculate the ratio of 12 

these two biases (observed/expected) maintaining the sign of the observed bias. 13 

The preference score of gsp i for sample set t is termed �
�

��	�. A score was 14 

considered significant when �
�

��	� � 1 (preference for the set t) or �
�

��	�  �1 15 

(preference against set t). No clear preference was established for gspp with 16 

1 ! �
�

��	� ! �1. 17 

 18 

Samples from Other Projects 19 

In addition to the metagenomes sequenced as part of our study, we used 20 

previously reported metagenomes from other sites and environments for 21 

comparisons. These metagenomes, derived from previous studies [13, 52–65], or 22 

recovered via MGnify [66], are described in Table S3. The raw reads were 23 
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obtained from the European Nucleotide Archive (EBI ENA) and processed as 1 

described above. The metadata for each sample was obtained from EBI ENA or 2 

the original studies, including biome, aquatic habitat, and geographic location 3 

(latitude and longitude). 4 

 5 

Metrics of Ecologic Range 6 

Ecologic ranges were measured in different dimensions reflecting environment 7 

and geographic location. Environments were characterized by biome (one of 8 

brackish water, estuary, estuary sediment, freshwater sediment, glacier, 9 

groundwater, human gut, lake, marine oxygen minimum zone, marine surface, 10 

marine water column, river, or soil) or aquatic habitats (brackish, estuary, 11 

freshwater, marine, non-aquatic), and for each gsp the count breadth (number 12 

of biomes or aquatic habitats) was determined by presence as non-zero TAD in 13 

the corresponding samples of the biome or habitat. In addition, the frequency of 14 

presence of a gsp across samples per biome or aquatic habitat was used to 15 

estimate the entropy (natural units), as proposed by Levins [67] (unweighted 16 

Levins’ breadth). In order to account for the estimated abundances (and not 17 

only inferred presence), we also defined average abundance across samples per 18 

biome or aquatic habitat to estimate entropy (weighted Levins’ breadth). 19 

Geographic distances were estimated using the distance on the ellipsoid [68] 20 

(geosphere). For each gsp, two geographic ranges were estimated: the 21 

maximum distance between any two samples where the gsp is present 22 

(geodesic range), and the maximum latitudinal range of samples where the gsp 23 
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is present (latitude range). Correlations between traits and ecologic ranges were 1 

evaluated by Pearson’s linear correlation for continuous variables and 2 

Spearman’s rank correlation for counts. Additionally, correlations along the 3 

ASTRAL phylogenetic reconstruction were evaluated using phylogenetic 4 

generalized least squares (nlme) assuming a Brownian model (ape [69]). 5 

 6 

Results 7 

Freshwater Metagenomic Datasets 8 

We sequenced a total of 69 metagenomic datasets derived from water samples 9 

from Lakes Lanier, Harding, Eufaula, and Seminole, and the estuarine locations 10 

of Apalachicola and East Point along the Chattahoochee River, in the 11 

Southeastern continental USA (Table S1). All samples were collected from the 12 

lower epilimnion to allow comparisons across sites. All samples were required to 13 

have at least 60% coverage as estimated by Nonpareil [3], except for LL_1007C 14 

(46% coverage) that had a high-coverage replicate (LL_1007B, 83% coverage). 15 

Excluding the latter (LL_1007C), samples had an average community coverage 16 

of 76% (Inter-Quartile Range –IQR–: 70.6-81.3%) and an average total size after 17 

trimming of 3.4 Gbp (IQR: 2.6-4.4 Gbp). The sequence diversity estimated by 18 

Nonpareil (Nd) was on average 19.6 (IQR: 19.3-20.0), typical of freshwater 19 

microbial communities [3]. 20 

 21 

Iterative Subtractive Binning 22 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 31, 2019. ; https://doi.org/10.1101/826941doi: bioRxiv preprint 

https://doi.org/10.1101/826941
http://creativecommons.org/licenses/by/4.0/


 14

An iterative subtractive binning methodology was applied to the collection of 1 

metagenomes described here. Briefly, metagenomic datasets were processed by 2 

grouping metagenomes by read-level similarity (Mash distances), co-assembling 3 

with or without subsampling, binning, mapping reads to high-quality obtained 4 

MAGs, and iterating this methodology with the resulting unmapped sequencing 5 

reads (Fig. 1; see also Materials and Methods). This method produced a total of 6 

1,126 MAGs grouped in 462 genomospecies, i.e., clusters with intra-cluster ANI 7 

≥ 95%. The average estimated completeness of the MAGs in this set was 75.4% 8 

(IQR: 66.7-84.7%), and the average estimated contamination was 2.10% (IQR: 9 

0.9-2.7%). This result contrasts with the 199 MAGs identified in the initial non-10 

iterative binning (LLD), grouped in 166 gspp (Fig. 2-A), indicating that the 11 

iteration process captured at least three times higher taxonomic diversity. The 12 

initial quality control excluded all archaeal genomes captured, and the archaeal 13 

correction (WBC) recovered 22 genomes from 4 gspp. No additional genomes 14 

were recovered by the CPR correction. 15 

 16 

Diversity Captured 17 

The initial non-iterative binning (LLD) captured only 8-14% (IQR; average: 18 

11.5%) of the total metagenomic reads, depending on the dataset considered, 19 

whereas the final set captured 38-50% (IQR; average: 43.2%) of the total 20 

metagenomic reads (Fig. 2-B-C). These figures underscore the large increase in 21 

representation of the community throughout the iterative process. However, it is 22 

expected that this representation be strongly biased towards the most abundant 23 
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members of the community. In order to reduce the effects of genome size 1 

variation, completeness, and other artifacts, we estimated relative abundance of 2 

