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ABSTRACT 

 

Daylight is the strongest synchronizer of human circadian rhythms. The circadian pathway 

hypothesis posits that synchrony between daylight and the circadian system relates to 

(in)attention. The dopamine neurotransmitter system is implicated in regulating the circadian 

system as well as in (attention)-deficit hyperactivity disorder [ADHD]. We studied the role of 

functional genetic variation in the gene encoding of dopamine-receptor-D4 (DRD4) in the 

relationship between inattention and seasonal daylight (changes). Gene-by-environment 

(GxE) mega-analyses were performed across eight studies including 3757 adult participants 

(with and without ADHD). We tested 1) the Spring-focus hypothesis, in which attention in 

7R-carriers normalizes with increasing daylight levels preceding measurement, 2) the 

Summer-born ADHD hypothesis, in which 7R-carriers report more inattention when born in 

spring/summer than in autumn/winter, 3) the Winter-born ADHD hypothesis, opposing the 

second hypothesis. The Spring-focus hypothesis was upheld (1386 ADHD, 760 controls; d=-

0.16 between periods); 7R-carriers reported even less inattention than 7R-non-carriers after 

winter solstice (d=0.27 between genotype-groups). Results were diagnosis-independent. 

Sensitivity analyses at individual study level confirmed the circannual patterns for 7R-

carriers. Incorporating geographic changes into the independent measure, we also calculated 

changes in sunlight levels. This approach likewise showed that inattention correlated 

negatively with increasing light levels in 7R-carriers (r=-.135). Results emphasize peripheral 

effects of dopamine and the effects of (seasonal) daylight changes on cognition. 
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INTRODUCTION 

 

The circadian pathway 

Daylight is the strongest synchronizer of human circadian rhythms. When daylight reaches 

the retina, it provides the internal clock system [suprachiasmatic nuclei (SCN)] with 

information about the time of day, thereby leading to daylight entrainment (1). Even modest 

misalignment of the internal clock from sleep/wake behavior can result in poorer sleep quality 

(2). Several lines of evidence support the idea that sleep deprivation or extended wakefulness 

is accompanied by a variety in alteration of dopamine signalling (3). Furthermore, shortened 

sleep duration has been shown to be associated with inattention in healthy individuals (4-6) as 

well as in people with attention-deficit/hyperactivity disorder (ADHD) (7,8). Multiple studies 

using various methods have shown that a majority of individuals with ADHD suffer from a 

circadian phase delay (9-12), with a prevalence as high as 78% in adults (12).  

 

Light-emitting diodes (LED) and the increase in time spent on electronic devices such as 

computers, smart phones, and tablets compete with daylight as the primary cue that entrains 

the biological clock to a 24-hour (24h) rhythm. The ‘circadian pathway’ hypothesis posits that 

artificial blue light exposure in the evening delays sleep onset, thereby reducing sleep 

duration, which, in turn, results in increased symptoms of inattention (13,14). Each step in 

this pathway has recently been confirmed in a sample of school-aged children with ADHD 

(14). The phase-delaying effects of artificial blue light exposure in the evening can be 

counteracted by intense natural light in the morning (15), when our circadian clock is most 

sensitive to entrainment to the 24h rhythm (16).  
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Exposure to intense natural light in the morning is more common in geographic areas 

characterized by high sunlight intensity. Prevalence rates of ADHD are lower in these areas 

compared to those with less sunlight intensity (17,18).  

 

Gene-specific responses within the circadian pathway 

Although many environmental risk factors for ADHD have been studied (19), circannual 

factors such as (changes in) daylight exposure alone and its interaction with genotypic 

variation have scarcely been examined. Genotypic variation alone has been investigated in 

relation to ADHD, one of the first discoveries was an association with the 7-repeat (7R) allele 

of the DRD4 gene. This gene has a complex polymorphism in a coding region (exon 3) based 

on the 48-bp tandem repeats (VNTR), with common alleles defined by 4-repeats (4R), 7-

repeats (7R), and 2-repeats (2R) in the population. The first studies [a population-based study 

(20) and a fail-based study (21)] reported an increased frequency of the 7R allele in children 

with ADHD, which was subsequently replicated in many studies and multiple meta-analyses 

