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Abstract 

Massively parallel single-cell and single-nucleus RNA-seq (sc/snRNA-seq) have opened the way 

to systematic tissue atlases in health and disease, but as the scale of data generation is growing, 

so does the need for computational pipelines for scaled analysis. Here, we developed Cumulus, a 

cloud-based framework for analyzing large scale sc/snRNA-seq datasets. Cumulus combines the 

power of cloud computing with improvements in algorithm implementations to achieve high 

scalability, low cost, user-friendliness, and integrated support for a comprehensive set of 

features. We benchmark Cumulus on the Human Cell Atlas Census of Immune Cells dataset of 

bone marrow cells and show that it substantially improves efficiency over conventional 

frameworks, while maintaining or improving the quality of results, enabling large-scale studies. 
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Single-cell and single-nucleus RNA-seq (sc/snRNA-seq) revolutionized our ability to study 

complex and heterogeneous tissues, opening the way to charting cell atlases of complex tissues 

in health and disease, including the Human Cell Atlas1 and related initiatives. Advances in 

massively parallel sc/snRNA-seq2,3, now allow routine profiling of millions of cells4,5. Such large 

and growing datasets, however, pose a significant challenge for current analysis tools, which 

were designed to run on a local computer server and lack the computation capabilities required 

for processing terabytes of sequencing data. 

  

To address this pressing challenge, we developed Cumulus, a cloud-based data analysis 

framework that is scalable, cost-effective, able to process a variety of data types and easily 

accessible to biologists (Fig. 1). Cumulus consists of a cloud analysis workflow, a Python 

analysis package (Pegasus), and a visualization application (Cirrocumulus). Cumulus performs 

three major steps in sc/snRNA-seq data analysis (Fig. 1a): (1) sequence read extraction; (2) 

gene-count matrix generation; and (3) biological analyses. It addresses them for big sc/snRNA-

seq data by combining the power of cloud computing, algorithmic improvement, and more 

efficient implementation, as we describe below. To test Cumulus and compare it to other tools 

we relied on a scRNA-seq dataset of 274,182 cells (Methods), which were profiled from the 

bone marrow of 8 donors as part of the Human Cell Atlas Census of Immune Cells dataset6. 

 

Cumulus leverages cloud computing and compatible data platforms. It is currently based on the 

Terra platform [https://app.terra.bio/] and Google Cloud Platform, but is generally cloud agnostic, 

as it depends only on Dockers and Workflow Description Language (WDL, Methods). Cumulus 

executes the first two steps – sequence read extraction and gene-count matrix generation – 
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parallelly across a large number of computer nodes, and executes the last step of analysis in a 

single multi-CPU node, using its highly efficient analysis module (Methods, below). Cloud 

computing offers on-demand scalable computing, high-availability storage, data security and 

installation-free Software-as-a-Service (SaaS) capabilities, all at a low price. Non-programming 

biologist users readily access computing resources on the cloud through a simple web-based user 

interface provided by Terra (Supplementary Video 1). 

 

Cumulus supports analysis starting from a variety of input modalities, such that scientists can use 

it as a single framework for diverse data types, all of which share a single cell/nucleus 

transcriptome as a core readout (Supplementary Table 1). These include: droplet-based2,7 (3’ or 

5’ ends, with UMIs) and plate-based8 (full length, no UMI) sc/snRNA-seq (Methods); CITE-

seq9, which simultaneously measures mRNA expression and the abundance of oligo-tagged 

surface antibodies in single cells (Methods), data from both cell10 or nucleus11 hashing 

experiments, which are lab techniques that reduce batch effects and cell/nucleus profiling costs, 

using a probabilistic demultiplexing algorithm11 (Methods); and Perturb-seq methods for pooled 

CRISPR screens12–16 with scRNA-seq readout (Methods). Other mainstream, non-Cloud based 

analysis packages, such as Cell Ranger7, Seurat17, or SCANPY18, currently support only some of 

these input data types, posing a potential burden for users (Supplementary Table 1). 