MAGs as truncated sequencing depth (TAD) normalized by genome equivalents 3 

(see Methods and Text S2). The estimated fraction of the community captured by 4 

the final set of MAGs was 42-59% (IQR; average: 50.2%). Importantly, this 5 

fraction is considerably larger than that of other available MAG sets from 6 

freshwater lakes, further underscoring the usefulness of iterative subtractive 7 

binning. For instance, a previous study on the microbial communities of Upper 8 

Mystic Lake (Massachusetts, USA) [12] recovered a set of 87 genomes from 14 9 

metagenomic datasets. Using the same abundance estimations as above, we 10 

calculated that those 87 genomes captured 11-18% (IQR; average: 14.9%) of the 11 

source communities. A smaller set of 35 MAGs recovered from two metagenomic 12 

dataset from the waters under the surface ice layer of Lake Baikal (Siberia, 13 

Russia) [11], resulted in 10 and 9.7% of the source communities captured at 20- 14 

and 4-m-deep samples, respectively. Finally, a set of 194 MAGs recovered from 15 

three chronoseries from the eutrophic Lake Mendota and the humic Trout Bog 16 

Lake (Wisconsin, USA) [13] resulted in 20.2%, 31.9%, and 38.4% of the 17 

communities captured in Lake Mendota, and the epilimnion and hypolimnion of 18 

Trout Bog Lake, respectively. In addition, we evaluated two riverine MAG 19 

datasets from Rivers Ganges (India) and Kalamas (Greece). The former, 20 

composed of 104 MAGs, captured on average 23.6% of the source communities 21 

(IQR: 18-33%), and the latter with 14 MAGs captured 7.4% (IQR: 6-10%). 22 

Overall, freshwater MAG sets from previous studies captured on average 16.7% 23 
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of the source communities (IQR: 10-20%), about three times less than the WB 1 

set presented in this study. However, note that the high metagenomic read 2 

recovery from the WB collection does not preclude other biases for community-3 

level diversity assessment. Most notably, we identified that MAGs capture a 4 

disproportionally larger fraction of less diverse communities, indicating that profile 5 

summary statistics such as Shannon diversity or Richness estimations should not 6 

be computed directly from collections of MAGs (Fig. S1, Text S2). 7 

 8 

Phylogenetic Diversity and Novelty 9 

We reconstructed a coalescent-based phylogeny of all high-quality bacterial 10 

MAGs in this study (n=1,108 in 462 gspp) and related genomes (best-hit by AAI) 11 

in different reference collections (Fig. 3). The best-hit sets included genomes 12 

from GCE (n=96, from 591 genomes/393 gspp), TARA (n=173, from 957 13 

genomes/856 gspp), UBA (n=224, from 7,903 genomes/4,042 gspp), NCBI_Prok 14 

(n=226, from 13,826 genomes/4,271 gspp), and TypeMat (n=143, from 9,077 15 

genomes/6,939 gspp). Marker proteins from all the abovementioned genomes 16 

(n=1,970) present in at least 80% of the genomes were selected (n=70, from 110 17 

proteins evaluated) for gene-tree reconstructions reconciled in the final species 18 

tree. 19 

We characterized the global gain in phylogenetic diversity represented by our 20 

collection with respect to two reference sets. First, in the set of best-matching 21 

genomes described above (ASTRAL tree), our collection represents about 409 22 

novel species (out of 999 total species-level clades) and 70 novel genera (out of 23 
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332), based on approximated calibration of taxonomic ranks (as retrieved from 1 

NCBI) in the reconstructed phylogeny (Fig. S4-A-B). Overall, the gain in summed 2 

branch lengths (phylogenetic diversity) was estimated at 24.8%. A similar value 3 

of phylogenetic gain was obtained when comparing against a second reference 4 

set obtained directly from PhyloPhlAn (24.5%; Fig. S4-C-D). However, note that 5 

both estimates of phylogenetic gain are likely inflated since the former reference 6 

set does not include groups distant from any MAG in our collection (i.e., we only 7 

used reference genomes identified as best matches to WB), and the latter does 8 

not include recently described taxa (PhyloPhlan version 0.99, last updated 9 

May/2013). 10 

 11 

Presence in Other Sites and Ecosystems 12 

We evaluated the presence of the WB gspp in samples from different 13 

environments, mainly aquatic (Fig. 4). WB species were considered present in a 14 

sample if their sequencing depth was at least 10%, which corresponds to 15 

confidence of presence > 95% [51]. In order to determine environmental or 16 

geographic preference, we estimated preference scores based on the 17 

frequencies of presence in different sets of samples, normalizing by the baseline 18 

distribution of each gsp and the probability of capturing any gsp in a given 19 

sample, and implicitly accounting for sample size and community evenness 20 

among other factors (see Methods; Fig. 4-A). Gspp tended to cluster in two main 21 

groups: freshwater (77%) and seawater (18%), with a few gspp showing no clear 22 

preference between fresh- and seawater (4%; Fig. 5-A). From 20 gspp showing 23 
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no clear preference, 19 were restricted to estuarine samples (classified as 1 

seawater in this test) and freshwater (Fig. 4-C), and one was observed in three 2 

