
 1

Cumulus: a cloud-based data analysis framework for large-scale single-cell and

single-nucleus RNA-seq

Bo Li1,2,*, Joshua Gould1, Yiming Yang1,2, Siranush Sarkizova1,3,4, Marcin Tabaka1, Orr

Ashenberg1, Yanay Rosen1, Michal Slyper1, Monika S Kowalczyk1, Alexandra-Chloé Villani1-3,

Timothy Tickle1, Nir Hacohen1,3, Orit Rozenblatt-Rosen1,*, Aviv Regev1,5,*

1Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA

2Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology,

Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA

3Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA

4Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA

5Howard Hughes Medical Institute, Koch Institute of Integrative Cancer Research, Department of Biology,

Massachusetts Institute of Technology, Cambridge, MA 02139, USA

*To whom correspondence should be addressed: bli28@mgh.harvard.edu (BL), orit@broadinstitute.org (ORR),

aregev@broadinstitute.org (AR)

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 2

Abstract

Massively parallel single-cell and single-nucleus RNA-seq (sc/snRNA-seq) have opened the way

to systematic tissue atlases in health and disease, but as the scale of data generation is growing,

so does the need for computational pipelines for scaled analysis. Here, we developed Cumulus, a

cloud-based framework for analyzing large scale sc/snRNA-seq datasets. Cumulus combines the

power of cloud computing with improvements in algorithm implementations to achieve high

scalability, low cost, user-friendliness, and integrated support for a comprehensive set of

features. We benchmark Cumulus on the Human Cell Atlas Census of Immune Cells dataset of

bone marrow cells and show that it substantially improves efficiency over conventional

frameworks, while maintaining or improving the quality of results, enabling large-scale studies.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 3

Single-cell and single-nucleus RNA-seq (sc/snRNA-seq) revolutionized our ability to study

complex and heterogeneous tissues, opening the way to charting cell atlases of complex tissues

in health and disease, including the Human Cell Atlas1 and related initiatives. Advances in

massively parallel sc/snRNA-seq2,3, now allow routine profiling of millions of cells4,5. Such large

and growing datasets, however, pose a significant challenge for current analysis tools, which

were designed to run on a local computer server and lack the computation capabilities required

for processing terabytes of sequencing data.

To address this pressing challenge, we developed Cumulus, a cloud-based data analysis

framework that is scalable, cost-effective, able to process a variety of data types and easily

accessible to biologists (Fig. 1). Cumulus consists of a cloud analysis workflow, a Python

analysis package (Pegasus), and a visualization application (Cirrocumulus). Cumulus performs

three major steps in sc/snRNA-seq data analysis (Fig. 1a): (1) sequence read extraction; (2)

gene-count matrix generation; and (3) biological analyses. It addresses them for big sc/snRNA-

seq data by combining the power of cloud computing, algorithmic improvement, and more

efficient implementation, as we describe below. To test Cumulus and compare it to other tools

we relied on a scRNA-seq dataset of 274,182 cells (Methods), which were profiled from the

bone marrow of 8 donors as part of the Human Cell Atlas Census of Immune Cells dataset6.

Cumulus leverages cloud computing and compatible data platforms. It is currently based on the

Terra platform [https://app.terra.bio/] and Google Cloud Platform, but is generally cloud agnostic,

as it depends only on Dockers and Workflow Description Language (WDL, Methods). Cumulus

executes the first two steps – sequence read extraction and gene-count matrix generation –

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 4

parallelly across a large number of computer nodes, and executes the last step of analysis in a

single multi-CPU node, using its highly efficient analysis module (Methods, below). Cloud

computing offers on-demand scalable computing, high-availability storage, data security and

installation-free Software-as-a-Service (SaaS) capabilities, all at a low price. Non-programming

biologist users readily access computing resources on the cloud through a simple web-based user

interface provided by Terra (Supplementary Video 1).

Cumulus supports analysis starting from a variety of input modalities, such that scientists can use

it as a single framework for diverse data types, all of which share a single cell/nucleus

transcriptome as a core readout (Supplementary Table 1). These include: droplet-based2,7 (3’ or

5’ ends, with UMIs) and plate-based8 (full length, no UMI) sc/snRNA-seq (Methods); CITE-

seq9, which simultaneously measures mRNA expression and the abundance of oligo-tagged

surface antibodies in single cells (Methods), data from both cell10 or nucleus11 hashing

experiments, which are lab techniques that reduce batch effects and cell/nucleus profiling costs,

using a probabilistic demultiplexing algorithm11 (Methods); and Perturb-seq methods for pooled

CRISPR screens12–16 with scRNA-seq readout (Methods). Other mainstream, non-Cloud based

analysis packages, such as Cell Ranger7, Seurat17, or SCANPY18, currently support only some of

these input data types, posing a potential burden for users (Supplementary Table 1).

The Cumulus analysis module, Pegasus, which can also run on the cloud or as an independent

Python package, supports a comprehensive set of features, spanning most commonly used

scRNA-seq analysis tasks (Fig. 1b, Methods). Starting from a gene-count matrix, Pegasus filters

out low- quality cells/nuclei, selects highly variable genes (HVG) and optionally corrects batch

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 5

effects. It then performs dimensionality reduction by principal component analysis (PCA) on

HVGs, constructs a k nearest neighbor (k-NN) graph on the Principal Component (PC) space,

calculates diffusion maps19,20 and applies community detection algorithms on the graph to find

clusters21,22. It visualizes cell profiles using either t-SNE23,24-based or UMAP25,26-based methods.

It can additionally estimate diffusion pseudotime20 and visualize developmental trajectories using

force-directed layout embedding (FLE)27–29 based algorithms. Pegasus can be used to detect

cluster-specific markers, by differential expression analysis between cells within and outside of a

cluster and optionally calculates the area under ROC curve (AUROC) values for all genes

(Methods). It can also train a gradient boosting tree classifier30 on the gene expression matrix to

predict cluster labels and output genes with high feature importance scores (Methods), which

provide additional information for detecting cluster-specific markers. Lastly, it annotates clusters

with putative cell type labels based on user-provided gene sets (Methods). Pegasus thus offers

diverse features, comparable to two other mainstream packages, Seurat17 and SCANPY18,

although each package also has some unique features, absent from the other two

(Supplementary Table 2).

Once the data are analyzed, users can visualize their results instantly using Cirrocumulus, a

serverless application that enables interactive data visualization and sharing (Fig. 1c,

Supplementary Video 2). Since Cirrocumulus only downloads to the browser those data that are

necessary for visualization (Methods), it is scalable to millions of cells. Users can also download

Cumulus-produced HDF5 result files for use with other visualization tools such as cellxgene31,

UCSC Cell Browser32, and scSVA29 (Fig. 1c). Alternatively, users can inspect or re-analyze their

data interactively using Pegasus on Terra Jupyter Notebooks (Fig. 1c). To help users better

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 6

navigate data, we developed scPlot (Methods), a python package for generating interactive

figures, as part of Pegasus. Finally, users can synchronize Cumulus results to the Single Cell

Portal33 for data deposition (Fig. 1c). Cumulus is demoed as a featured workspace on Terra

[https://app.terra.bio/#workspaces/fc-product-demo/scRNA-seq-cloud].

To ensure scalability, we enhanced the performance of the Pegasus analysis module through

several algorithmic and implementation improvements in some of the most intensive tasks: the

selection of highly variable genes (HVGs), batch correction, k-NN graph construction,

calculation of diffusion pseuodotime (DPT), a combination of spectral and community-based

clustering, and efficient visualization algorithms. We describe each of these enhancements in

turn, comparing its impact on analysis quality and analysis speed/scale with other major

packages.

First, we implemented a new HVG selection procedure that simplifies the calculation process

and provides a mathematically sound way to handle batch effects (Supplementary Fig. 1a,

Methods). For users’ convenience, we also include a standard procedure17, which is used by

both SCANPY and Seurat. Comparing the new and standard procedures when applied to the

bone marrow dataset suggests that the new procedure has at least equal quality vs. the standard

one. It recovers slightly more immune-specific genes provided by the ImmPort34 data repository

(Supplementary Fig. 1b, Supplementary Data 1, Methods), including important T cell

markers, such as CD3D, CD3E and CD4, which are missed by the standard procedure. It also

identifies one more cell type, megakaryocytes, which is missed by the standard procedure

(Supplementary Fig. 1c).

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 7

Next, we enhanced the scalability of batch correction in Pegasus, by implementing the classical

location and scale (L/S) adjustment method35, which relies only on linear operations and is thus

much faster. As a benchmark, we ran Pegasus’s L/S method, SCANPY’s offerings of Combat36,

MNN37 and BBKNN38, and the most recent integration method39 of Seurat v3 on a subset of the

bone marrow dataset (Methods) and compared each method’s batch correction efficiency using

two measurements, the kBET40 and kSIM acceptance rates. Briefly, the kBET acceptance rate

measures if batches are well-mixed in the local neighborhood of each cell; the kSIM acceptance

rate measures if cells of the same pre-annotated cell type are still close to each other in the local

neighborhoods after batch correction (Methods), and helps reflect if known biological relations

are preserved after correction. An ideal batch correction method should have both high kBET

and kSIM acceptance rates. Each of the five methods evaluated showed a trade-off between the

two rates, and none was a clear best performer (Fig. 2a), Pegasus’s L/S method is the fastest

(Supplementary Fig. 2a), while maintaining a good balance between the two rates (Fig. 2a,

Supplementary Fig. 2b-g).