 

The Cumulus analysis module, Pegasus, which can also run on the cloud or as an independent 

Python package, supports a comprehensive set of features, spanning most commonly used 

scRNA-seq analysis tasks (Fig. 1b, Methods). Starting from a gene-count matrix, Pegasus filters 

out low- quality cells/nuclei, selects highly variable genes (HVG) and optionally corrects batch 
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effects. It then performs dimensionality reduction by principal component analysis (PCA) on 

HVGs, constructs a k nearest neighbor (k-NN) graph on the Principal Component (PC) space, 

calculates diffusion maps19,20 and applies community detection algorithms on the graph to find 

clusters21,22. It visualizes cell profiles using either t-SNE23,24-based or UMAP25,26-based methods. 

It can additionally estimate diffusion pseudotime20 and visualize developmental trajectories using 

force-directed layout embedding (FLE)27–29 based algorithms. Pegasus can be used to detect 

cluster-specific markers, by differential expression analysis between cells within and outside of a 

cluster and optionally calculates the area under ROC curve (AUROC) values for all genes 

(Methods). It can also train a gradient boosting tree classifier30 on the gene expression matrix to 

predict cluster labels and output genes with high feature importance scores (Methods), which 

provide additional information for detecting cluster-specific markers. Lastly, it annotates clusters 

with putative cell type labels based on user-provided gene sets (Methods). Pegasus thus offers 

diverse features, comparable to two other mainstream packages, Seurat17 and SCANPY18, 

although each package also has some unique features, absent from the other two 

(Supplementary Table 2). 

 

Once the data are analyzed, users can visualize their results instantly using Cirrocumulus, a 

serverless application that enables interactive data visualization and sharing (Fig. 1c, 

Supplementary Video 2). Since Cirrocumulus only downloads to the browser those data that are 

necessary for visualization (Methods), it is scalable to millions of cells. Users can also download 

Cumulus-produced HDF5 result files for use with other visualization tools such as cellxgene31, 

UCSC Cell Browser32, and scSVA29 (Fig. 1c). Alternatively, users can inspect or re-analyze their 

data interactively using Pegasus on Terra Jupyter Notebooks (Fig. 1c). To help users better 
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navigate data, we developed scPlot (Methods), a python package for generating interactive 

figures, as part of Pegasus. Finally, users can synchronize Cumulus results to the Single Cell 

Portal33 for data deposition (Fig. 1c). Cumulus is demoed as a featured workspace on Terra 

[https://app.terra.bio/#workspaces/fc-product-demo/scRNA-seq-cloud]. 

 

To ensure scalability, we enhanced the performance of the Pegasus analysis module through 

several algorithmic and implementation improvements in some of the most intensive tasks: the 

selection of highly variable genes (HVGs), batch correction, k-NN graph construction, 

calculation of diffusion pseuodotime (DPT), a combination of spectral and community-based 

clustering, and efficient visualization algorithms. We describe each of these enhancements in 

turn, comparing its impact on analysis quality and analysis speed/scale with other major 

packages. 

 

First, we implemented a new HVG selection procedure that simplifies the calculation process 

and provides a mathematically sound way to handle batch effects (Supplementary Fig. 1a, 

Methods). For users’ convenience, we also include a standard procedure17, which is used by 

both SCANPY and Seurat. Comparing the new and standard procedures when applied to the 

bone marrow dataset suggests that the new procedure has at least equal quality vs. the standard 

one. It recovers slightly more immune-specific genes provided by the ImmPort34 data repository 

(Supplementary Fig. 1b, Supplementary Data 1, Methods), including important T cell 

markers, such as CD3D, CD3E and CD4, which are missed by the standard procedure. It also 

identifies one more cell type, megakaryocytes, which is missed by the standard procedure 

(Supplementary Fig. 1c). 
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Next, we enhanced the scalability of batch correction in Pegasus, by implementing the classical 

location and scale (L/S) adjustment method35, which relies only on linear operations and is thus 

much faster. As a benchmark, we ran Pegasus’s L/S method, SCANPY’s offerings of Combat36, 