marine samples at low abundances. Therefore, the lack of clear preference was 3 

likely the effect of low statistical power and/or water mixing in estuaries. Only 7 4 

gspp were present in both freshwater and marine samples (6 5 

Synechococcaceae), but all were detected in only 1 or 2 marine or freshwater 6 

samples at consistently low abundances (10-5-0.01%). Therefore, no evidence of 7 

gspp adapted to both freshwater and marine environments was found. Among 8 

those with clear freshwater preference, 73% were predominantly found in the 9 

Chattahoochee lakes, and 33 gspp (9%) displayed a preference for Lake 10 

Mendota (Fig. 5-B). Finally, 53% of the seawater gspp had a clear preference for 11 

estuarine over marine samples, whereas the rest were evenly divided in 12 

preference for marine samples or no clear preference (Fig. 5-D). 13 

Next, we determined the ecologic ranges of each gsp as the number of 14 

different biomes where it could be confidently detected (biome count), the 15 

number of aquatic habitats (habitat count), the maximum geographic distance 16 

between samples where it was detected (geodesic range), and the maximum 17 

range of latitudes (latitude range). Biome and aquatic habitat breadths were 18 

additionally measured by unweighted (frequency of presence) and weighted 19 

(abundance) Levins’ breadth [67]. All metrics of ecologic range displayed 20 

significantly negative correlation with expected genome size (assembly length 21 

divided by estimated completeness; ρ or R between -0.18 and -0.3; p-values < 22 

10-5) and positive correlation with coding density (ρ or R: 0.21-0.38; p-values < 23 
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10-6), indicating that more cosmopolitan and habitat-generalist gspp exhibit 1 

smaller and more compact genomes (Figs. 6, S5). Among gspp in three aquatic 2 

habitats, WB8_4xD_006 had the highest coding density (96.2%, estimated 3 

genome: 1.07Mbp), previously identified as a member of an uncharacterized 4 

clade of “Ca. Pelagibacterales” temporarily designated PEL8 [10]. Most gspp 5 

present in three aquatic habitats in the top 20% of coding density belong to 6 

“Actinobacteria” (n=8) or “Ca. Pelagibacterales” (n=4) Despite this strong 7 

taxonomic bias, correlations between coding density and ecologic ranges 8 

remained statistically significant after excluding all members of “Actinobacteria” 9 

(p-values < 10-4), “Ca. Pelagibacterales” (p-values < 2.8×10-4), or both (p-values 10 

< 1.4×10-3). On the other end, among gspp restricted to a single aquatic habitat, 11 

two genomes were particularly notable for their low coding density: WB6_1B_304 12 

(83.49%, estimated genome: 3.39 Mbp; “Cyanobacteria”) and WB9_2_319 13 

(85.1%, 4.77 Mbp; “Proteobacteria”; Fig. 6), and no taxonomic bias was 14 

observed in this set. In addition, genomes from more cosmopolitan gspp 15 

exhibited larger fractions of COG-annotated genes (ρ or R: 0.22-0.27; p-values < 16 

10-6). This effect was possibly due to a higher prevalence of better-characterized 17 

functions (housekeeping genes, central metabolism) in smaller genomes and/or 18 

database bias towards more broadly distributed microbes. We observed a 19 

significant negative correlation of G+C% content with count breadth of aquatic 20 

habitats (R: -0.1; p-value: 0.025) and weighted Levins’ breadths of both biome 21 

and aquatic habitat (R: -0.28, -0.29; p-values: 2.5×10-10, 1.5×10-9), but not with 22 

other environmental range metrics (Fig. S5). Other genomic signatures 23 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 31, 2019. ; https://doi.org/10.1101/826941doi: bioRxiv preprint 

https://doi.org/10.1101/826941
http://creativecommons.org/licenses/by/4.0/


 20

associated with the growth strategy such as the density of ribosomal proteins 1 

(COG category J), estimated minimum generation time, and estimated optimal 2 

growth temperature were not significantly correlated with ecologic range metrics 3 

(|ρ or R| < 0.07; p-values > 0.15). However, when controlling for phylogenetic 4 

relatedness (assuming correlation under a Brownian model), the minimum 5 

generation time was negatively correlated with all metrics of ecologic range (p-6 

values < 0.035), indicating that faster growth is a trait that facilitates broader 7 

ecologic ranges among close relatives. Finally, we evaluated the possibility of 8 

larger fractions of extracellular proteins present in more cosmopolitan organisms, 9 

previously proposed as a mechanism of ecological success for pathogenic 10 

bacteria [70]. Interestingly, we observed the opposite trend: more cosmopolitan 11 

gspp were predicted to have fewer extracellular proteins as a fraction of their 12 

genome (ρ or R < -0.17, p-values < 2.5×10-4). 13 

 14 

Description of Novel Taxa 15 

Finally, we characterized the genomes representing two novel taxa. We propose 16 

the names “Candidatus Elulimicrobium humile” gen. nov. sp. nov., represented 17 

by WB6_2A_207 (GenBank: RGCK00000000), from a novel phylum 18 

(“Candidatus Elulota” phy. nov.) within the “Patescibacteria” group, and 19 

“Candidatus Aquadulcis frankliniae” gen. nov. sp. nov., represented by 20 

WB4_1_0576 (GenBank: RFPZ00000000), from a novel genus within the 21 

recently described class “Candidatus Limnocylindria” [6] (“Chloroflexi”). 22 
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Additional description of these taxa including protologues is available as 1 