(22). Arns et al. (18) proposed that the DRD4 gene may mediate the earlier observed 

relationship between sunlight intensity exposure and ADHD prevalence rates. The D4 

receptor is thought to be involved in converting light to neuronal signals in the retina (23), 

and its transcription exhibits a strong circadian pattern in rodents (24). Cells in the retina that 

respond to light (photosensitive retinal ganglion cells, pRGCs) express the photopigment 

melanopsin, and primarily project to the internal clock system (SCN). Stimulating the SCN 

activates the second messenger cyclic adenosine monophosphate (cAMP), which advances or 

delays the internal clock (25). Both light and dopamine have an influence on cAMP activation 

and subsequently on melatonin synthesis (26). With light-sensitive cAMP being an important 

component of the cyclic rhythmicity of the SCN (27), variation in its formation will affect 

circadian clock functioning. Asghari et al. (28) showed that rodent ovary cells overexpressing 
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the DRD4 7R allele displayed a fluctuation in cAMP that was about twofold reduced 

compared to other, more common DRD4 alleles (i.e., 2R and 4R). A study in nearly 700 

humans also provided some indication that 7R-carriers reported higher daytime sleepiness 

than non-carriers (29), further suggesting a relationship between DRD4 and circadian clock 

functioning.  

 

The current study focused on genotypic variation in the DRD4 gene. Based on the work of 

Asghari et al (28), we initially hypothesized that individuals carrying the DRD4 7R allele 

(7R-carriers) may be less sensitive to light. However, VanderLeest et al. (30) showed that the 

circadian clock response to light was enhanced in (non-genotyped) rodents in controlled light-

dark cycles, by exposing them to short photoperiods (analogous to human exposure to short 

winter days) (30-32). In line with these findings, prior light exposure also was shown to alter 

the way in which the circadian clock aligned to the day/night cycle in humans (33). This led 

to our spring-focus hypothesis (Figure 1a), in which we posit that the circadian clock response 

to light of 7R-carriers normalizes during a period of increasing light exposure. Studying 

inattention as an endpoint of the above described ‘circadian pathway’ (13,14), 7R-carriers 

would be expected to show less inattention in the months following winter solstice, 

characterized by increasing light exposure. 7R-non-carriers would be expected to be less 

vulnerable to such subtle seasonal changes in light exposure.  

 

Circadian pathway development 

In addition to the acute effects of fluctuation in light exposure, intensity of and seasonal 

changes after birth have been hypothesized to have phase-sensitive learning effects (also 

termed ‘imprinting’) on the circadian system (34-36); such phase-sensitive effects have been 

confirmed for heart rate variability in adulthood (37,38). Likewise, the early lighting 
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environment is thought to shape later adult circadian rhythms (39). After birth, the circadian 

clock needs to be entrained to exactly 24 hours to prevent misalignment with the external 

environment, with measurable biological rhythms emerging between 6-18 weeks after birth 

(40). The effect of seasonal changes in daylight exposure after birth has been studied by 

comparing chronotypes [morningness (being most active and alert in the morning) and 

eveningness (being most active and alert in the evening)] in healthy individuals. Eveningness 

is more likely to occur in individuals born in spring/summer compared to those born in any 

other season (34,35,41). Yet, another study highlighted more specifically the importance of 

changes in daylight, where eveningness was more common in individuals born in months 

mostly associated with increasing day length (February to April [August to October in the 

Southern hemisphere]) compared to months associated with long, decreasing, or short day 

length (36). Acute effects of sunlight exposure that occur throughout the lifespan may still 

modulate the enduring effects of phase-sensitive learning after birth. How light environment 

following birth may shape attentional functioning through circadian system development is 

yet to be investigated. 

 

Genotype-specific responses within circadian pathway development 

If individuals carrying the DRD4 7R allele convert light to neuronal signals in a different way 

than individuals possessing other DRD4 alleles, one could hypothesize that the phase-

sensitive learning process after birth may be partly genetically determined. Indeed, based on 

64 patients and 163 healthy individuals, Seeger and colleagues (42) reported that carrying a 

DRD4 7R allele and being born in spring/summer resulted in a 2.8-fold higher likelihood of 

children being diagnosed with ‘hyperkinetic disorder’ (overlapping with ADHD) compared 

with 7R-non-carriers. This led to the summer-born ADHD hypothesis, which posits that 7R-

carriers born in spring/summer have higher inattention ratings than those born in 
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autumn/winter, while this difference would not be observed in 7R-non-carriers (Figure 1b). 