MNN37 and BBKNN38, and the most recent integration method39 of Seurat v3 on a subset of the 

bone marrow dataset (Methods) and compared each method’s batch correction efficiency using 

two measurements, the kBET40 and kSIM acceptance rates. Briefly, the kBET acceptance rate 

measures if batches are well-mixed in the local neighborhood of each cell; the kSIM acceptance 

rate measures if cells of the same pre-annotated cell type are still close to each other in the local 

neighborhoods after batch correction (Methods), and helps reflect if known biological relations 

are preserved after correction. An ideal batch correction method should have both high kBET 

and kSIM acceptance rates. Each of the five methods evaluated showed a trade-off between the 

two rates, and none was a clear best performer (Fig. 2a), Pegasus’s L/S method is the fastest 

(Supplementary Fig. 2a), while maintaining a good balance between the two rates (Fig. 2a, 

Supplementary Fig. 2b-g). 

 

We also enhanced the scalability of k-NN graph construction by adopting the Hierarchical 

Navigable Small World (HNSW)41 algorithm, a state-of-the-art approximate nearest-neighbor 

finding algorithm, which was previously shown to be fastest for high quality approximations42. 

We compared HNSW with the approximate nearest neighbor finding algorithms used by 

SCANPY and Seurat on the bone marrow dataset based on speed and on recall, defined as the 

percentage of nearest neighbors that are also found by the brute-force algorithm (Methods). 

HNSW has a near optimal recall (Supplementary Fig. 3a), while being 3-19x faster 
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(Supplementary Fig. 3b). HNSW was also benchmarked recently for plate based, small scale, 

scRNA-seq43. 

 

To speed up the calculation of diffusion maps19 and diffusion pseudotime20 (DPT), we adopted 

two modifications, also used by SCANPY and scSVA, and further improved the identification of 

pseudotemporal trajectories20 with two additional modifications. As in SCANPY, we construct 

the affinity matrix based on the approximate k-NN graph constructed in the previous step instead 

of a complete graph, and also use only the top � diffusion components to approximate diffusion 

distances and thus diffusion pseudotimes, where � is a user-specific parameter. In addition, to 

better identify pseudotemporal trajectories when there are multiple subsets of cells undergoing 

separate temporal processes, we found that using more diffusion components helps us better 

separate different cell populations (Supplementary Fig. 4a, red regions) and thus we set 

� � 100 by default. We further introduce a family of diffusion pseudotime maps parameterized 

by timescale �: each pseudotime “meta-map” is constructed by summing over diffusion maps up 

to its timescale � (Methods). The DPT method20 is equivalent to the special case of this family 

with � � ∞. As timescale � increases, diffusion maps begin to smooth out local noise44. However, 

when � becomes too large, diffusion maps will also smooth out real signals44. Thus, instead of 

� � ∞, we choose a timescale � that smooths out most noise but little signal. Inspired by the 

PHATE45 method, we propose to pick �  as the knee point on the curve of von Neumann 

entropies46 induced by diffusion maps at different timescales (Supplementary Fig. 4b, 

Methods). In the Immune Cell Atlas data, using the selected �, we identify a trajectory (Fig. 2b) 

that more clearly bifurcates from hematopoietic stem cells into CD14+ monocytes and 

conventional dendritic cells (cDCs), whereas those two lineages overlap in the DPT model. 
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In addition to offering popular modularity-based community detection algorithms for clustering 

cell profiles, including Louvain21 and Leiden22 (Methods), Pegasus also includes spectral-

community-detection algorithms, such as spectral-Louvain and spectral-Leiden, which combine 

the strengths of both spectral clustering47 and community detection algorithms (Methods). 

Spectral clustering performed by applying the k-means algorithm on the calculated diffusion 

pseudotime components is very fast, but its clustering results are not always satisfactory 

(Supplementary Fig. 5a). Conversely, in Pegasus’s spectral clustering, we first aggregate cells 

into small groups and then apply community detection algorithms on the aggregated groups 

(Methods). On the bone marrow dataset, this new method provides clusters that are comparable 

to those from modularity-based community detection algorithms, but at the high speed of 

spectral clustering (Supplementary Fig. 5b,c). 