Supplementary Material (Text S3 and Fig. S2). 2 

 3 

Discussion 4 

In this study, we introduced a methodology for iterative subtractive binning of 5 

metagenomic collections including de novo grouping of samples (i.e., 6 

independent of metadata) and the gradual reduction of dataset diversity for the 7 

recovery of genomes from populations with vastly different relative abundances 8 

(Fig. 1). The genomes recovered showed on average a maximum relative 9 

abundance across samples of only 0.59% of the total microbial community (IQR: 10 

0.12-0.55%), with as many as 17% of the recovered genomospecies consistently 11 

below 0.1% relative abundance, considered the rare fraction in this ecosystem 12 

[71]. We were able to reconstruct the genome of a “Patescibacteria” bacterium 13 

for which we propose the name “Ca. Elulimicrobium humile”, representing a 14 

novel phylum (“Ca. Elulota”), that appears to be regionally widespread and 15 

endemic, but had consistently low abundance in our metagenome series (≤ 16 

0.12%). Combined, all the gspp in our collection represent about 50% of the 17 

entire communities (Chattahoochee metagenomes), about three times more than 18 

other binning efforts in freshwater habitats. Importantly, we demonstrate that 19 

MAGs capture a larger fraction of less diverse communities. Therefore, we 20 

recommend against using summaries of abundance profiles from MAGs to 21 

characterize and/or compare entire communities (e.g., measuring richness or 22 
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alpha/beta diversity from MAG profiles), and emphasize the advantages on 1 

phylogenetic novelty of individual populations instead.  2 

Overall, from 462 genomospecies detected here, 452 (98%) represent 3 

novel species on the basis of ANI or 409 (88%) on the basis of approximate 4 

phylogenetic calibration, indicating that the great majority of genomes recovered 5 

here are novel. In terms of phylogenetic novelty, about one fourth of the branch 6 

lengths of a phylogenetic reconstruction including all best matches from complete 7 

genomes, type material, and MAGs, were uniquely derived from our set (Fig. S4). 8 

Moreover, the species detected in our samples span a variety of geographic 9 

ranges, from highly restricted locally to regionally or globally distributed in aquatic 10 

environments (Fig. 4). For example, we report here a novel species, for which we 11 

propose the name “Ca. Aquidulcis frankliniae” (“Chloroflexi”), that is widely 12 

distributed geographically but restricted to freshwater environments. This species 13 

(and genus) is clearly distinct from its closest relative (“Ca. Limnocylindria sp”) 14 

based on phylogenetic reconstruction (Fig. S2-B) and AAI (71.85%). However, it 15 

would have remained cryptic if using 16S rRNA sequences alone, with a 16 

sequence identity of 98.4% between the two genera; a phenomenon previously 17 

observed for a few other bacterial taxa [32]. 18 

In order to evaluate preference (geographic or environmental), we devised 19 

a metric to compare expected and observed presence frequencies (Fig. 5) based 20 

on the observation that “presence” can be confidently assessed at the species 21 

level (95% ANI) and 0.05 p-value significance given a genome sequencing 22 

breadth of at least 10% [51]. All detected species appeared to have a preference 23 
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for either freshwater or saltwater, or were too scarcely present to determine 1 

preference. Moreover, our method was able to distinguish species present in the 2 

estuaries that appeared to be adapted to freshwater, seawater, or displaying a 3 

preference specifically to estuaries (Figs. 4, 5). This clear differentiation likely 4 

reflects the large number of genomic adaptations required for a 5 

freshwater/seawater transition (e.g., see [72, 73]).  6 

Interestingly, we identified a statistically significant association between 7 

the ecologic range of gspp (in terms of habitat range and geographic distribution) 8 

and their genome size and coding density, indicating that more cosmopolitan 9 

gspp exhibit smaller, more compact genomes (Fig. S5). At first glance, this result 10 

might appear unexpected when considering that bacteria with more flexible and 11 

versatile metabolisms (multiple amenable carbon sources, detoxification 12 

mechanisms, or micronutrient scavenging capabilities) tend to have larger 13 

genomes, on average, and thus, are expected to colonize a higher number of 14 

ecological niches [74]. However, metabolic flexibility is also associated with 15 

fitness costs through the impact on growth rates, which may hinder the wider 16 

distribution across different habitats and long geographic distances. Indeed, we 17 

observed a phylogenetically-dependent negative association between estimated 18 

minimum generation time and ecologic range, indicating that (at short 19 

evolutionary distances) faster maximum growth facilitates more cosmopolitan 20 

distributions. These results support the hypothesis that benefits from metabolic 21 

flexibility provided by larger genomes could be superseded by the cost on fitness 22 

of replicating a longer genome and thus, longer generation times, on average 23 
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[75, 76]. This idea has been formally described as the Black Queen Hypothesis 1 