Data presented by Brookes et al. (43) are, however, not consistent with the findings of Seeger 

and co-workers (42). In a sample of 1110 child-parents trios, Brookes et al. found a 

numerically higher prevalence of ADHD in autumn/winter births carrying the DRD4 7R allele 

compared to the spring/summer ones with this allele. Based on those results, we hypothesized 

an either equal or numerically opposite pattern compared to that observed by Seeger et al. (the 

winter-born ADHD hypothesis; Figure 1b). 

 

Mega-analyses  

We conducted mega-analyses – also referred to as individual participant data (IPD) meta-

analyses – across eight studies including 3757 participants in total, to evaluate the three 

above-mentioned hypotheses (the spring-focus hypothesis, the summer-born ADHD 

hypothesis, and the winter-born ADHD hypothesis) in acute seasonal effects at date of 

measurement (state) and phase-sensitive learning after date of birth (trait), as depicted in 

Figure 1 (a and b). The consistency of a relationship between sleep duration and inattention 

between healthy individuals (4-6) and individuals with ADHD (7,8) suggests that this 

relationship is irrespective of diagnosis. Instead of studying the diagnosis of ADHD, we here 

used an approach covering inattention levels from clinical levels in ADHD patients to levels 

observed in healthy individuals, which is a more dynamic phenotype that allows for 

population level variability and may be potentially closer to the hypothesized ‘circadian 

pathway’ (13,14). To reduce heterogeneity, analyses focused on 18-50 years, as previous 

research showed a rapid shift in circadian typology from morningness to eveningness with 

increasing age in adolescents (36,44-47), returning back in the years after that (48). From 

around the age of 50, even further phase advancing is observed (48). 
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MATERIALS/SUBJECTS AND METHODS 

 

Contributing studies 

Studies were identified through the IMpACT consortium and connected research projects and 

gathered from August 18, 2016 until December 12, 2017. Details about the diagnostic 

procedures for each site (if applicable) are listed in the supplement.  

The analyzed sample comprised eight studies (Table 1 and Figure 1c,1d). Each participating 

study had approval from its local ethics committee to perform the study and to share de-

identified, anonymized individual data. Data requests for most studies required a study 

proposal, thereby having documented the to be included data in advance. 

Inclusion criteria were 1) age range between 18 and 50 years, 2) the availability of the 

information per participant of: a) self-rated DSM-based inattention ratings, b) DRD4 VNTR 

genotyping, c) date of birth, d) the location of measurement, e) sex, f) (for the date of 

measurement analyses) the date of inattention rating. 

 

Data selection 

Individual-level data from eight studies were pooled and jointly analyzed. We applied a one-

step approach, where the individual data points from all of the studies (i.e., sites) were fitted 

together in a single model. Each of the three hypotheses was tested in an individual model 

using this one-step approach. The total merged sample size was 2146 participants (1386 

ADHD, 760 controls) for the test of date of measurement effects and 3757 participants (2253 

ADHD, 1504 controls) for the test of date of birth effects. All participants were of Caucasian 

origin. Inattention ratings were z-transformed per study as well as per group (controls and 

ADHD patients) to harmonize different scales employed in each study and different variance 
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distributions due to the inclusion of one or both groups per study. Sensitivity analyses were 

performed by fitting individual data points per study.  

 

Table 1. Overview of included studies 

Study Country (City) 
Dates of 
recruitment 
(included in 
current study) 

Reference 
of main 
publication 

Target sample 
Original 
eligible age 
range (years) 

Measure of inattention 

NeuroIMAGE 

The Netherlands 
(Nijmegen, 
Rotterdam, 
Amsterdam, 
Groningen) 

2009-2013  (49)  
healthy participants, 
ADHD,  
unaffected siblings 

5-30 Conners’ Adult ADHD Rating 
Scale (CA- ARS) 

BIG The Netherlands 
(Nijmegen) 2007-2017  (50) healthy participants 19-85 ADHD DSM-IV TR Rating Scale 

IMpACT-Germany Germany 
(Würzburg) 2003-2017  (51) healthy participants, 

ADHD 17-69 Interview on DSM-IV symptoms 

IMpACT-Brazil Brazil (Porto 
Alegre) 2002-2014  (52) healthy participants, 

ADHD 17-68 SNAP Inattention rating 

IMpACT-Norway Norway (Bergen) 2004-2014  (53) healthy participants, 
ADHD 19-74 ASRS based on DSM-IV items of 

inattention 

IMpACT-Spain Spain (Barcelona) 2002-2011  (54) ADHD 16-59 ADHD rating scale (ADHD-RS) 