 

Finally, in addition to visualization of single cell profiles using either t-SNE23, FIt-SNE24, 

UMAP25 (Methods), or a force directed layout embedding (FLE28) of the diffusion pseudotime 

map (Methods), we also include a deep-learning-based visualization technique that speeds up a 

generalized set of these and similar visualization algorithms (Methods). Inspired by net-SNE48, 

this technique is based on the assumption that large datasets are often redundant and their global 

structure can be captured using only a portion of the data. It thus first subsamples a fraction of 

cells according to each cell’s local density, ensuring higher rate of sampling from rare and sparse 

clusters, and then embeds the subsampled cells using the embedding algorithm of interest, such 

as UMAP (Fig. 2c). It then trains a deep-learning-based regressor (Methods) on the subsampled 

cells using their embedded coordinates as ground truth and uses the regressor to predict 
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embedding coordinates for the remaining cells. Because the predicted coordinates yield a “blurry” 

visualization (Fig. 2c), it has a final refinement step, which applies the embedding algorithm for 

a small number of iterations to both the calculated coordinates for the subsampled cells and 

predicted coordinates for the remaining cells (Fig. 2c). We call visualizations obtained using this 

technique as Net-* visualizations and show that they speed up the original embedding algorithm 

by at least 2x and maintain the visualization quality based on similar kSIM acceptance rates (Fig. 

2d and Supplementary Fig. 6). 

 

As a result of these combined algorithmic and implementation improvements, Pegasus is much 

faster than other packages for running key analyses tasks on the bone marrow dataset6 

(Supplementary Table 3, Methods) and the 1.3 million mouse brain dataset4 (Supplementary 

Table 4, Methods). In addition, with its cloud-based architecture, Cumulus is much faster than 

other packages when benchmarking on the bone marrow dataset. Compared to a Cell Ranger + 

Seurat/SCANPY pipeline, Cumulus completed the analysis in around 15 hours, while the 

alternative pipeline took over 9 days to run (Table 1, Methods). The associated computational 

costs were modest (e.g., ~$2 on average for around 4,000 cells in one sample, Table 1, 

Methods).  

 

In conclusion, Cumulus provides the community with a cloud-based, scalable, cost-effective, 

comprehensive and easy to use platform for single-cell and single-nucleus RNA-seq research. 

Pegasus, Cumulus’ analysis module, which can also be used as an independent Python package, 

implements many improvements which enhance efficiency, from a new HVG selection 

procedure to a generalized deep-learning-based visualization speedup. While a complex 
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framework such as Cumulus cannot provide an optimal combination of specialized algorithms 

for each application, it will accelerate research by providing an integrated and fast approach that 

enables more labs to analyze large-scale single-cell and single-nucleus datasets. In a separate 

study49, we demonstrated Cumulus by analyzing single-cell and single-nucleus RNA-seq data 

from fresh and frozen tumor from the Human Tumor Atlas Pilot Project (HTAPP). As the 

community produces data sets at substantially larger scales, we hope that Cumulus will play a 

key role in the effort to build atlases of complex tissues and organs at higher cellular resolution 

and leveraging them to understand the human body in health and disease. 

 

Code availability 

Cumulus code consists of four components: the Pegasus and scPlot python packages, the 

Cumulus WDL workflows and Dockerfiles, the Cumulus docker images and the Cirrocumulus 

app. Pegasus source code is available at https://github.com/klarman-cell-observatory/pegasus. 