We also enhanced the scalability of k-NN graph construction by adopting the Hierarchical

Navigable Small World (HNSW)41 algorithm, a state-of-the-art approximate nearest-neighbor

finding algorithm, which was previously shown to be fastest for high quality approximations42.

We compared HNSW with the approximate nearest neighbor finding algorithms used by

SCANPY and Seurat on the bone marrow dataset based on speed and on recall, defined as the

percentage of nearest neighbors that are also found by the brute-force algorithm (Methods).

HNSW has a near optimal recall (Supplementary Fig. 3a), while being 3-19x faster

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 8

(Supplementary Fig. 3b). HNSW was also benchmarked recently for plate based, small scale,

scRNA-seq43.

To speed up the calculation of diffusion maps19 and diffusion pseudotime20 (DPT), we adopted

two modifications, also used by SCANPY and scSVA, and further improved the identification of

pseudotemporal trajectories20 with two additional modifications. As in SCANPY, we construct

the affinity matrix based on the approximate k-NN graph constructed in the previous step instead

of a complete graph, and also use only the top � diffusion components to approximate diffusion

distances and thus diffusion pseudotimes, where � is a user-specific parameter. In addition, to

better identify pseudotemporal trajectories when there are multiple subsets of cells undergoing

separate temporal processes, we found that using more diffusion components helps us better

separate different cell populations (Supplementary Fig. 4a, red regions) and thus we set

� � 100 by default. We further introduce a family of diffusion pseudotime maps parameterized

by timescale �: each pseudotime “meta-map” is constructed by summing over diffusion maps up

to its timescale � (Methods). The DPT method20 is equivalent to the special case of this family

with � � ∞. As timescale � increases, diffusion maps begin to smooth out local noise44. However,

when � becomes too large, diffusion maps will also smooth out real signals44. Thus, instead of

� � ∞, we choose a timescale � that smooths out most noise but little signal. Inspired by the

PHATE45 method, we propose to pick � as the knee point on the curve of von Neumann

entropies46 induced by diffusion maps at different timescales (Supplementary Fig. 4b,

Methods). In the Immune Cell Atlas data, using the selected �, we identify a trajectory (Fig. 2b)

that more clearly bifurcates from hematopoietic stem cells into CD14+ monocytes and

conventional dendritic cells (cDCs), whereas those two lineages overlap in the DPT model.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 9

In addition to offering popular modularity-based community detection algorithms for clustering

cell profiles, including Louvain21 and Leiden22 (Methods), Pegasus also includes spectral-

community-detection algorithms, such as spectral-Louvain and spectral-Leiden, which combine

the strengths of both spectral clustering47 and community detection algorithms (Methods).

Spectral clustering performed by applying the k-means algorithm on the calculated diffusion

pseudotime components is very fast, but its clustering results are not always satisfactory

(Supplementary Fig. 5a). Conversely, in Pegasus’s spectral clustering, we first aggregate cells

into small groups and then apply community detection algorithms on the aggregated groups

(Methods). On the bone marrow dataset, this new method provides clusters that are comparable

to those from modularity-based community detection algorithms, but at the high speed of

spectral clustering (Supplementary Fig. 5b,c).

Finally, in addition to visualization of single cell profiles using either t-SNE23, FIt-SNE24,

UMAP25 (Methods), or a force directed layout embedding (FLE28) of the diffusion pseudotime

map (Methods), we also include a deep-learning-based visualization technique that speeds up a

generalized set of these and similar visualization algorithms (Methods). Inspired by net-SNE48,

this technique is based on the assumption that large datasets are often redundant and their global

structure can be captured using only a portion of the data. It thus first subsamples a fraction of

cells according to each cell’s local density, ensuring higher rate of sampling from rare and sparse

clusters, and then embeds the subsampled cells using the embedding algorithm of interest, such

as UMAP (Fig. 2c). It then trains a deep-learning-based regressor (Methods) on the subsampled

cells using their embedded coordinates as ground truth and uses the regressor to predict

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 10

embedding coordinates for the remaining cells. Because the predicted coordinates yield a “blurry”

visualization (Fig. 2c), it has a final refinement step, which applies the embedding algorithm for

a small number of iterations to both the calculated coordinates for the subsampled cells and

predicted coordinates for the remaining cells (Fig. 2c). We call visualizations obtained using this

technique as Net-* visualizations and show that they speed up the original embedding algorithm

by at least 2x and maintain the visualization quality based on similar kSIM acceptance rates (Fig.

2d and Supplementary Fig. 6).

As a result of these combined algorithmic and implementation improvements, Pegasus is much

faster than other packages for running key analyses tasks on the bone marrow dataset6

(Supplementary Table 3, Methods) and the 1.3 million mouse brain dataset4 (Supplementary

Table 4, Methods). In addition, with its cloud-based architecture, Cumulus is much faster than

other packages when benchmarking on the bone marrow dataset. Compared to a Cell Ranger +

Seurat/SCANPY pipeline, Cumulus completed the analysis in around 15 hours, while the

alternative pipeline took over 9 days to run (Table 1, Methods). The associated computational

costs were modest (e.g., ~$2 on average for around 4,000 cells in one sample, Table 1,

Methods).

In conclusion, Cumulus provides the community with a cloud-based, scalable, cost-effective,

comprehensive and easy to use platform for single-cell and single-nucleus RNA-seq research.

Pegasus, Cumulus’ analysis module, which can also be used as an independent Python package,

implements many improvements which enhance efficiency, from a new HVG selection

procedure to a generalized deep-learning-based visualization speedup. While a complex

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 11

framework such as Cumulus cannot provide an optimal combination of specialized algorithms

for each application, it will accelerate research by providing an integrated and fast approach that

enables more labs to analyze large-scale single-cell and single-nucleus datasets. In a separate

study49, we demonstrated Cumulus by analyzing single-cell and single-nucleus RNA-seq data

from fresh and frozen tumor from the Human Tumor Atlas Pilot Project (HTAPP). As the

community produces data sets at substantially larger scales, we hope that Cumulus will play a

key role in the effort to build atlases of complex tissues and organs at higher cellular resolution

and leveraging them to understand the human body in health and disease.

Code availability

Cumulus code consists of four components: the Pegasus and scPlot python packages, the

Cumulus WDL workflows and Dockerfiles, the Cumulus docker images and the Cirrocumulus

app. Pegasus source code is available at https://github.com/klarman-cell-observatory/pegasus.

Pegasus documentation is available at https://pegasus.readthedocs.io. scPlot source code is

available at https://github.com/klarman-cell-observatory/scPlot. We wrote all workflows using

the Workflow Description Language (WDL, https://github.com/openwdl/wdl) and encapsulated

all software packages into Docker images using Dockerfiles. Cumulus WDL and Dockerfiles are

available at https://github.com/klarman-cell-observatory/cumulus. Cumulus Docker images are

available at https://hub.docker.com/u/cumulusprod. For Terra users, we additionally deposit

Cumulus workflows in the Broad Methods Repository

https://portal.firecloud.org/?return=terra#methods and provide a step-by-step manual at

https://cumulus-doc.readthedocs.io. Cirrocumulus source code is available at

https://github.com/klarman-cell-observatory/cirrocumulus. Pegasus, scPlot, Cumulus WDL files

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 12

and Docker files, and Cirrocumulus are licensed under a BSD 3-clause license. In addition, we

documented licenses for Cumulus dependencies in Supplementary Data 2. Due to 3rd party

licensing requirements, we can only provide Cell Ranger dockers without bcl2fastq2 and users

can build their private bcl2fastq2-containing Dockers by following instructions listed in Cumulus

documentation.

Data availability

The bone marrow dataset is available at

https://data.humancellatlas.org/explore/projects/cc95ff89-2e68-4a08-a234-480eca21ce79. The

1.3 million mouse brain data set is available at https://support.10xgenomics.com/single-cell-

gene-expression/datasets/1.3.0/1M_neurons.

Acknowledgments

We thank Jennifer Rood for help with manuscript editing, Leslie Gaffney for help with figure

preparation, Eric Banks and Anthony Philippakis for advice on creating Cumulus’ featured Terra

workspace, Christine O’Day and Ellen Law for advice on licensing Cumulus, and Christine

O’Day additionally for help on preparing Supplementary Data 2, Danielle Dionne, Julia

Waldman, Jane Lee and Karthik Shekhar for their contribution in generating the preview data set

and sharing it openly pre-publication; and Mariam Maarouf and Deniz Erdogan for transferring

the Pegasus namespace on Read the Docs to us.

Author Contributions

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 13

B.L. and A.R. conceived the study, designed experiments and devised analyses. B.L. developed

computational methods. B.L. J.G., S.S. and Y.Y. implemented code. B.L., J.G., S.S., Y.Y., M.T.,

O.A and Y.O. conducted computational experiments. M.S., M.S.K. and A.V. helped interpret

results from the Immune Cell Atlas data used in this manuscript; T.T. helped with Terra cloud

related development; N.H., O.R.R. and A.R. supervised work. B.L., Y.Y. and A.R. wrote the

paper with input from all the authors.