UCLA ADHD 
Genetics Study 

United States 
(Los Angeles) 1992-2009  (55) healthy participants, 

ADHD 26-72 ADHD rating scale (ADHD-RS) 

MGH ADHD study United States 
(Boston) 1994-1999  (56) healthy participants 18-69 Symptom counts on the Kiddie 

SADs  

IMAGE = International Multisite ADHD Genetics, BIG = Brain Imaging Genetics, IMpACT = 
International Multi-centre persistent ADHD CollaboraTion, UCLA = University of California, Los 
Angeles, MGH = Massachusetts General Hospital 
 

Statistical Analyses 

Analyses were first performed on the full sample, then split by ADHD cases and controls, 

and, finally, compared between these groups. The distributions of inattention measures of the 

total merged sample mildly violated a Gaussian distribution. Since analyses of variance 

(ANOVA’s) tend to be quite robust to mild violations of the Gaussian assumptions and limit 

false positive findings (49), we continued with these parametric tests.  

Comparison of inattention between previously defined season periods – of birth or of 

measurement – were employed using IBM SPSS Statistics for Macintosh, version 25 

(ANOVA’s). Reported effect sizes are Cohens d. Multiple testing was accounted for by 

testing three clearly defined hypotheses only. These clearly defined hypotheses allowed one-

tailed testing with an alpha set on p=.1. Subsequent Bonferroni correction, based on the 

number of hypotheses, yielding a final alpha of p=.033. Arbitrarily, the same threshold was 
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used for post-hoc testing further describing significant results. In addition, sexes were 

compared on and age was correlated with inattention to determine the need of covariation.   

Circannual variation was also tested using non-linear curve fitting (see supplement). 

Robustness of the results was tested by comparing similarity of the circannual patterns 

between studies. For these tests, we used an alpha set on p=.1 (in this case being stricter than 

a lower p-value, since we here expect a lack of difference between studies, hence a non-

significant outcome).  

 

RESULTS 

 

Table 1 in the method-section describes the included studies. Table 2 provides descriptives of 

the participants. 

 

Generally, females reported significantly more inattention (0.11±0.98) than males (-

0.10±1.00) (t(3755)=-6.545, p<.001). Hypothesis-testing was therefore also performed with 

sex added as factor. Sexes did not differ on the number of 7R-carriers within the group 

(X2(1,3757)=0.681, p=.409). There was no significant correlation between age and inattention 

within the selected adult age-range of 18-50 years (r=.012, p=.463). Note that controlling for 

study (i.e. study locations) would also mean controlling for geographical differences in 

sunlight exposures and changes herein. Therefore, to take into account the inclusion of 

different sites, we conducted post-hoc sensitivity analyses. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 31, 2019. ; https://doi.org/10.1101/825083doi: bioRxiv preprint 

https://doi.org/10.1101/825083


 13 

Table 2. Descriptive statistics per included study.  
 

 Date of measurement Date of birth 

Study  Sample 
size (N) 

Males 
(N (%)) 

Age  
(M (sd)) 

DRD4 7R 
(N (%)) 

SI (M (sd), min-max)) Sample 
size (N) 

Males  
(N (%)) 

Age  
(M (sd)) 

DRD4 7R 
(N (%)) 

SI (M (sd), min-max)) 

Total Controls 
ADHD 

760 
1386 

318 (42) 
837 (60) 

34.4 (10.0) 
32.7 (9.8) 

275 (36) 
523 (38) 

116.5 (62.6), 0-226 
125.4 (56.5), 4-226 

1504 
2253 

610 (41) 
1311 (58) 

33.9 (9.7) 
32.6 (9.5) 

524 (34.8) 
796 (35.3) 

113.3 (58.1), 0-226 
119.6 (59.2), 2-226 

Neuro(IMAGE) Controls 
ADHD 

160 
143 

63 (39) 
110 (77) 

20.9 (2.2) 
20.3 (1.9) 

56 (35) 
44 (31) 

67.7 (50.9), 14-152 
70.9 (51.1), 14-159 

153 
140 

63 (41) 
110 (19) 

21.0 (2.2) 
20.3 (1.9) 

55 (36) 
43 (31) 