Pegasus documentation is available at https://pegasus.readthedocs.io. scPlot source code is 

available at https://github.com/klarman-cell-observatory/scPlot. We wrote all workflows using 

the Workflow Description Language (WDL, https://github.com/openwdl/wdl) and encapsulated 

all software packages into Docker images using Dockerfiles. Cumulus WDL and Dockerfiles are 

available at https://github.com/klarman-cell-observatory/cumulus. Cumulus Docker images are 

available at https://hub.docker.com/u/cumulusprod. For Terra users, we additionally deposit 

Cumulus workflows in the Broad Methods Repository 

https://portal.firecloud.org/?return=terra#methods and provide a step-by-step manual at 

https://cumulus-doc.readthedocs.io. Cirrocumulus source code is available at 

https://github.com/klarman-cell-observatory/cirrocumulus. Pegasus, scPlot, Cumulus WDL files 
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and Docker files, and Cirrocumulus are licensed under a BSD 3-clause license. In addition, we 

documented licenses for Cumulus dependencies in Supplementary Data 2. Due to 3rd party 

licensing requirements, we can only provide Cell Ranger dockers without bcl2fastq2 and users 

can build their private bcl2fastq2-containing Dockers by following instructions listed in Cumulus 

documentation. 

 

Data availability 

The bone marrow dataset is available at 

https://data.humancellatlas.org/explore/projects/cc95ff89-2e68-4a08-a234-480eca21ce79. The 

1.3 million mouse brain data set is available at https://support.10xgenomics.com/single-cell-

gene-expression/datasets/1.3.0/1M_neurons. 
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Figure Legends 

Figure 1. Cumulus: a scalable, feature-rich, accessible cloud based framework for sc/sn 

RNA-seq analysis.  

a. Cumulus data analysis workflow. Cumulus takes raw BCL files as input and outputs diverse 

analysis results, with three key computational steps – mkfastq, count, and analysis. b. sc/snRNA-

seq analysis tasks in Pegasus. c. Cumulus enables flexible interactive data visualization and 

analysis. Users can instantly visualize Cumulus analysis results with Cirrocumulus, or publicly 

available visualization tools such as cellxgene, UCSC cell browser and scSVA. They can also 

interactively explore them on Terra Jupyter notebooks using Pegasus and deposit their data into 

the Single Cell Portal. 
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Figure 2. Algorithmic and implementation improvements underlying Pegasus’s high 

scalability.  

a. Trade-off between kBET and kSIM acceptance rates across different methods. kBET (y axis) 

and kSIM (x axis) acceptance rates of Pegasus, ComBat, MNN, BBKNN and Seurat v3 on 

34,654 bone marrow cells. b. Improved resolution of a developmental bifurcation with diffusion 

pseudotime map with timescale selected by von Neumann entropy. Diffusion maps of cells 

colored by subset annotation (color legend), generated by DPT (left) and Pegasus (right). Red 

square: area of bifurcation from hematopoietic stem cells (HSCs) to CD14+ monocytes (orange 

arrow) and conventional dendritic cells (cDCs, purple arrow) (zoom, right), in each map. c. 

Deep-learning-based efficient visualization with Net-*. From left: a small fraction of cells is 

subsampled based on local density and then embedded (e.g., with UMAP); a deep regressor is 

trained on the subsampled cells to predict the embedding coordinates; it is then used to predict 

embedding coordinates for remaining cells; all the coordinates are fine-tuned by applying the 

embedding algorithm (e.g., UMAP) for a small number of iterations. d. Net-UMAP visualization 

is faster than UMAP while maintaining visualization quality. Embedding generated by UMAP 

(left) and Net-UMAP (right) of cells, colored by subset annotation. Top: Execution time and 

kSIM acceptance rate.  
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Table and legend 

Table 1. Cumulus is computationally efficient and cost effective 

 Time Cost per sample 

Step Cell Ranger + Seurat v3  Cell Ranger + SCANPY  Cumulus Cumulus 

Total 10 d, 5 h, 38 min  9 d, 5 h, 35 min 15 h, 15 min $1.832 

Mkfastq 13 h, 18 min 13 h, 18 min 7 h, 54 min $0.22 

Count 8 d, 14 h, 12 min 8 d, 14 h, 12 min 6 h, 44 min $1.61 

Analysis 26 h, 8 min  2 h, 5 min 37 min $0.002 

 