Competing interests

AR is a founder of and equity holder in for Celsius Therapeutics and an SAB member of

ThermoFisher Scientific, Neogene Therapeutics, and Syros Pharamceuticals.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 14

Figure Legends

Figure 1. Cumulus: a scalable, feature-rich, accessible cloud based framework for sc/sn

RNA-seq analysis.

a. Cumulus data analysis workflow. Cumulus takes raw BCL files as input and outputs diverse

analysis results, with three key computational steps – mkfastq, count, and analysis. b. sc/snRNA-

seq analysis tasks in Pegasus. c. Cumulus enables flexible interactive data visualization and

analysis. Users can instantly visualize Cumulus analysis results with Cirrocumulus, or publicly

available visualization tools such as cellxgene, UCSC cell browser and scSVA. They can also

interactively explore them on Terra Jupyter notebooks using Pegasus and deposit their data into

the Single Cell Portal.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 15

Figure 2. Algorithmic and implementation improvements underlying Pegasus’s high

scalability.

a. Trade-off between kBET and kSIM acceptance rates across different methods. kBET (y axis)

and kSIM (x axis) acceptance rates of Pegasus, ComBat, MNN, BBKNN and Seurat v3 on

34,654 bone marrow cells. b. Improved resolution of a developmental bifurcation with diffusion

pseudotime map with timescale selected by von Neumann entropy. Diffusion maps of cells

colored by subset annotation (color legend), generated by DPT (left) and Pegasus (right). Red

square: area of bifurcation from hematopoietic stem cells (HSCs) to CD14+ monocytes (orange

arrow) and conventional dendritic cells (cDCs, purple arrow) (zoom, right), in each map. c.

Deep-learning-based efficient visualization with Net-*. From left: a small fraction of cells is

subsampled based on local density and then embedded (e.g., with UMAP); a deep regressor is

trained on the subsampled cells to predict the embedding coordinates; it is then used to predict

embedding coordinates for remaining cells; all the coordinates are fine-tuned by applying the

embedding algorithm (e.g., UMAP) for a small number of iterations. d. Net-UMAP visualization

is faster than UMAP while maintaining visualization quality. Embedding generated by UMAP

(left) and Net-UMAP (right) of cells, colored by subset annotation. Top: Execution time and

kSIM acceptance rate.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 16

Table and legend

Table 1. Cumulus is computationally efficient and cost effective

 Time Cost per sample

Step Cell Ranger + Seurat v3 Cell Ranger + SCANPY Cumulus Cumulus

Total 10 d, 5 h, 38 min 9 d, 5 h, 35 min 15 h, 15 min $1.832

Mkfastq 13 h, 18 min 13 h, 18 min 7 h, 54 min $0.22

Count 8 d, 14 h, 12 min 8 d, 14 h, 12 min 6 h, 44 min $1.61

Analysis 26 h, 8 min 2 h, 5 min 37 min $0.002

Left columns: Total execution time on the bone marrow dataset of Cumulus, Cell Ranger +

Seurat v3 or Cell Ranger + SCANPY pipeline, running on a 32 CPU thread, 120 GB memory

Google Cloud virtual machine instance (Methods). Right columns: Average computational cost

for running Cumulus per sample of ~4,000 cells (Methods).

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 17

Methods

CUMULUS MODULES

Gene-count matrix generation for droplet-based scRNA-seq

Cumulus supports gene-count matrix generation for 10x Genomics V2 and V3 chemistry using

Cell Ranger. Cumulus first demultiplexes Illumina base call files (BCLs) for each sequencing

flowcell by running mkfastq steps parallelly in different computer nodes. Each mkfastq job calls

‘cellranger mkfastq’ to generate sequence reads in FASTQ files. By default, each mkfastq job

requests 32 CPUs, 120 GB memory and 1.5 TB disk space from the cloud. Cumulus then

generates gene-count matrices for each 10x channel by running count steps in parallel. Each

count job calls ‘cellranger count’ with appropriate parameters and requests 32 CPUs, 120 GB

memory and 500 GB disk space from the cloud by default. Cumulus also supports gene-count

matrix generation for Drop-seq2 data using either the methods described in Drop-seq alignment

cookbook50 or dropEst51.

Gene-count matrix generation for plate-based scRNA-seq

Cumulus supports gene-count matrix generation for scRNA-seq data generated by the SMART-

seq2 protocol8 from sequence reads in FASTQ files. Cumulus estimates gene expression levels

for each single cell in parallel in different computer nodes. Each node runs RSEM52 with default

parameters and utilizes Bowtie 253 to align reads. Each node requests 4 CPUs, 3.6 GB memory

and 10GB disk space by default. Once expression levels are estimated, Cumulus converts the

relative expression levels (in Transcript per 100K, TP100K) into a count vector for each single

cell using the formula below and then generates a gene-count matrix by concatenating count

vectors from all cells.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 18

�� � �	
�100��10�

 ����� ,	 �1�

where �� and
�100�� are the converted read count and estimated expression level of gene �,
respectively. ���� is the sum of RSEM-estimated expected counts from all genes.

Pegasus

Cumulus runs the analysis step on a single node, which requests 32 CPUs, 200 GB memory and

100 GB disk space by default. The analysis step calls Pegasus, a fast Python package we have

implemented. Pegasus utilizes SCANPY’s AnnData data structure18 to store gene-count matrices

and analysis results. More implementation details are discussed in the subsequent sections and

Supplementary Note 1.

Feature-count matrix generation for CITE-seq, cell hashing, nucleus hashing, and Perturb-

seq

Cumulus supports feature-count matrix generation of CITE-seq9, cell hashing10, nucleus11

hashing and Perturb-seq12–16 protocols, using either 10x Genomics V2 or V3 chemistry. Each

feature-count matrix generation job runs parallelly on a separate compute node with 1 CPU, 32

GB memory and 100 GB disk space, and calls ‘generate_count_matrix_ADTs’, a fast C++

program we implemented, to extract the matrix from sequence reads in FASTQ files. The C++

program scans each read pair to search for valid sequence structures. We assume read 1 records

the cellular barcode and Unique Molecular Identifier (UMI) information and read 2 records

feature barcode information, such as hash tags for hashing protocols or sgRNA information for

Perturb-seq (below). The first 16 nucleotides of read 1 represent the cell barcode for both V2 and

V3 chemistry. The next 10 and 12 nucleotides represent the UMI for V2 and V3 chemistry,

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 19

respectively. We allow up to 1 and 0 mismatch for matching cell barcodes in V2 and V3

chemistry, respectively.

Feature barcode information is recorded differently in read 2 for different protocols. For CITE-

seq, cell hashing and nucleus hashing protocols, the location of the feature barcode depends on

what type of BioLegend TotalSeqTM antibodies users choose. If TotalSeqTM-A antibodies are

used, the feature barcode is located at the 5’ end of read 2. Otherwise, the feature barcode starts

at the 11th nucleotide from the 5’ end of read 2. ‘generate_count_matrix_ADTs’ automatically

detects antibody type by scanning read 2 of the first 1,000 read pairs and calculating the

percentage of read pairs containing the auxiliary sequence. If more than 50% of read pairs

contain the auxiliary sequence, we assume the antibody type is TotalSeqTM-A, otherwise it is

TotalSeqTM-B or TotalSeqTM-C. We allow up to 1 mismatch for matching the auxiliary sequence.

For Perturb-seq protocols, we assume that the feature barcode (protospacer) is located in front of

a user-provided anchor sequence. For V2 chemistry, we first search the anchor sequence in read

2, allowing up to 2 mismatches or indels. We then extract the feature barcode at the 5’ end of the

anchor sequence. For V3 chemistry, we assume users use 10x Genomics CRISPR guide capture

assays and additionally check the Template Switching Oligo (TSO) sequence

‘AAGCAGTGGTATCAACGCAGAGTACATGGG’ at the 5’ end of read 2, allowing up to 3

mismatches and indels.

Once we locate the feature barcode, we match it with a user-provided white list, allowing up to 3

mismatches by default. After scanning all read pairs, ‘generate_count_matrix_ADTs’ generates a

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 20

feature-count matrix in CSV format: each row represents one feature, each column represents

one cell barcode, and each element records the number of unique UMIs for the feature in the row

in the cell barcode in the column. To speed up sequence matching, we encode cell barcodes,

UMIs and feature barcodes into 8-byte unsigned integers (2 bits per nucleotide).

CITE-seq data analysis

Based on the generated feature-count matrix, Cumulus first calculates the log fold change

between feature UMI counts of the antibody of interest and its IgG control as the antibody

expression, provided that users include both antibodies of interest and their corresponding IgG

controls in their CITE-seq assays. Let us denote the UMI counts of the antibody and its IgG

control as �� and ��. The antibody expression ���� is calculated as

���� � max�log �� � 1�� � 1 , 0�, �2�

where we add 1 to both the numerator and denominator to avoid log 0. If IgG controls are not

provided, we calculate ���� as

���� � max�log �� � 1 , 0�. �3�

Cumulus merges the transformed antibody expression matrix into an RNA expression matrix so

that users can plot antibody expression in 2D visualizations (e.g., t-SNE & UMAP) calculated

based on RNA expression levels. Cumulus can optionally generate t-SNE plots solely based on

antibody expression levels.