(BQH), positing that genome reduction confers an inherent selective advantage 2 

to bacteria [77]. BQH has been used to explain the genome reduction of taxa 3 

with high population numbers (small effective population sizes are typically used 4 

to explain genome reductions such as those observed in endosymbionts), as 5 

observed in the marine members of the genera “Ca. Pelagibacter” and 6 

Prochlorococcus [77, 78] as well as in freshwater microorganisms including 7 

members of “Actinobacteria” and “Chloroflexi” [6, 7]. Here, we show that the 8 

effects predicted by BQH may be observed across Bacteria. Moreover, BQH 9 

implies the reliance of cosmopolitan bacteria on cheating: unilaterally using 10 

common goods such as secreted metabolites and extracellular proteins. In 11 

contrast, it has been previously proposed that cooperative pathogenic bacteria, 12 

not cheaters, have wider host ranges [70]. We found that, in our collection, there 13 

is a negative correlation between the fraction of extracellular proteins and all 14 

evaluated ecologic range metrics, further supporting BQH. 15 

A consequence of BQH pervasiveness is that its effects should be 16 

observable in entire communities, not only in specific populations. While this 17 

prediction remains speculative, it is worth noting that selection for generalists, an 18 

increase in functional diversity, and faster growth rates have been observed in 19 

prokaryotic communities after a strong disturbance without an associated 20 

increase in average genome sizes [79]. However, note that these observations 21 

are based on genomes from samples geographically and environmentally 22 

restricted, and the generalization to other aquatic systems remains speculative. 23 
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Finally, most of the analyses described above required a reliable 1 

estimation of the relative abundance of genomospecies in each dataset. 2 

However, estimating MAG abundances in metagenomes is encumbered by: (1) 3 

genome incompleteness and imperfect estimations of completeness, (2) genome 4 

contamination and time-consuming and subjective contamination identification, 5 

and (3) microdiversity potentially confounding gene-content diversity with 6 

technical artifacts like non-overlapping assemblies. We applied a novel approach 7 

to estimate MAG abundance in metagenomes that sidesteps these limitations. 8 

Two key corrections include (1) truncation of sequencing depth before averaging 9 

to exclude highly conserved regions (overestimating depth), regions with gene-10 

content micro-diversity (underestimating depth), and contamination (both); and 11 

(2) normalization of sequencing depth by genome equivalents in the 12 

metagenome, allowing relative abundance estimates. Note that this approach 13 

aims to estimate the relative abundance of the species in the community 14 

(i.e., number of cells per total cells), not the more common metric of relative 15 

abundance of sequenced DNA which is affected by genome sizes [80]. Our 16 

abundance estimates correlated well with read counts normalized by 17 

metagenome size and genome length (RPKM [81]), while revealing an expected 18 

error of about 0.26 percent points in the simpler metric of read fraction 19 

(significantly correlated with completeness and N50, unlike our estimate) as well 20 

as about 1/3 of non-zero read fractions being potentially spurious. The metric 21 

introduced here has several advantages with respect to RPKM: (1) it is 22 

expressed in units of community fraction and, thus, can be readily interpreted as 23 
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relative abundance, (2) it is robust to spurious high-depth regions due to highly 1 

conserved loci, and (3) the difference between zero and non-zero values is 2 

meaningful, as it corresponds to the tipping point for statistically significant 3 

presence. 4 

In conclusion, we present methodological advances for the generation and 5 

study of MAGs derived from sets of related metagenomic datasets, and apply 6 

them to interconnected lakes and estuaries along the Chattahoochee River. This 7 

collection represents a valuable repository for the study of freshwater 8 

communities, and the methods introduced here are widely applicable to other 9 

metagenomic collections and environments. In addition, we show that 10 

cosmopolitan gspp tend to display smaller genomes with a phylogenetically-11 

dependent association with faster growth rates, potentially reflecting the effects 12 

of the Black Queen Hypothesis. 13 

 14 

Data Availability 15 

High-quality bins, distances, and other taxonomic analyses are available at 16 

http://microbial-genomes.org/projects/WB_binsHQ. Assembled genomes were 17 

also deposited in the NCBI GenBank database under BioProject PRJNA495371. 18 

All metagenomic datasets from the Chattahoochee samples are available in the 19 

NCBI SRA database as part of the BioProject PRJNA497294. Additional 20 

metadata on the provenance of sets in the iterative subtractive binning is also 21 

available as BioSamples SAMN10265471-SAMN10265528. 22 

 23 
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Figure and Table legends 1 

 2 

Figure 1: Diagram of the iterative subtractive binning methodology applied in this 3 

study. Input data (bold) and processes are depicted as light grey boxes, data flow 4 

as arrows, and output sets of MAGs as dark grey boxes. The initial non-iterative 5 

binning of Lake Lanier metagenomes corresponds to the set LLD, and the 8 6 

iterations including all datasets correspond to the sets WB4-WBB. After the 7 

iterative approach, two targeted corrections were applied corresponding to WBC 8 

(Archaea) and the empty set WBD (CPR). QC stands for Quality Control, and HQ 9 

stands for High Quality. 10 

 11 

Figure 2: Saturation of captured diversity along the iterative subtractive binning 12 

rounds. (A) Total number of clades captured with ANI ≥ 95% (light blue, 13 

representing species level), AAI ≥ 60% (dark blue, roughly corresponding to 14 

genus level), and AAI ≥ 40% (grey, roughly corresponding to phylum level). Note 15 

that the range of AAI values (a proxy for genetic relatedness) within genera and 16 

phyla typically varies between clades, and the latter two thresholds shouldn’t be 17 

considered as precise estimates of taxonomic diversity. (B-C) Total fraction of 18 

metagenomic reads from each dataset mapping to the complete (cumulative) 19 

collection of MAGs after each iteration. Each line represents a metagenomic 20 

dataset derived from Lake Lanier (B), other lakes (C, blue), or estuarine samples 21 