90.4 (50.9), 14-159 
89.1 (51.1), 14-159 

BIG Controls NA NA NA NA NA 272 74 (27) 27.2 (6.6) 91 (33) 91.8 (51.6), 14-149 

IMpACT 
Germany 

Controls 
ADHD 

NA NA NA NA NA 226 
870 
  

100 (44) 
474 (55) 

34.7 (9.4) 
32.4 (9.2) 

84 (37) 
274 (32) 

92.3 (54.6), 19-172 
99.3 (57.1), 19-172 

IMpACT Brazil Controls 
ADHD 

147 
471 

67 (46) 
258 (55) 

29.2 (7.9) 
32.4 (8.7) 

61 (42) 
191 (41) 

136.8 (44.3), 78-209 
137.1 (44.3), 78-209 

147 
471 

67 (46) 
258 (55) 

29.2 (7.9) 
32.4 (8.7) 

61 (42) 
191 (41) 

137,6 (43.2), 78-209 
145.1 (44.9),78-209 

IMpACT 
Norway 

Controls 
ADHD 
 

115 
90 

45 (39) 
44 (49) 

36.4 (6.4) 
37.5 (7.9) 

44 (38) 
33 (37) 

60.6 (38.0), 0-152 
59.1 (38.4), 4-152 

115 
90 

45 (39) 
44 (49) 

36.4 (6.4) 
37.5 (7.9) 

44 (38) 
33 (37) 

77.1 (55.2), 0-162 
73.1 (57.0), 2-162 

IMpACT Spain ADHD 496 340 (69) 32.2 (9.6) 188 (38) 131.2 (54.1), 55-214 496 340 (69) 32.2 (9.6) 188 (38) 132.5 (56.9), 55-214 

UCLA ADHD 
Genetics Study 

Controls 
ADHD 

338 
186 

143 (42) 
85 (46) 

42.3 (4.6) 
41.9 (4.9) 

114 (34) 
67 (36) 

149.7 (52.7), 82-226 
154.4 (51.4, 82-226 

338 
186 

143 (42) 
85 (46) 

42.3 (4.6) 
41.9 (4.9) 

114 (34) 
67 (36) 

155.6 (51.5), 82-226 
160.9 (50.6), 82-226 

MGH ADHD 
study 

Controls NA NA NA NA NA 253 118 (47) 38.5 (8.3) 75 (30) 115.0 (50.0), 43-188 

N=number, M=mean, sd=standard deviation, SI = Solar Irradiance (monthly global solar irradiation [Gh kWh/m2]), NA=not available. Bold=controls, 
Standard=ADHD. No date of measurement was available for the studies BIG, IMpACT Würzburg, and the MGH ADHD study, which excluded these studies 
from the date of measurement analyses. 
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Spring-focus hypothesis 

According to our spring-focus hypothesis (Figure 1a), we hypothesized that less inattention 

would be observed in 7R-carriers in the months after winter solstice, while no such change 

would be observed in 7R-non-carriers. We defined “after winter solstice” as the increasing 

daylength period defined by Vollmer et al. (February to April [August to October in the 

Southern hemisphere]) (36). DRD4 7R-carriers had significantly less inattention when 

measured after winter solstice (-0.173±0.970) compared to the measurements during any 

other time of the year (-0.017±1.023) (F(1,885)=4.744, p=.030, d=-0.156). 7R-non-carriers 

showed no such difference (F(1,1519)=1.526, p=.217, d=-0.071). An ANOVA between 

seasons (after winter solstice or not), genotype (DRD4 7R or non-7R), and sex (male or 

female) showed a significant interaction between season and genotype (F(7,2129)=4.739, 

p=.03) without interaction with sex. 7R-carriers had significantly less inattention than 7R-

non-carriers after winter solstice period (F(1,722)=12.761, p<.001, d=0.271), but not in the 

remaining year (F(1,1420)=0.771, p=.380, d=.048). Adding diagnosis or sex to the analysis 

for the after-winter solstice period, we saw no evidence of an interaction between periods and 

diagnosis or sex, indicating similar outcomes for these groups.  

 

Curve fitting results are provided in the supplement. In summary, these demonstrate a 365-

day sinusoid for the period between the winter and summer solstices was preferred over a 

straight line particularly for 7R-carriers, for both ADHD cases and controls. Such pattern was 

lacking between the summer and winter solstices. 