Demultiplexing cell hashing and nucleus hashing data

Cumulus demultiplexes cell hashing and nucleus hashing data using the DemuxEM algorithm,

which we recently described11.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 21

Chimeric read filtration for Perturb-seq data

In Perturb-seq, sgRNAs are often amplified by dial-out PCR12 to ensure feature detection, and

the resulting library is often over-sequenced, which can lead to a high number of false positive

UMIs due to PCR chimeric reads54. Such false positive UMIs tend to have fewer supporting

reads on average. Suppose we have �"�# UMIs with exact � supporting reads. In general, we

expect �"�# to decrease monotonically as � increases. However, if the library is over-sequenced,

we may observe a second peak in the tail of the �"�# distribution ($�, �"� % 2# & �"� % 1# &
�"�# ' �"� � 1#), which is more likely to represent true UMIs. Cumulus detects the left boundary

of the second peak by scanning � consecutively. If Cumulus can find an � such that �"�# &
�"� � 1# & �"� � 2# and � (10, Cumulus will filter out any UMIs with fewer than � supporting

reads. Otherwise, Cumulus filters out any UMIs with only one supporting read. If a cell barcode

and UMI combination contains more than 1 feature barcode, it is likely that the feature barcode

with fewer supporting reads is produced by PCR chimeras54 and Cumulus will filter feature

barcodes supported by no more than 10% of reads belonging to that combination. Cumulus

generates a filtered feature-count matrix after this filtration step and lets users decide if they want

to use the original feature-count matrix or the filtered feature-count matrix.

Cirrocumulus implementation

Cirrocumulus is a Google App Engine application for visualizing variables on a 2D or 3D

embedding of observations. The client side of Cirrocumulus is implemented using React to

manage state and Plotly to generate charts. The backend consists of several cloud functions to

manage datasets stored in a NoSQL cloud database and to slice variables from a specified dataset

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 22

in PARQUET format, where the PARQUET file is generated by Pegasus. The slice function can

optionally generate statistical summaries on an n-dimensional grid, thus enabling plotting of

millions of cells.

scPlot implementation

scPlot [https://github.com/klarman-cell-observatory/scPlot] is a plotting library included as part

of Pegasus. Plots provided include scatter plots, feature plots, dot plots and violin plots and can

scale to millions of cells by plotting cells on a two-dimensional grid. scPlot uses HoloViews

[http://holoviews.org/], thus allowing the same code to generate interactive plots with Bokeh for

a Jupyter notebook and static plots with Matplotlib.

Preprocessing

Pegasus selects high quality cells based on a combination of the following criteria, with user-

provided parameters: 1) number of unique molecular identifiers (UMIs) between

")��_+)�,,)-�_+)�,� , default:)��_+)�, � 100 and)-�_+)�, � 600,000 ; 2) number of

expressed genes (at least one UMI) between ")��_/���,,)-�_/���,�, default:)��_/���, �
500 and)-�_/���, � 6000 ; 3) percentage of UMIs from mitochondrial genes less than

�������_)��1, default: �������_)��1 � 10%. Pegasus then selects robust genes, defined as

genes detected in at least � percentage of cells, where � is a user-defined parameter; default:

� � 0.05% (equivalent to 3 cells out of 6,000 cells). Next, Pegasus normalizes the count vector

of each cell, such that the sum of normalized counts from robust genes is equal to 100,000

transcripts per 100K (TP100K), and transforms the normalized expression matrix into the natural

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 23

log space by replacing expression value 3 into log�3 � 1�. Additional details are available in

Supplementary Note 1.

Highly variable gene selection

The standard HVG selection procedure operates in the original expression space. However,

almost all downstream analyses are conducted in log expression space. To reconcile this

inconsistency, we develop a new HVG selection procedure that operates directly in log

expression space.

We select HVGs only from robust genes. Suppose we have 4 cells and 5 robust genes. We

denote the log expression of gene / in cell � as 6�� . We first estimate the mean and variance for

each robust gene / as

7̂� � 14 9 6��

�

�	

 -�: ;<�
� � 14 % 1 9�6�� % 7̂���

�

�	

. �4�

We then fit a LOESS55 curve of degree 2 (span parameter 0.02) between the estimated means

and variances (Supplementary Fig. 1a) and denote the LOESS-predicted variance for gene / as

;>�
�. Any gene / with ;<�

� ? ;>�
� has a higher than expected variance.

We calculate the difference and fold change between the estimated and LOESS-predicted

variances as

;� � ;<�
� % ;>�

� and B� � ;<�
�;>�
�

. �5�

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 24

We then rank each robust gene with respect to ;� and B� in descending order, and denote their

rankings as �-�C��/� and �-�C
�/� respectively. Lastly, we define the overall ranking as the

sum of the two rankings

�-�C�/� � �-�C��/� � �-�C
�/�, �6�

 and select the top � robust genes with respect to �-�C�/� as HVGs.

The new procedure handles batch effects naturally. Suppose we have � biologically different

groups, each group C has �� batches and each batch CD has ��� cells. We additionally denote the

mean within batch CD and within group C as 7̂��� and 7̂��, respectively. Because we have

9�6���� % 7̂���� � 0���

�	

 -�: 9 ����7̂��� % 7̂�����

�	

� 0, �7�

We can decompose the variance ;<�
� into three components – within-batch variance (;<�

�),

between-batch variance (;<��
�) and between-group variance (;<��

�) – as follows:

;<�
� � 14 % 1 9�6�� % 7̂���

�

�	

� 14 % 1 9 9 9��6���� % 7̂���� � �7̂��� % 7̂��� � �7̂�� % 7̂����

���

�	

��

�	

�

�	

� 1
� � 1 � � ������� � �̂���
�

���

���

��

���

	

���

� 1
� � 1 � � ���
�̂��� � �̂����

��

���

	

���

� 1
� � 1 ��� ���

�

���

��̂�� � �̂�
�
	

���

� ;<�

� � ;<��

� � ;<��
� . �8�

We remove the variance term (;<��
�) due to batch effects by redefining ;<�

� as

;<�
� G ;<�

� � ;<��
� , �9�

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 25

and plug in the new redefined variance term to the previously described procedure to select

HVGs. If we use the redefined variance terms in HVG selection, we are in the batch-aware mode.

We provide a detailed description of the new procedure in the Supplementary Note 1 1.

We also implemented the standard HVG selection procedure, which handles batch effects using

the method in Seurat v339, and documented implementation details in the Supplementary Note 1.

Batch correction with the L/S adjustment method

For simplicity, let us assume that we only have one biological group with) batches and each

batch D has �� cells. We model the log gene expression level of gene / at batch D’s �th cell as

6��� � I� � J�� � K��L��� , �10�

where I� is the baseline expression level of gene /, L��� is the error term, which follows a

distribution with a mean 0 and a variance ;�
� . In addition, J�� and K�� are the additive and

multiplicative batch effects, respectively. We estimate these parameters for each gene separately

as follows:

I<� � 14 9 9 6���

��

�	

�

�	

, �11�

J<�� � 1��

9 6���

��

�	

% I<�, �12�

;<� � M14 9 9N6��� % I<� % J<��O�

��

�	

�

�	

, �13�

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 26

KP�� � Q 1�� % 1 ∑ N6��� % I<� % J<��O���

�	
 ;<�

. �14�

We denote 6���
� as the batch adjusted expression level, which is calculated as

6���
� � 6��� % I<� % J<��KP��

� I<�. �15�

We provide a more detailed description of the L/S method in the Supplementary Note 1,

including how to handle multiple biological groups.

Since batch correction transforms a sparse expression matrix into a dense matrix, which uses

much more memory, we only calculate batch-adjusted expression levels for genes of interest,

such as HVGs. We rewrite (15) as

6���
� � 1KP��

6��� � SI<� % I<� � J<��KP��

T, �16�

and use a two-step procedure to correct batch effects: First, we calculate and save batch-

correction factors

����
 and I<� % ��������

����
 for all genes. Second, we calculate adjusted expression

levels only for genes of interest using (16). We save the batch-correction factors for all genes,

such that we can calculate batch-adjusted expression levels for any gene instantly in the future.

kBET acceptance rate

kBET40 acceptance rate measures if cells from different batches mix well in the local

neighborhood of each cell. Pegasus implements the kBET acceptance rate calculation procedure

as follows: We define U � �U
, … , U�� as the ideal batch mixing frequency, where U� � ��

�
. For

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 27

each cell �, we find its C nearest neighbors (including itself) using the HNSW algorithm41 and

denote the number of neighbors belonging to batch D as ���
� . Then we calculate its W� test statistic

with) % 1 degrees of freedom as

X�
� � 9 N���

� % U�
 CO�U�
 C�

�	

, �17�

and its p value as

��
� � 1 % Y��
NX�

�O, �18�

where Y��
��� is the cumulative density function.