(C, green). 22 

 23 
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Figure 3: Phylogenetic reconstruction of the bacterial MAGs in this study and 1 

closest relatives derived from five different genome collections. The phylogeny 2 

was reconstructed using coalescent-based species tree estimation [40] from 70 3 

gene trees reconstructed by Maximum Likelihood [38, 39]. The tree is decorated 4 

with colored backgrounds corresponding to phyla (or classes in “Proteobacteria”), 5 

labeled in the innermost ring. Light grey background corresponds to taxa not 6 

including any representatives from our collection, and dark grey corresponds to 7 

yet-unnamed taxa. The next ring indicates the genome collection (see legend), 8 

emphasizing genomes from type material (purple, with accent dots inwards) and 9 

from the current study (blue, extending outwards). The following double-ring 10 

corresponds to the innermost background (phyla or classes, inwards) and the 11 

larger containing group as labeled in the outermost ring (superphyla or the 12 

phylum “Proteobacteria”, outwards). The labels use abbreviations for the 13 

following taxa (clockwise): “Patescibacteria” (Patesc., also referred to as CPR), 14 

“Ca. Saccharibacteria” (Sacc.), “Ca. Katanobacteria” (Kata., also referred to as 15 

WWE3), “Ca. Uhrbacteria” (Uhr.), “Ca. Wolfebacteria” (Wolf.), “Ca. 16 

Nomurabacteria” (Nom.), “Tenericutes” (Ten.), “Firmicutes” (Firm.), “Chloroflexi” 17 

(Chl.), “Cyanobacteria” (Cyano.), “Aquificae” (Aqu.), “Planctomycetes” (Plancto.), 18 

“Chlamydiae” (Chlam.), “Verrucomicrobia” (Verruco.), “Gemmatimonadetes” 19 

(Gem.), “Deferribacteres” (Def.), “Marinimicrobia” (Mar.), “Ignavibacteriae” (Ign.), 20 

“Spirochaetes” (Spir.), “Acidobacteria” (Acid.), “Dependentiae” (Dep.), 21 

Deltaproteobacteria (Delta.), Acidiferrobacteria (Acidiferro.), and 22 

Gammaproteobacteria (Gammaproteo.). 23 
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 1 

Figure 4: Detection of the WB genomospecies in different environments. (A) 2 

Presence/absence matrix of WB gspp per sample. The columns correspond to 3 

metagenomic samples, sorted by biome and source collection, and the rows 4 

correspond to WB gspp, sorted by the presence/absence pattern using Ward’s 5 

hierarchical clustering of Euclidean distances. Empty cells in the matrix 6 

correspond to TAD of zero (i.e., sequencing breadth below 10%), grey cells 7 

correspond to 0 < TAD < 0.01X, and black cells correspond to TAD ≥ 0.01X. 8 

Large collections of metagenomic samples are indicated with horizontal bars at 9 

the top and bottom and matching shading in the matrix, and correspond to 10 

Ch:LL: Lake Lanier (Chattahoochee, this study), Ch:OL: other lakes from 11 

Chattahoochee (this study), L. Mendota: Lake Mendota (WI, USA; JGI), Ch:E: 12 

Estuaries from Chattahoochee (this study), GOM: Gulf of Mexico water column, 13 

OMZ: Oxygen Minimum Zone, and TARA: Tara Ocean expedition. For 14 

reference, the ticks on the left are spaced every 10 rows, and the marker colors 15 

correspond to gspp with freshwater preference (blue), seawater preference (teal), 16 

or no clear preference (grey; see also Fig. 5). (B) Summary statistics for gspp 17 

detection. Each row corresponds to a set of samples, and the columns indicate 18 

the total number of metagenomes (MGs), the number and fraction of 19 

metagenomes with WB MAGs, and the number and fraction of WB gspp present 20 

in the sample set. (C) Genomospecies in aquatic samples: freshwater (blue) and 21 

seawater (teal). The different marks indicate the total number of gspp in each 22 
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environment (light bars) and the number of gspp found only in that environment 1 

(intermediate bars) and only in the Chattahoochee samples (dark bars). 2 

 3 

Figure 5: Preference scores of the WB genomospecies in different sample sets. 4 

(A) Preference scores for freshwater vs. seawater samples of all WB gspp. 5 

Larger positive values indicate stronger preference towards freshwater, and 6 

larger negative values stronger preference towards seawater. (B) Preference 7 

scores for Chattahoochee lakes vs. Lake Mendota samples among gspp with 8 

clear preference towards freshwater (blue squares in panel A). Larger positive 9 

values indicate stronger preference for Chattahoochee lakes. Shadowed areas 10 

indicate excluded gspp (without clear preference towards freshwater). (C) 11 

Preference scores for Lake Lanier vs. other Chattahoochee lakes samples 12 

among gspp with clear preference towards Chattahoochee lakes (blue squares in 13 

panel B). (D) Preference scores for estuarine vs. marine samples among gspp 14 

with clear preference towards seawater (red squares in panel A). 15 

 16 

Figure 6: Biome and aquatic habitat breadths as functions of genome coding 17 

density and estimated size. The panels in the top display the coding density of 18 

the genomes for each given biome breadth (left), aquatic habitat breadth 19 

(center), and the histogram for all representative genomes (right) indicating two 20 

outliers classified in the phyla “Proteobacteria” (p Proteo.) and “Cyanobacteria” (p 21 