 

The summer-born and winter-born ADHD hypotheses 

Extrapolating from Seeger et al., (42) DRD4 7R-carriers born in spring/summer were 

hypothesized to have more inattention than those born in autumn/winter, with no such 
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difference in 7R-non-carriers (Figure 1b). Extrapolating from Brookes et al. (43), DRD4 7R-

carriers born in autumn/winter were hypothesized to have more inattention than those born in 

spring/summer, with inattention levels independent from season of birth in 7R-non-carriers 

(Figure 1b).  

 

 

Figure 1. Normalized inattention ratings arranged by a) date of measurement and b) date of birth, 
according to DRD4 genotype (orange: 7R-carriers, blue: 7R-non-carriers) (a-b) as expected by each 
hypothesis, and (c-d) as actually found. The grey-shaded area indicates the period between 
summer- and winter-solstice, adjusted towards seasonality of the Northern hemisphere, the non-
shaded area indicates the analogues period between winter- and summer-solstice. All y-axes are 
zoomed in to [-1 – 1]. NB: a more negative value implies less inattention, i.e., better attention. 
The acceptance (checkmark tick) or rejection (cross) of the in (a-b) visualized tested hypotheses are 
displayed in the right top corner of each graph in (c-d). A Loess Fit visualizes variation in the data by 
nonlinearly comparing data to its neighbouring data. Note that this procedure does not take into 
account the neighbouring of the last and first day of the year.  
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An ANOVA showed that inattention in 7R-carriers did not significantly vary between seasons 

(F(1,1318)=3.446, p=.064, d=-0.102). Although 7R-non-carriers had significantly less 

inattention among those born during spring/summer (mean=-0.015, SD=0.979) than among 

those born during autumn/winter (mean=0.077, SD=1.024) (F(1,2435)=5.067, p=.024, d=-

0.092), this comparison lacked an a-priori hypothesis, hence require further investigation. An 

ANOVA between seasons (spring/summer or autumn/winter), genotype (DRD4 7R or non-

7R), and sex (male or female) showed no significant interactions. Curve fitting results are 

provided in the supplement. In summary, these demonstrate no robust patterns. 

 

Sensitivity analyses 

Because the results favor the spring-focus hypothesis, sensitivity analyses were performed to 

test GxE interaction effects on inattention by fitting individual data points for study-specific 

models (Figure 2). As can be seen in Figure 2, similar patterns were observed for the different 

studies. The strongest pattern was observed in the NeuroIMAGE dataset. The curve from data 

of this study was, therefore, compared to all of the other datasets. The relative likelihood that 

data from NeuroIMAGE and IMpACT Barcelona shared a curve was 87.88% (based on 

Akaike information criterion), statistically retaining the simple model of a shared curve 

(F(2,502)=0.055, p=.947), NeuroIMAGE and UCLA ADHD genetics study shared a curve 

with 78.66% probability (simple model retained, F(2,514)=0.726, p=.484), and NeuroIMAGE 

and IMpACT Brazil shared a curve with 69.58% probability (simple model retained 

F(2,578)=1.198, p=.303). Note that the percentage of certainty of sharing a curve decreased 

with the geographical location of measurement approaching the equator (where seasonal 

variations are less dramatically expressed). For IMpACT Norway, data points were not 

sufficiently well distributed throughout the year (87 7R-carriers, of which 63 with 

measurement day 66), which made interpretation of the observed pattern impossible. 
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Figure 2. Circannual variation in inattention in 7R-carriers per study (too few data points to fit a Loess 
fit for Norway study). The grey shaded area indicates the period between summer- and winter 
solstice, the non- shaded area indicates the period between winter- and summer solstice, adjusted 
towards seasonality of the Northern hemisphere. A Loess Fit visualizes variation in the data by 
nonlinearly comparing data to its neighbouring data. Note that this procedure does not take into 
account the neighbouring of the last and first day of the year. NB: a more negative value implies less 
inattention, i.e., better attention. 
 

Sunlight exposure 

For each site, solar irradiation (SI) was calculated per month using “meteonorm 7” 

(http://www.meteonorm.com/en/downloads). Interpolation of data from weather stations 

surrounding location of the study was used (supplement, Table S1), resulting in a monthly 

global solar irradiation (Gh kWh/m2) from 7 interpolated locations used to calculate the 

difference between SI during the month of measurement and the preceding month [SI change 

(SIC)]. As expected, the standard error of the mean SIC was increasing with the amount of 

circannual variation observed in Figure 2 (IMpACT Brazil: SE=1.15, UCLA ADHD genetics 

study: SE=1.19, IMpACT Spain: SE=1.26, NeuroIMAGE: SE=1.83), illustrating larger SIC 

further away from the equator. When correlating SIC with the inattention ratings (Spearman-

Brown due to non-Gaussian distribution of SIC), a negative correlation was found for 

measurements in 7R-carriers that took place during positively changing SIC (lengthening of 

days such as observed after winter solstice) (r=-.135, p=.002), whereas no such correlations 
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were found in 7R-non-carriers or for measurements that took place during negative SIC. The 

larger the positive change in SI, the better the attention of 7R-carriers (Figure 3). 