The kBET acceptance rate is calculated as the percentage of cells that accept the null hypothesis

at significance level I:

CZ[
 �-�� � ∑ \���
� ' I��

�	
 4] 100%, �19�

where \��� is the indicator function, and C and I are user-specified parameters.

kSIM acceptance rate

The kSIM acceptance rate requires ground truth cell type information and measures if the

neighbors of a cell has the same cell type as it does. If a method over-corrects the batch effects, it

will have a low kSIM acceptance rate. We use the HNSW algorithm to find C nearest neighbors

(including the cell itself) for each cell � and denote the number of neighbors that have the same

cell type as � as ��
� . In addition, we require at least ^ fraction of neighbors of cell � to have the

same cell type as � in order to say cell � has a consistent neighborhood. The kSIM acceptance rate

is calculated as follows:

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 28

C_\` �-�� � ∑ \���
�C ' ^��

�	
 4] 100%, �20�

where C and ^ are user-specified parameters.

Dimensionality reduction by Principal Components Analysis

Pegasus calculates the top) principal components based on highly variable genes. It utilizes the

randomized PCA algorithm56 implemented in Scikit-learn package57 to speed up the

computation. By default, Pegasus sets) � 50.

k-nearest neighbors (k-NN) graph construction

Pegasus uses the HNSW41 algorithm with parameters ` � 20 , �Ua � 200 , �U_ � 200 , to

construct k-NN graphs. By default, Pegasus searches the top 100 nearest neighbors (including

the cell itself) for each cell (� � 100). Because HNSW is an approximate algorithm, it cannot

always return the cell itself as the 1st nearest neighbor. For any cell missing itself as the 1st

nearest neighbor, Pegasus sets itself as the 1st nearest neighbor and picks the top 99 nearest

neighbors returned by HNSW as the 2nd to 100th nearest neighbors. HNSW has a random index

building process, which produces different indices in different runs if multiple threads are used.

For reproducibility purposes, Pegasus provides two modes of running HNSW: robust mode and

full speed mode. In robust mode, Pegasus runs the index building process with only one thread

and runs the neighbor searching process with multiple threads. In full speed mode, Pegasus also

runs the index building process with multiple threads. In either mode, Pegasus stores the

neighbor searching results in the AnnData18 object. Without explicit notification, Pegasus runs

HNSW in the robust mode.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 29

Diffusion maps and diffusion pseudotime maps

We provide a high-level summary here and a more detailed description in Supplementary Note

1.

To compute diffusion maps, we first construct an affinity matrix b��� based on the top)

principal components. This affinity matrix is also used in community-detection-based clustering

algorithms. We construct b based on the top � nearest neighbors found by the HNSW algorithm.

Let us define a cell c’s neighborhood set 4�c� as the set consisting of c’s 2nd to � th nearest

neighbors. We then define the following locally scaled Gaussian kernel between any two cells c

and d :

��c, d� � S 2;�;�;�
� � ;�

�
T

� exp S% gc % dg�;�
� � ;�

�
T, �21�

where, c is a vector containing the top) PC coordinates of cell c, and ;� is c’s local kernel

width, defined as ;� � mediani:�|� � 2, … , �k, where :� is the distance between cell c and its

�th neighbor. To eliminate the effects of sampling density, we additionally define the following

density-normalized kernel19:

���c, d� � ��c, d�l�c�l�d�, �22�

where l�c� is the sampling density term of cell c and defined as:

l�c� � 9 ��c, d�
� �!�" �$ � �!�"

. �23�

The affinity matrix b is constructed using the density-normalized kernel:

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 30

b�c, d� � m���c, d�, d n 4�c� 1� c n 4�d�0, 1�o��p�,� 	. �24�

We then calculate the Markov chain transition matrix q and the symmetric “transition” matrix r

based on the affinity matrix:

q � s�
b, s � :�-/ t9 b�c, d�
�

u, �25�

r � s�

�bs�

�, q � s�

�rs

�. �26�

Since r is symmetric, it has the eigen decomposition of r � vwv%. In addition, we know that in

practice all r’s eigenvalues are in �%1, 1# and x � s�

�y is its eigenvector for eigenvalue z � 1

(Supplementary Note 1). We also know that q shares the same eigenvalues as r and its right

eigenvectors { and left eigenvectors | are

{ � s�

�v, | � s

�v �27�

Next, to speed up the calculation, we approximate diffusion maps using only the top � diffusion

components (Supplementary Note 1), where � is a user-specified parameter with default value

� � 100. First, we calculate the top � eigenvalues and eigenvectors of r using the Implicitly

Restarted Lanczos Method58 (via scipy.sparse.linalg.eigsh function). We also provide the

alternative option to calculate the top � eigenvalues using the randomized SVD algorithm56

(Supplementary Note 1). We order these � eigenvalues by magnitude:

1 � z& ? |z
| ' |z�| ' } ' |z��
|, �28�

and define a family of approximated diffusion maps i{�k� ' parameterized by timescale �:

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 31

{��c�� � ~ z

� �
���z�
� ������z��

� ���
����. �29�

Note that we use the right eigenvectors of the transition matrix q to construct diffusion maps.

Using the eigenvectors of q is consistent with the original diffusion map paper19 and

recommended in the spectral clustering literature47. The DPT paper20 constructs diffusion maps

using eigenvectors of the symmetric matrix r instead.

We next define approximated diffusion pseudotime maps i{�
�k� '()*+ based on approximated

diffusion maps:

{�
��c�� � 9 {���c���

��	

�
��
���
� z

1 % z

�1 % z

�
���
z�

1 % z�
�1 % z�

������z��

1 % z��

�1 % z��

���
�����
���
�. �30�

In particular, when � � ∞, we recover the DPT method (except it uses the eigenvectors of r).

We wish to pick a timescale � that smoothens out most of the noise but little signal. We select �

based on the von Neumann entropy46 of the graph induced by each timescale. For each �, its

power matrix q� induces a graph with the following Laplacian and density matrices

(Supplementary Note 1):

���� � � % q�, �N����O � ������-��N����O. �31�

We derive the von Neumann entropy _��� for the top � diffusion components from the density

matrix �N����O (Supplementary Note 1):

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 32

_��� � % 9"�����#�
 log "�����#�

��

�	&

, po��� "�����#� � 1 % z�
�∑ 1 % z�

���

�	&

 . �32�
_��� increases as � increases and reaches its maximum log �� % 1� when � � ∞ . Because

smaller eigenvalues of q (likely representing noise) decrease to 0 (and hence contribute a 1 to

the entropy) much more rapidly than large eigenvalues (likely representing signal)45, we expect

to observe a high rate of increase in _��� initially when noise is smoothed out and then a low rate

of increase when signal begins to be removed (Supplementary Fig. 4b). We pick the timescale �

as the knee point of this von Neumann entropy curve.

Let us denote �� � � �_���� as the point for timescale � in the curve. We find the kneepoint by

scanning all �s (where t is an integer) between 1 and)-��, and pick the � that is furthest from

�� % �
 , the segment connecting the two endpoints of the curve.)-�� is a user-provided

parameter set to)-�� � 5000 by default. We calculate the distance between point �� and the

segment �� % �
 as follows:

:�, � g��� % �
�] ��� % �
�gg�� % �
g . �33�

For the selected �, given a user-specified cell � as the root, we calculate the diffusion pseudotime

distance from root to any other cell c as

��
���, c� � g{�

���� % {�
��c�g. �34�

We then normalize the diffusion pseudotime distance into "0, 1# as the diffusion pseudotime.

Modularity-based community detection algorithms

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 33

We construct a weighted undirected graph � � ��, [, p� from the affinity matrix b. In the

graph, vertex set � contains all cells, and an edge �+, �� n [if and only if b,,. ? 0. The weight

of the edge is calculated as:

p�+, �� � �	 b,,.median�/� b�,�] 100� /100	 . �35�

Community detection algorithms try to find a partition a of cells that maximizes the following

modularity function59:

� � 12) 9 S�� % J ��
�2)T

� 0

, �36�

where each � n a consists of cells in that community, J is the resolution parameter controlling

the total number of communities, and

) � 9 p�+, ��
!,,." 1

, �� � 9 p�+, ��
, �,. �,!,,." 1

, �� � 9 9 p�+, ��
!,,." 1, �

. �37�

Pegasus supports two modularity-based community detection algorithms: Louvain21 and

Leiden22. For both algorithms, Pegasus sets the resolution J � 1.3 by default and reports each

community as a separate cluster.

The Louvain algorithm21 optimizes the modularity function � in two phases: (1) in the move

phase, each node is inspected and moved to the community that yields the largest increase in �;

(2) in the aggregation phase, each community aggregates into a new node to form an aggregated

graph. The algorithm starts from the partition that each cell is its own community and repeats the

two phases until there is no increase in �. Pegasus uses the louvain-igraph implementation from

Vincent Traag [https://github.com/vtraag/louvain-igraph]. Note that the latest release of louvain-

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 34

igraph package (v0.6.1) contains a bug that prevents it from being reproducible even when the

same random seed is used. Thus, Pegasus installs this package directly from the github master

branch, in which the bug is fixed.

The Leiden algorithm22 is a recent improvement over the Louvain algorithm and consists of three

phases: (1) a move phase, which is similar to Louvain’s; (2) a refinement phase, when each

community found in (1) is examined and may be split into sub-communities; (3) an aggregation

phase, when each sub-community from (2) is aggregated into a new node and assigned to an

initial partition based on communities from (1). Pegasus uses the leidenalg implementation from

Vincent Traag [https://github.com/vtraag/leidenalg]. Applying the Leiden algorithm on

communities detected from previous Leiden runs can further improve the modularity function22.