Cyano.) further discussed in the main text. The panels in the middle follow the 22 

same layout, with the rightmost histogram highlighting an outlier classified in the 23 
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family Caulobacteraceae (f Caulobact.). Finally, the panels in the bottom 1 

indicate the distribution of genomes by biome (left) and aquatic habitat (right) 2 

breadths as bar plots with the total counts shown above each bar. Additionally, 3 

the bottom panels highlight the frequency of selected taxa that were 4 

overrepresented among cosmopolitans by the width of the colored sections (see 5 

legend), including the order “Ca. Pelagibacterales” (o Pelag.), the phylum 6 

“Actinobacteria” (p Actino.), the family Synechococcaceae (f Synech.), and the 7 

phylum “Bacteroidetes” (p Bacter.). 8 

 9 

Table 1: Software used in this study, sorted by method sections.  10 

  11 
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Supplementary Online Material 1 

Figure S1: Total Community Diversity captured by the WB MAGs collection. (A) 2 

Shannon diversity (H’) estimated on the WB genomospecies abundance profiles 3 

(circles) and linear model of H’ by Nd (Nonpareil sequence diversity index; 4 

dashed line). The expected diversity based on Nd is presented for reference 5 

(solid line) as derived previously [3]. Grey bands indicate the 95% confidence 6 

interval of both linear models. (B) Residuals of the observed H’ with respect to 7 

the expected value; i.e., distances between the circles and the solid line in panel 8 

A. (C) Total added abundance of the entire MAG set as a fraction of the 9 

community (y-axis) by Nd. Note the significant positive linear correlation in panel 10 

B and the significant negative correlation in panel C, indicating that the more 11 

diverse communities (larger Nd) have poorer diversity coverage by the WB MAG 12 

set (larger residuals in B, smaller total community fraction in C). 13 

 14 

Figure S2: Phylogenetic reconstructions of two groups of MAGs and relatives. 15 

(A) Genome representatives from seven phyla within the “Terrabacteria” group, 16 

including “Ca. Elulota” proposed here. This species phylogeny represents a 17 

coalescent-based reconstruction on the trees of 82 genes [38–40]. (B) 18 

Representatives from four phyla within the “Terrabacteria” group, emphasizing 19 

the class “Ca. Limnocylindria” in the phylum “Chloroflexi”. This class includes two 20 

genera: “Ca. Limnocylindrus” (emended here) and “Ca. Aquidulcis” (proposed 21 

here). This species phylogeny obtained by coalescent-based reconstruction 22 

based on the trees of 67 genes. In both panels the genomes derived from 23 
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metagenomes (MAGs) are prefixed with a label in squared brackets indicating 1 

the study from where they were derived, including: A13 [82], B15 [53], M18 [6], 2 

P18 [83], and Z18 [84], as well as the current study (This study) or publicly 3 

available data currently missing a published manuscript (Unpub). Genomes 4 

including a 16S rRNA gene sequence are marked with an asterisk.  5 

 6 

Figure S3: Histograms of 80% central truncated average sequencing depth 7 

(TAD) all WB genomospecies in all Chattahoochee samples (top) and all other 8 

samples (bottom). Genomospecies with non-zero TAD (i.e., a sequencing 9 

breadth > 10%) were considered confidently present if TAD was at least 0.01X 10 

(black), and uncertain otherwise (grey). The values of absent, uncertain, and 11 

present also correspond to the values in Fig. 4. 12 

 13 

Figure S4: Phylogenetic diversity of the WB collection of MAGs in the context of 14 

best matches to other genomic collections (A-B) and the reference collection of 15 

genomes in PhyloPhlAn (C-D). In panels A and C, the X-axis corresponds to the 16 

phylogenetic distance (branch lengths, bottom scale) at which the tree is cut into 17 

clades (numbers on top). These clades are then classified as containing only 18 

genomes from the WB collection (blue), only genomes from the reference 19 

database (grey), or both (blue and grey pattern). In panels B and D, the overall 20 

fraction of the tree (in branch lengths) covered by each category is summarized 21 

as Faith’s Phylogenetic Diversity (bar graph) in order to estimate the 22 

phylogenetic gain (right). Additionally, panel A includes an approximated 23 
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phylogenetic calibration for the taxonomic ranks of species, genus, class, and 1 

phylum (vertical dashed lines). Each of these points also include the number of 2 

taxa only represented in the WB collection (novel) and the total number of taxa 3 

formed at the calibrated point. 4 

 5 

Figure S5: Metrics of Ecologic Range and their correlation with genomic 6 

signatures. The y-axes (rows) indicate the genomic signatures evaluated, with 7 

the summary histograms in the rightmost panels. Conversely, the x-axes 8 

(columns) indicate the ecologic ranges, with summary histograms in the bottom 9 

panels. Both the correlation statistic (Pearson’s R or Spearman’s ρ) and the 10 

corresponding p-value are shown underneath each panel, with significant 11 

correlations (p-value < 0.01) highlighted in green (positive) and red (negative). 12 

The ecologic range metrics evaluated (left-to-right) are: biome count breadth (out 13 

of 13 biomes), aquatic habitat count breadth (out of 5 habitats), unweighted 14 

Levins’ breadths of biome and aquatic habitat (natural units), weighted Levins’ 15 

breadths of biome and aquatic habitat (natural units), geodesic range (thousands 16 

of km), and latitude range (degrees). The genomic features evaluated (from top-17 

to-bottom) are: coding density (%), expected genome size (Mbp), G+C content 18 

(%), frequency of the J COG category (%), minimum generation time (h), and 19 

optimal growth temperature (°C). 20 

 21 
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Table S1: Metagenomic datasets from water bodies along the Chattahoochee 1 