 

 

Figure 3. Spearman-Brown correlations between Solar Irradiance Change (SIC) and Z-scored 
inattention ratings for 7R-carriers (orange circles) and 7R-non-carriers (blue filled circles). NB: a more 
negative value implies a better outcome. All y-axes are zoomed in to [-3 – 3]. Eight data points fall 
outside these limits (Negative SIC, 7R-carriers: N=2, 7R-non-carriers: N=2. Positive SIC, 7R-carriers: 
N=2, 7R-non-carriers N=2). 
 

DISCUSSION 

 

In our mega-analyses, we systematically studied inattention and the relation with date of birth 

or date of measurement as a function of being a DRD4 7R-carrier or 7R-non-carrier in 

participants with and without ADHD. We tested three a priori postulated hypotheses 

described in Figure 1. The summer-born ADHD hypothesis, where 7R-carriers born in 

spring/summer were hypothesized to have higher inattention ratings relative to those born in 

autumn/winter, and the winter-born ADHD hypothesis, where this would be opposite, were 

not upheld in this study. The findings of Seeger et al. (42) had already been contradicted by 

the findings of Brookes et al. in a much larger sample (43), and the currently observed lack of 

an effect is consistent with the non-significant findings of Brookes et al.. Our results were in 

accordance with the spring-focus hypothesis, where circadian clock response to light in 7R-

carriers normalizes with increasing light exposure (difference between periods d=-0.156); in 
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this case, the 7R-carriers even increased to a better level than seen in the 7R-non-carriers 

(difference between genotype groups d=0.271). The circannual pattern observed in 7R-

carriers was consistent over studies, although the percentage of certainty of sharing a 

circannual pattern decreased with the geographical location of measurement approaching the 

equator (where seasonal variations are less dramatically expressed). Incorporating geographic 

changes into the independent measure, the change in solar irradiance at the month of 

measurement compared to the preceding month was determined, and was correlated to 

inattention in 7R-carriers. This analysis demonstrated that the larger the positive change in 

solar irradiance (largest in spring and furthest away from the equator), the better the attention 

of 7R-carriers. These results suggest that the circadian clock response to light of less-

sensitive-to-light 7R-carriers may sensitize to light when its exposure increases. Albeit of note 

that effect sizes were small, the ability of 7R-non-carriers to reduce the light-sensitive cAMP 

level upon illumination (28) may be less vulnerable to such changes in environment. Effects 

of DRD4 on central nervous system level cannot be ruled out at this time. We earlier also 

observed a lack of circannual pattern in inattention using non-genotyped data, expectedly 

consisting mainly of 7R-non-carriers (58). Surprisingly, 7R-carriers did not increase to a 

normal level after winter solstice, but to a level better than 7R-non-carriers. These results 

indicate that carrying the DRD4 7R genotype is rather beneficial for attention under certain 

environmental conditions. The 7R polymorphism has been proposed as one of the genetic risk 

factors for ADHD (22). In line with the current findings, Sánchez-Mora et al (54) had already 

demonstrated that the effect of the number of stressful life events on inattention scores was 

stronger among 7R-non-carriers than 7R-carriers. Note however, that ratings by others are 

needed to exclude the possibility that 7R-carriers and 7R-non-carriers report their inattention 

differently. Furthermore, in line with the relationship between sleep deprivation and 
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inattention found in both healthy controls (4-6) and ADHD cases (7,8), we observed that the 

DRD4 7R genotype affected inattention regardless of ADHD diagnosis and sex.  

Following the circadian pathway, we expect sleep to mediate the relationship between light 

exposure and inattention ratings. Still, an opposite circannual pattern to that expected based 

on the current pattern in inattention, was found in sleep duration in a dataset of non-

genotyped healthy individuals (59). Following this pattern in sleep duration, the spring period 

in which we now found 7R-carriers to have better attention than in the remaining year, would 

be characterized by a decrease in sleep duration compared to the preceding winter period 

rather than an increase that would benefit attention. This discrepancy in pattern even further 

supports the gene specificness of the current findings.  