Thus, following SCANPY18, Pegasus runs the Leiden algorithm iteratively on the graph � until

� does not further improve (n_iterations = -1 by default).

Spectral-community-detection algorithms for fast clustering

Pegasus provides two spectral-community-detection algorithms: spectral-Louvain and spectral-

Leiden. Spectral-community-detection algorithms aggregate cells into thousands of groups of

cells, where each group consists of cells that are likely from the same “real” cluster, and then

apply community detection algorithms such as Louvain and Leiden on the groups instead of on

individual cells to achieve a major speedup.

Our variant of the spectral clustering47 algorithm partitions cells into groups by applying the k-

means algorithm on calculated diffusion pseudotime component space, using a 2-level clustering

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 35

strategy. We first partition the cells into C
 clusters using the scikit-learn’s KMeans function

with default parameters. We further partition each of the C
 clusters into C� sub-clusters using

the KMeans function with �_���� � 1. This procedure will give us C

 C� cell groups, on which

we then apply community detection algorithms. Pegasus sets C
 � 30 and C� � 50 by default. If

diffusion pseudotime components are not calculated, Pegasus will apply the k-means algorithm

on the PC space instead.

t-SNE, UMAP and FLE

Pegasus calculates a t-SNE using the Multicore-TSNE package implemented by Dmitry Ulyanov

[https://github.com/DmitryUlyanov/Multicore-TSNE]. We found and fixed a random-seed-

related bug in this package that prevents the package from reproducing the exact t-SNE

coordinates, and provide a bug-free version of the package at [https://github.com/lilab-

bcb/Multicore-TSNE]. Pegasus uses the following t-SNE parameters by default: perplexity=30,

early_exaggeration=12, learning_rate=1000, n_iter=1000 and n_iter_early_exag=250.

Pegasus calculates a FIt-SNE, which are fast approximations of t-SNE embeddings, using the

pyFIt-SNE package from Kluger lab [https://github.com/KlugerLab/pyFIt-SNE]. Pegasus uses

the following FIt-SNE parameters by default: perplexity=30, early_exaggeration=12,

learning_rate=1000, max_iter=1000, stop_early_exag_iter=250 and mom_switch_iter=250.

Pegasus calculates a UMAP based on the k-NN graph constructed by the HSNW algorithm,

using the umap package from Leland Mclnnes [https://github.com/lmcinnes/umap]. Pegasus uses

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 36

the following UMAP parameters by default: n_neighbors=15, min_dist=0.5, spread=1.0,

n_epochs=250 and learning_rate=1.0.

Pegasus calculates an FLE using the forceatlas2 package, a Java package developed for scSVA29.

The forceatlas2 package improved upon the Gephi’s ForceAtlas227 Java code by providing more

efficient parallelization29 and stops iterations if the average distance between FLE coordinates in

adjacent iterations is no greater than K or the maximum number of iterations �� is reached,

where K and �� are user-specified parameters. Pegasus sets K � 2.0 and �� � 5000 by default.

Deep-learning-based visualization

To generate Net-* embeddings, we first subsample cells by local density. To estimate a proxy of

the local density for each cell we denote as :� the distance from cell � to its kth nearest neighbor

in the calculated k-NN graph, where k is a user-provided parameter set to k = 25 by default. :� is

inversely proportional to the local cell density such that �� , the probability of sampling cell �, is
�� � 1:�

� , �38�

where I is a parameter that determines how much local density should influence the sampling

process. If I � 0, we recover uniform sampling. In Pegasus, we set I � 1. We then subsample P

percent of cells based on sampling probabilities i��k, where P is a user-specified parameter set to

10% by default.

Next, we train a deep-learning-based regressor, using a neural network with 1 input layer and 4

hidden layers. The input layer connects with the top) principal components for each cell and

the 4 hidden layers contain 100, 75, 50, and 25 ReLU units respectively. We train the network

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 37

using scikit-learn’s MLPRegressor with a stochastic gradient decent solver, an adaptive learning

rate and a L2 penalty parameter of 0.1. We additionally scale the inputs and outputs of the neural

network, such that the maximal standard deviation of the inputs and outputs are 1.0 and 15.0

respectively.

In the final refinement step, Pegasus changes the following parameters for each embedding

method. For t-SNE: learning_rate=0.33] 4, where 4 is the total number of cells, n_iter=150

and n_iter_early_exag=0. For UMAP: learning_rate=10 and n_epochs=30. For FLE: �� � 1500.

Differential expression analysis

Pegasus can perform Welch’s t-test, Fisher’s exact test and the Mann-Whitney U test between

cells within and outside of a cluster. It controls the False Discovery Rate (FDR) at 5% using the

Benjamini-Hochberg procedure60. Pegasus can optionally calculate the Area Under the ROC

curve (AUROC) for each gene by considering the binary classification problem that uses the

gene as the only feature to predict if a cell is within or outside of a cluster. Pegasus performs

these analyses in parallel across genes to speed up the calculation process and outputs results for

all genes in a spreadsheets. If AUROC is calculated, genes are ranked by their AUROC values.

Feature importance scores from LightGBM

Pegasus trains a LightGBM30 classifier on the log expression matrix to predict cluster labels. It

uses 90% of the cells as the training data and 10% of the cells as the test data. It stops training

the classifier once the prediction accuracy on the test dataset drops, and then extract each gene’s

feature importance score from the trained classifier. To assign genes with high importance scores

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 38

to each cluster, for each gene with a high importance score, it clusters the mean log expression

levels of all clusters into 3 groups using the k-means algorithm, and assigns each of the 3 groups

as strongly up-regulated, weakly up-regulated and down-regulated based on the mean log

expression of the group. It then removes the group with largest size (as not significant) and

assigns the gene to clusters in the other two groups.

Marker-based cell type annotation

To annotate cell types, Pegasus first loads known marker genes for each cell type from a user-

provided JSON file. Each marker gene is associated with a sign (positive or negative) and a

weight. The format of the JSON file is defined at [https://cumulus-

doc.readthedocs.io/en/latest/cumulus.html#how-cell-type-annotation-works]. For each cluster,

Pegasus enumerates all putative cell types and calculates a score between 0 and 1 per cell type,

describing how likely cells from the cluster are to be of the specific cell type. To calculate the

score, Pegasus assigns each marker a maximum impact value of 2. For a positive marker, if it is

not up-regulated, its impact value is 0. Otherwise, if U� the fold change in the percentage of cells

expressing this marker (within vs. outside of the cluster) satisfies U� ' 1.5, it has an impact

value of 2 and is recorded as a strong supporting marker. If U� & 1.5, it has an impact value of

1 � 2� �

&.�
 and is recorded as a weak supporting marker. For a negative marker, if it is up-

regulated, its impact value is 0. If it is neither up-regulated nor down-regulated, its impact value

is 1. Otherwise, if

2�
' 1.5, it has an impact value of 2 and is recorded as a strong supporting

marker. If

2�
& 1.5, it has an impact value of 1 �
/2� �

&.�
 and is recorded as a weak supporting

marker. The overall score is calculated as the ratio between the sum of impact values and the

sum of weights multiplied by 2 from all expressed markers. Pegasus will evaluate all possible

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 39

cell subtypes recursively if the current cell type score is no less than 0.5. Finally, Pegasus reports

putative cell types with scores no less than minimum_report_score in descending order with

respect to cell type scores for all clusters. By default, Pegasus sets minimum_report_score = 0.5.

BENCHMARKING EXPERIMENTS

Benchmarked tools and benchmarking environments

We tested each component of Pegasus v0.15.0 and benchmarked it with SCANPY v1.4.4.post1

and Seurat v3.1.0 on key analysis tasks (Supplementary Tables 1 and 2) using a high-

performance local server (Cloud-based times as part of a Cumulus workflow are in Table 1). The

server has 28 CPU threads (1 Intel Xeon E5-2660v4 processor; 14-Core 2.00GHz, 35MB Cache)

and 256 GB DDR4 ECC registered memory. In benchmarking, we used all 28 CPU threads

whenever possible. For reproducibility, we have prepared a Docker image that has all three tools

and their dependencies installed. This Docker image also contains instructions on how to

reproduce the results shown in this manuscript. The Docker image is available at

[https://hub.docker.com/r/cumulusprod/cumulus-experiment].

We also benchmarked Cumulus on cloud with running Cell Ranger + Seurat/SCANPY pipeline

(on a 32 CPU-thread, 120GB Google Cloud virtual machine) on the bone marrow dataset. We

used Cell Ranger v2.2.0 for this benchmark. The virtual machine for running Seurat (v3.1.0) and

SCANPY (v1.4.4.post1) is created on Google compute engine zone us-west1-d, the same zone

on which Cumulus ran its analysis step.

Bone marrow datasets pre-processing

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 40

We preprocessed the bone marrow data set by filtering out any cell with fewer than 500 genes or

more than 6,000 genes, or where at least 10% of UMIs were from mitochondrial genes, retaining

274,182 cells. We then selected robust genes with � � 0.05% , normalized expression into

TP100K and log-transformed the expression matrix.

HVG selection

We applied the standard and new HVG selection procedures to the log-transformed expression

matrix separately, followed by the same downstream analyses on the resulting two sets of HVGs,

using Pegasus with default parameters: batch correction, dimensionality reduction via PCA, k-

NN graph construction, community detection using the Louvain algorithm, 2D visualization

using FIt-SNE, differential expression analysis and marker-based cell type annotation.