River used here, including accession numbers, sample attributes, 2 

physicochemical parameters, and sequencing attributes. 3 

 4 

Table S2: Metagenome-Assembled Genomes (MAGs) from the WB collection 5 

and general statistics. 6 

 7 

Table S3: Metagenomic datasets from other studies used here to determine 8 

geographic and environmental breadth or preference. The column “Collection 9 

name” corresponds to the collections in Fig. 1. The columns “Sample accession” 10 

and “Run” correspond to the BioSample and Run accessions in the SRA/ENA 11 

databases, respectively. Additional metadata is provided as derived from MGnify 12 

or the original studies. The column “Reference” indicates the source study, 13 

corresponding to references [13, 52–65], or “Unpublished” corresponding to data 14 

publicly available in the SRA/ENA databases but currently not linked to 15 

publications. 16 

 17 

Text S1: Additional details on materials and methods used in the present study. 18 

 19 

Text S2: Additional details on population abundance and community diversity 20 

estimation. 21 

 22 
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Text S3: Additional methodology, results, and protologues for novel lineages 1 

described here: “Ca. Elulimicrobium humile” gen. nov. sp. nov. and “Ca. 2 

Aquidulcis frankliniae” gen. nov. sp. nov. 3 

 4 
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§ Process Software	Package Method Version Parameters Ref. URL

Read	trimming SolexaQA++ dynamictrim,	lengthsort 1.3.3 minimum	PHRED	quality	score	of	20	and	minimum	fragment	length	of	50	bp [18]
Read	clipping Scythe 0.991 Default https://github.com/vsbuffalo/scythe
Metagenomic	coverage Nonpareil 2.4 Default [19]

Read	assembly IDBA idba_ud 1.1.1 Default [20]
Contig	fragmentation Enveomics	Collection FastA.slider.pl Windows	of	1,000	bp	with	overlap	of	200	bp	(-win	1000	-step	800) [21]
LLD	binning MetaBAT 0.26.3 Default [22]
LLD	quality	check CheckM Default [23]
MCL	clustering Enveomics	Collection ogs.mcl.rb Inflation	5 [21,	24]
Metagenome	distance Mash 1.0.2 Sketch	size	10,000 [25]
Coassembly IDBA idba_ud 1.1.1 With	pre-correction [20]
Iterative	binning MaxBin 2.1.1 Default [26]
Iterative	read	mapping Bowtie 2.1.0 Default [27]
Iterative	quality	check MiGA summary 0.3.0.7 popgenome	mode [28]
Unmapped	read	extraction SAMtools view 1.0 -F	2 [29]
Archaeal	correction MiGA summary 0.3.1.0 popgenome	mode [28]
CPR	correction Anvi'o anvi-script-predict-CPR-genomes v5,	Margaret Default [30]

Quality	and	taxonomy MiGA summary,	ls 0.3.1.6 popgenome	mode,	p-value	<	0.05	for	taxonomic	classification [28]

Initial	phylogeny PhyloPhlAn	 0.33 --integrate	function	(400	marker	proteins	from	3,737	genomes) [33]
Marker	proteins Enveomics	Collection HMM.essential.rb	 [21]
Multiple	sequence	alignment Clustal	Omega 1.2.1 Default [37]
Gene	tree	reconstruction RAxML 8.2.9 Default [38]
Gene	model	selection ProtTest 3.4.2 Default	(using	Bayesian	Information	Criterion) [39]
Species	tree	reconstruction ASTRAL-III 5.6.3 Default [40]
Phylogenetic	diversity Picante pd 1.7 Excluding	root [42]
Tree	taxonomy	decoration tax2tree nlevel 1 Default [43]
Tree	visualization FigTree 1.4.2 http://tree.bio.ed.ac.uk/software/figtree/

General	annotation Prokka 1.13 Default [44]
Genome	statistics MiGA summary 0.3.1.6 popgenome	mode [28]
Growth	prediction growthpred 1.07 -c	0	-S	-t [46]
Traits	prediction Traitar from_nucleotides 1.0.4 Default [48]
Protein	localization PSORTb 3.0 --archaea,	--positive,	or	--negative	defined	by	taxonomy	or	Traitar [47]

Read	mapping Bowtie 2.3.2 Default,	using	FastQ	format	after	quality	control [27]
Sequencing	depth	per	position bedtools genomecov 2.25 -bga [49]
Truncated	Average	Depth Enveomics	Collection BedGraph.tad.rb 80%	central	values [21]
Genome	equivalents MicrobeCensus 1.0.7 Default [50]
Sequence	diversity	index Nonpareil 2.4 Default [3,	19]
Shannon	diversity	index Enveomics	Collection AlphaDiversity.pl	 Default [21]

Geographic	distance geosphere distVincentyEllipsoid	 Default https://cran.r-project.org/package=geosphere
Brownian	model ape corBrownian Default [69]
Phylogenetic	least	squares nlme gls,	anova.gls https://CRAN.R-project.org/package=nlme

Abundance	and	Alpha	Diversity

Metrics	of	Ecologic	Range

Sequencing	Data	Processing

Iterative	Subtractive	Binning

Genome	Quality	and	Taxonomic	Classification

Genome	Phylogeny

Genome	Annotation
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