The current findings lead to several suggestions for follow-up studies. Most relevant follow-

up research would be a study where ‘the spring focus’ in 7R-carriers would be exploited. 

Light environment (or more specifically; changes therein) should be designed in such a way 

that a similar enhancement of light sensitivity is provoked as naturally occurring in February 

to April in the Northern hemisphere and in August to October in the Southern hemisphere. 

According to the current findings, such an environment should result in better attention than 

an environment similar to the remaining part of the year. Especially in the ADHD population, 

characterized by inattention that interferes with daily functioning, such exploitation would be 

desirable. Furthermore, the relationship between the circadian system and attentional 

functioning should be studied on the mechanistic level to understand its function, interaction, 

and dysfunction. Future studies of sufficient size should take into account geographically 

different genetic backgrounds, different versions of the circadian pathway (such as cognitive 

attentional performance and sleep measurements), should distinguish between adult-onset 

ADHD and childhood-persistent ADHD, and study other age-ranges. Unfortunately, although 

such data are becoming increasingly available through international efforts [e.g. Psychiatric 
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Genomics Consortium (60)], the VNTR in DRD4 is not often genotyped, as it is not available 

on genome-wide genotyping arrays. Finding (combinations of) single nucleotide 

polymorphisms (SNPs) that tag the 7R allele of the VNTR in genome-wide data would 

improve sample size and power of studies like the current one further, SNPs however do not 

mark the variation of interest (the allele length) for VNTRs when linkage disequilibrium is 

low in the region of the gene where the polymorphism occurs (61). 

This study should be viewed in light of some strengths and limitations. Major strengths are 

the a priori defined inclusion criteria and generated hypotheses, preventing data mining, as 

well as the inclusion of the full span of inattention ratings from clinical levels in ADHD 

patients to levels observed in healthy populations. Also, the sensitivity analyses in which we 

compare data from the different studies – which can be viewed as replications – strengthens 

the results. Although we described a very interesting genetic susceptibility of DRD4 7R-

carriers to seasonal changes (in daylight), the reported effects explain only a small portion of 

inattention ratings with small effect sizes as could be expected based on the multifactorial 

nature of the phenotype. We only studied inattention based on a priori hypotheses, but thereby 

did not study specificity of the results. For instance, large changes in solar irradiance are also 

associated with increased suicide attempts (62-64), and could provide an opening for further 

research. Furthermore, we only studied a GxE interaction, without taking into account 

possible gene by gene (GxG) interactions. Such interactions may be especially relevant in 

DRD4 studies since dopamine D4 and D2 receptors are able to form heteromers and this 

heteromerization is influenced by genetic variants in DRD4 (48-bp VNTR) and DRD2 

(rs2283265) (65,66). Unfortunately, very few samples have information on both DRD4 

VNTR and rs2283265 precluding considering their interaction in meta-analyses. Finally, the 

merged sample was derived from different studies with varying study aims, methods of 

genotyping (albeit the different IMpACT studies and BIG all followed the same protocol), 
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inattention operationalization, which could be viewed as both a strength (in generalizability) 

as well as a weakness (due to increases in variance). Conceivably, the large variance could 

have interfered with finding significant evidence for the hypotheses derived based on the 

work by Seeger and Brookes; however, it would not impugn the significant evidence for the 

Spring-focus hypothesis. Sensitivity analyses (Figure 2) demonstrated the consistency of the 

found results. 

 

In summary, this mega-analysis demonstrated a study-consistent, diagnosis- and sex-

independent, DRD4 genotype-specific circannual variation in inattention with better ratings in 

periods after winter solstice (i.e. increasing solar irradiance) than other times of the year only 

in individuals that were DRD4 7R-carriers. ADHD has traditionally been described in terms 

of cognitive pathways (e.g., (67)). The current results, however, indicate the importance of 

taking into account the peripheral effects of dopamine in relation to attentional performance 

(mediated by the circadian clock). Direct input of midbrain dopamine to the SCN accelerates 

circadian entrainment, also underlining the significant relationship between the circadian 

system and neuromodulatory circuits related to motivational behavior (68). Better 

understanding of interaction between peripheral and central working mechanisms in 

combination with genotype-specific optimal environment conditions may provide pointers for 

improving treatment of inattention. 
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