We compared the highly variable genes selected using the two procedures with a list of immune

genes curated by the ImmPort34 team (Supplementary Fig. 1b) from

[https://www.immport.org/shared/geneData/GOappend1.xls], which contains 1,534 genes (with

duplicates) annotated with immune-related gene ontology (GO) terms. The comparison results

are available in Supplementary Data 2.

We evaluated the similarity between clusters obtained using the two HVG selection procedures

with the adjusted mutual information61 (AMI) score defined below:

�`\��, �� � \��, �� % [i\��, ��k12 "���� � ����# % [i\��, ��k , �39�

where � and � represent two cluster settings, � denotes entropy and \ denotes mutual

information.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 41

Benchmarking of batch correction methods

We benchmarked Pegasus, ComBat, MNN, BBKNN and Seurat V3 using a subset of data from

the bone marrow dataset, consisting of the first 10x Genomics channel from each of the 8 donors.

Following the preprocessing steps above, we retained 34,654 cells. We then applied the new

HVG selection procedure and downstream analyses described above (without batch correction)

to obtain cell-type-annotated clusters (Supplementary Fig. 2b).

The clustering results showed one particular donor-specific effect (Supplementary Fig. 2b),

with one donor-3-specific CD14+ monocyte cluster and one donor-3-specific T cell cluster. Since

we do not want to count this donor-specific effect as “biology” when we compute kSIM

acceptance rates, we constructed a ground truth for kSIM acceptance rates as follows. First, we

merged the monocyte cluster into the larger monocyte cluster to its right. The donor-3-specific T

cell cluster is adjacent to five other T cell clusters. We trained a LightGBM30 classifier that

predicted cluster labels based on log expression levels using cells from the 5 clusters (90%

training data + 10% validation data). The classifier’s accuracy on test data was 85.4%. We then

used this classifier to assign each cell in the donor-3-specific T cell cluster into one of the 5

adjacent T cell clusters.

To generate batch-corrected results, we applied the same preprocessing step to the 34,654 cell

dataset, selected top 2,000 HVGs using the new batch-aware HVG selection procedure, and

extracted the HVG-specific gene-count matrix. With Pegasus, we applied the L/S adjustment

method to the matrix to obtain batch-corrected expression levels. With SCANPY, we obtained

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 42

ComBat-corrected and MNN-corrected expression levels. With Seurat v3 we obtained Seurat-

corrected expression levels. We performed PCA, k-NN graph construction, and UMAP on the

corrected expression matrices. With BBKNN, we used its output k-NN graph to replace

Pegasus’s k-NN graph and kept other analyses the same.

We used kBET and kSIM acceptance rates on UMAP 2D coordinates. For kBET acceptance rate,

we set C � 25 and I � 0.05. For kSIM acceptance rate, we set C � 25 and ^ � 0.9.

Benchmarking approximate nearest neighbor finding methods

We benchmarked the approximate nearest neighbor finding algorithms used by Pegasus,

SCANPY and Seurat on the bone marrow dataset with default parameters. Pegasus ran the

HNSW algorithm in full speed mode, SCANPY used the algorithm implemented in UMAP, and

Seurat used the RcppAnnoy package at

[https://cran.rstudio.com/web/packages/RcppAnnoy/index.html]. We ran the three methods on

coordinates from the top 50 PCs produced by Pegasus and sought for top 100 nearest neighbors

(including the cell itself). We also ran the brute force k-NN searching algorithm using scikit-

learn57 to compute the ground truth. We evaluated each method’s performance using recall,

defined as the percentage of k nearest neighbors that are also in the ground truth, and speed.

Diffusion pseudotime maps

We preprocessed the bone marrow dataset, selected HVGs using the new procedure, corrected

batch effects, ran PCA and k-NN graph construction as described in HVG selection section. We

generated diffusion pseudotime maps (with the parameters noted in Fig. 2b and Supplementary

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 43

Fig. 4), visualized diffusion pseudotime maps using the FLE algorithm, and annotated the

resulting trajectories using the cell type annotation described in the HVG selection section (with

new HVG procedure).

Spectral community detection algorithms

We preprocessed the bone marrow dataset as described in HVG selection section, selected

HVGs, corrected batch effects, ran PCA, k-NN graph construction, calculated a diffusion

pseudotime map and performed 2D visualization using FIt-SNE with default parameters. We

then generated different cluster settings using either the spectral clustering, Louvain, spectral-

Louvain, Leiden, or spectral-Leiden algorithm. We performed differential expression analysis

and marker-based cell type annotation for each of the clusterings separately.

Deep-learning-based visualization

We preprocessed the bone marrow dataset as described in HVG selection section, selected

HVGs, corrected batch effects, ran PCA, k-NN graph construction, diffusion pseudotime map

calculation using default parameters. We then ran Net-tSNE vs. t-SNE, Net-UMAP vs. UMAP

and Net-FLE vs. FLE and annotated each visualization using cell types calculated in the HVG

selection section (with the new HVG procedure).

Benchmarking Pegasus, SCANPY and Seurat on the full bone marrow dataset

We benchmarked Pegasus, SCANPY and Seurat on 10 tasks using the full bone marrow data of

274,182 cells. To ensure a fair comparison, whenever possible, all three methods received the

same input computed using Pegasus with default parameters for each task. The only exception is

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 44

Seurat, which does not accept a pre-computed affinity matrix as input for clustering. Thus, we

provided Seurat with pre-computed principal components (PCs) instead and asked it to compute

the affinity matrix before clustering. In addition, we used the future [https://cran.r-

project.org/web/packages/future/] framework for parallelization as suggested at

https://satijalab.org/seurat/v3.0/future_vignette.html. For the batch correction step, we made each

10x channel as a separate batch, which resulted in 63 batches in total. We used Seurat v3’s

integration method39, BBKNN38 and L/S adjustment method35 to correct batch effects in Seurat,

SCANPY and Pegasus, respectively. For k-NN graph construction, we set k = 100 for all three

methods and set Pegasus in full speed mode. For Louvain-like and Leiden-like clustering,

Pegasus used spectral-Louvain and spectral-Leiden algorithms, and Seurat and SCANPY used

Louvain and Leiden algorithms. For t-SNE-like visualization, Seurat and Pegasus used FIt-SNE

and SCANPY used Multicore-TSNE. For UMAP-like visualization, Pegasus used Net-UMAP,

and Seurat and SCANPY used UMAP. We excluded the k-NN graph construction times for

SCANPY and Pegasus, because it was accounted for in the k-NN graph construction task. Seurat

calculates the k-NN graph again in the UMAP step using the umap Python package and thus we

included k-NN graph construction time. For FLE-like visualization, Pegasus used Net-FLE and

SCANPY used the fa2 package [https://github.com/bhargavchippada/forceatlas2]. The function

calls, commands and parameters used for the three methods can be found in Supplementary

Note 2.

Benchmarking Pegasus, SCANPY and Seurat v3 on the 1.3 million mouse brain dataset

We obtained the 1.3 million mouse brain data set from https://support.10xgenomics.com/single-

cell-gene-expression/datasets/1.3.0/1M_neurons. The unfiltered data contains 1,306,127 cell

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 45

barcodes. We preprocessed this data set by filtering out any cell with fewer than 500 genes or

more than 6,000 genes, or with at least 10% of UMIs from mitochondrial genes. After filtration,

we retained 1,286,072 cells. We selected robust genes with � � 0.05%, normalized expression

into TP100K and log-transformed the expression matrix. Next, we benchmarked the three

methods as described above. Since the fa2 package was too slow for our dataset, instead of

running it for 5,000 iterations, we only ran it for 500 iterations and estimated total time by

multiplying a factor of 10. The function calls, commands and parameters used for the three

methods can be found in Supplementary Note 2.

Cloud computing execution time and cost

Cumulus utilizes Google Cloud Platform’s preemptible instances. Jobs running in preemptible

instances can be kicked off by others’ jobs with higher priority but are 5x cheaper. By default,

Cumulus allows up to 2 tries using preemptible instances before switching to non-kicked-off

instances. Cumulus execution time is read out from Terra execution logs. To estimate the

execution time of mkfastq and count steps on a 32 CPU-threads virtual machine (Table 1), we

only sum over Terra-reported Docker running times of successful mkfastq and count runs,

respectively. The analysis time for Seurat and SCANPY are estimated by running each tool on a

same 32 CPU threads, 120 GB memory Google Cloud virtual machine instance. Since both

Seurat and SCANPY do not have functions to aggregate 10x samples into a big count matrix, we

used the aggregated matrix produced by Cumulus as their input and excluded the matrix

aggregation time. In addition, since Seurat’s batch correction failed in the previous

benchmarking (Fig. 2e), we reduced the number of batches from 63 to 8 (one per donor) and the

number of PCs used from 30 (default) to 20. See Supplementary Note 2 for details on how

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 46

Seurat, SCANPY and Cumulus analysis step were run. The total computational costs were

reported by Terra and we calculated the average cost per sample by dividing 63.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 47

References

1. Regev, A. et al. The Human Cell Atlas White Paper. arXiv:1810.05192 [q-bio] (2018).

2. Macosko, E. Z. et al. Highly Parallel Genome-wide Expression Profiling of Individual Cells

Using Nanoliter Droplets. Cell 161, 1202–1214 (2015).

3. Rosenberg, A. B. et al. Single-cell profiling of the developing mouse brain and spinal cord

with split-pool barcoding. Science 360, 176–182 (2018).

4. 10x Genomics. Transcriptional Profiling of 1.3 Million Brain Cells with the Chromium

Single Cell 3’ Solution. https://support.10xgenomics.com/single-cell-gene-

expression/datasets/1.3.0/1M_neurons (2017).

5. Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature

566, 496–502 (2019).

6. Census of Immune Cells (data from Immune Cell Atlas).

https://data.humancellatlas.org/explore/projects/cc95ff89-2e68-4a08-a234-480eca21ce79.

7. Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat.

Commun. 8, 14049 (2017).

8. Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells.

Nat. Methods 10, 1096–1098 (2013).

9. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat.

Methods 14, 865–868 (2017).

10. Stoeckius, M. et al. Cell Hashing with barcoded antibodies enables multiplexing and doublet

detection for single cell genomics. Genome Biol. 19, 224 (2018).

11. Gaublomme, J. T. et al. Nuclei multiplexing with barcoded antibodies for single-nucleus

genomics. Nat. Commun. 10, 2907 (2019).

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 48

12. Dixit, A. et al. Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-Cell RNA

Profiling of Pooled Genetic Screens. Cell 167, 1853-1866.e17 (2016).

13. Adamson, B. et al. A Multiplexed Single-Cell CRISPR Screening Platform Enables

Systematic Dissection of the Unfolded Protein Response. Cell 167, 1867-1882.e21 (2016).

14. Jaitin, D. A. et al. Dissecting Immune Circuits by Linking CRISPR-Pooled Screens with

Single-Cell RNA-Seq. Cell 167, 1883-1896.e15 (2016).

15. Datlinger, P. et al. Pooled CRISPR screening with single-cell transcriptome readout. Nat.

Methods 14, 297–301 (2017).

16. Gasperini, M. et al. A Genome-wide Framework for Mapping Gene Regulation via Cellular

Genetic Screens. Cell 176, 377-390.e19 (2019).

17. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of

single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).

18. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data

analysis. Genome Biol. 19, 15 (2018).

19. Coifman, R. R. & Lafon, S. Diffusion maps. Applied and Computational Harmonic Analysis

21, 5–30 (2006).

20. Haghverdi, L., Büttner, M., Wolf, F. A., Buettner, F. & Theis, F. J. Diffusion pseudotime

robustly reconstructs lineage branching. Nat. Methods 13, 845 (2016).

21. Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of

communities in large networks. J. Stat. Mech.: Theory Exp. 10, P10008 (2008).

22. Traag, V. A., Waltman, L. & Eck, N. J. van. From Louvain to Leiden: guaranteeing well-

connected communities. Sci. Rep. 9, 5233 (2019).

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 49

23. Maaten, L. van der & Hinton, G. Visualizing Data using t-SNE. J. Mach. Learn. Res. 9,

2579–2605 (2008).

24. Linderman, G. C., Rachh, M., Hoskins, J. G., Steinerberger, S. & Kluger, Y. Fast

interpolation-based t-SNE for improved visualization of single-cell RNA-seq data. Nat.

Methods 16, 243 (2019).

25. McInnes, L., Healy, J. & Melville, J. UMAP: Uniform Manifold Approximation and

Projection for Dimension Reduction. arXiv:1802.03426v2 [stat.ML] (2018).

26. Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat.

Biotechnol. 37, 38–44 (2019).

27. Jacomy, M., Venturini, T., Heymann, S. & Bastian, M. ForceAtlas2, a Continuous Graph

Layout Algorithm for Handy Network Visualization Designed for the Gephi Software. PLOS

ONE 9, e98679 (2014).

28. Schiebinger, G. et al. Optimal-Transport Analysis of Single-Cell Gene Expression Identifies

Developmental Trajectories in Reprogramming. Cell 176, 928-943.e22 (2019).

29. Tabaka, M., Gould, J. & Regev, A. scSVA: an interactive tool for big data visualization and

exploration in single-cell omics. bioRxiv 512582 (2019) doi:10.1101/512582.

30. Ke, G. et al. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. in Advances

in Neural Information Processing Systems 30 3146–3154 (2017).

31. cellxgene: An interactive explorer for single-cell transcriptomics data.

https://github.com/chanzuckerberg/cellxgene.

32. UCSC Cell Browser. https://cells.ucsc.edu/?ds=.

33. Single Cell Portal. https://singlecell.broadinstitute.org/single_cell.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 50

34. Bhattacharya, S. et al. ImmPort, toward repurposing of open access immunological assay

data for translational and clinical research. Sci. Data 5, 180015 (2018).

35. Li, C. & Wong, W. H. DNA-Chip Analyzer (dChip). in The Analysis of Gene Expression

Data 120–141 (2003).

36. Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data

using empirical Bayes methods. Biostatistics 8, 118–127 (2007).

37. Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch effects in single-cell

RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol.

36, 421 (2018).

38. Polański, K. et al. BBKNN: fast batch alignment of single cell transcriptomes.

Bioinformatics btz625 doi:10.1093/bioinformatics/btz625.

39. Stuart, T. et al. Comprehensive Integration of Single-Cell Data. Cell 177, 1888-1902.e21

(2019).

40. Büttner, M., Miao, Z., Wolf, F. A., Teichmann, S. A. & Theis, F. J. A test metric for

assessing single-cell RNA-seq batch correction. Nat. Methods 16, 43 (2019).

41. Malkov, Y. A. & Yashunin, D. A. Efficient and robust approximate nearest neighbor search

using Hierarchical Navigable Small World graphs. IEEE Trans. Pattern Anal. Mach. Intell.

1–1 (2018) doi:10.1109/TPAMI.2018.2889473.

42. Aumüller, M., Bernhardsson, E. & Faithfull, A. ANN-Benchmarks: A Benchmarking Tool

for Approximate Nearest Neighbor Algorithms. in Similarity Search and Applications 34–49

(2017).

43. Alavi, A., Ruffalo, M., Parvangada, A., Huang, Z. & Bar-Joseph, Z. A web server for

comparative analysis of single-cell RNA-seq data. Nat. Commun. 9, 1–11 (2018).

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 51

44. van Dijk, D. et al. Recovering Gene Interactions from Single-Cell Data Using Data Diffusion.

Cell 174, 716-729.e27 (2018).

45. Moon, K. R. et al. Visualizing Structure and Transitions for Biological Data Exploration.

bioRxiv 120378 (2019) doi:10.1101/120378.

46. Anand, K., Bianconi, G. & Severini, S. Shannon and von Neumann entropy of random

networks with heterogeneous expected degree. Phys. Rev. E 83, 036109 (2011).

47. Luxburg, U. von. A tutorial on spectral clustering. Stat. Comput. 17, 395–416 (2007).

48. Cho, H., Berger, B. & Peng, J. Generalizable and Scalable Visualization of Single-Cell Data

Using Neural Networks. Cell Syst. 7, 185-191.e4 (2018).

49. Slyper, M. et al. A single-cell and single-nucleus RNA-seq toolbox for fresh and frozen

human tumors. bioRxiv 761429 (2019) doi:10.1101/761429.

50. Nemesh, J. Drop-seq Alignment Cook Book. https://github.com/broadinstitute/Drop-

seq/blob/master/doc/Drop-seq_Alignment_Cookbook.pdf.

51. Petukhov, V. et al. dropEst: pipeline for accurate estimation of molecular counts in droplet-

based single-cell RNA-seq experiments. Genome Biol. 19, 1–16 (2018).

52. Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or

without a reference genome. BMC Bioinform. 12, 323 (2011).

53. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9,

357–359 (2012).

54. Dixit, A. Correcting Chimeric Crosstalk in Single Cell RNA-seq Experiments. bioRxiv

093237 (2016) doi:10.1101/093237.

55. Cleveland, W. S., Grosse, E. & Shyu, W. M. Local Regression Models. in Statistical Models

in S (1992).

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

 52

56. Halko, N., Martinsson, P. G. & Tropp, J. A. Finding Structure with Randomness:

Probabilistic Algorithms for Constructing Approximate Matrix Decompositions. SIAM Rev.

53, 217–288 (2011).

57. Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12,

2825–2830 (2011).

58. Calvetti, D., Reichel, L. & Sorensen, D. C. An Implicitly Restarted Lanczos Method for

Large Symmetric Eigenvalue Problems. Electron. Trans. Numer. Anal. 2, 1–21 (1994).

59. Reichardt, J. & Bornholdt, S. Statistical mechanics of community detection. Phys. Rev. E 74,

016110 (2006).

60. Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A Practical and

Powerful Approach to Multiple Testing. J. R. Stat. Soc. B Met. 57, 289–300 (1995).

61. Vinh, N. X., Epps, J. & Bailey, J. Information theoretic measures for clusterings comparison:

is a correction for chance necessary? in Proceedings of the 26th Annual International

Conference on Machine Learning 1073–1080 (2009). doi:10.1145/1553374.1553511.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 1
.CC-BY-NC-ND 4.0 International licensea

certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 2
2

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/