Left columns: Total execution time on the bone marrow dataset of Cumulus, Cell Ranger + 

Seurat v3 or Cell Ranger + SCANPY pipeline, running on a 32 CPU thread, 120 GB memory 

Google Cloud virtual machine instance (Methods). Right columns: Average computational cost 

for running Cumulus per sample of ~4,000 cells (Methods). 
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Methods 

CUMULUS MODULES 

Gene-count matrix generation for droplet-based scRNA-seq 

Cumulus supports gene-count matrix generation for 10x Genomics V2 and V3 chemistry using 

Cell Ranger. Cumulus first demultiplexes Illumina base call files (BCLs) for each sequencing 

flowcell by running mkfastq steps parallelly in different computer nodes. Each mkfastq job calls 

‘cellranger mkfastq’ to generate sequence reads in FASTQ files. By default, each mkfastq job 

requests 32 CPUs, 120 GB memory and 1.5 TB disk space from the cloud. Cumulus then 

generates gene-count matrices for each 10x channel by running count steps in parallel. Each 

count job calls ‘cellranger count’ with appropriate parameters and requests 32 CPUs, 120 GB 

memory and 500 GB disk space from the cloud by default. Cumulus also supports gene-count 

matrix generation for Drop-seq2 data using either the methods described in Drop-seq alignment 

cookbook50 or dropEst51. 

 

Gene-count matrix generation for plate-based scRNA-seq 

Cumulus supports gene-count matrix generation for scRNA-seq data generated by the SMART-

seq2 protocol8 from sequence reads in FASTQ files. Cumulus estimates gene expression levels 

for each single cell in parallel in different computer nodes. Each node runs RSEM52 with default 

parameters and utilizes Bowtie 253 to align reads. Each node requests 4 CPUs, 3.6 GB memory 

and 10GB disk space by default. Once expression levels are estimated, Cumulus converts the 

relative expression levels (in Transcript per 100K, TP100K) into a count vector for each single 

cell using the formula below and then generates a gene-count matrix by concatenating count 

vectors from all cells. 
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�� � �	
�100��10�

 ����� ,	            �1� 

where ��  and 
�100��  are the converted read count and estimated expression level of gene �, 
respectively. ���� is the sum of RSEM-estimated expected counts from all genes. 

 

Pegasus  

Cumulus runs the analysis step on a single node, which requests 32 CPUs, 200 GB memory and 

100 GB disk space by default. The analysis step calls Pegasus, a fast Python package we have 

implemented. Pegasus utilizes SCANPY’s AnnData data structure18 to store gene-count matrices 

and analysis results. More implementation details are discussed in the subsequent sections and 

Supplementary Note 1. 

 

Feature-count matrix generation for CITE-seq, cell hashing, nucleus hashing, and Perturb-

seq 

Cumulus supports feature-count matrix generation of CITE-seq9, cell hashing10, nucleus11 

hashing  and Perturb-seq12–16 protocols, using either 10x Genomics V2 or V3 chemistry. Each 

feature-count matrix generation job runs parallelly on a separate compute node with 1 CPU, 32 

GB memory and 100 GB disk space, and calls ‘generate_count_matrix_ADTs’, a fast C++ 

program we implemented, to extract the matrix from sequence reads in FASTQ files. The C++ 

program scans each read pair to search for valid sequence structures. We assume read 1 records 

the cellular barcode and Unique Molecular Identifier (UMI) information and read 2 records 

feature barcode information, such as hash tags for hashing protocols or sgRNA information for 

Perturb-seq (below). The first 16 nucleotides of read 1 represent the cell barcode for both V2 and 

V3 chemistry. The next 10 and 12 nucleotides represent the UMI for V2 and V3 chemistry, 
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respectively. We allow up to 1 and 0 mismatch for matching cell barcodes in V2 and V3 

chemistry, respectively. 

 

Feature barcode information is recorded differently in read 2 for different protocols. For CITE-

seq, cell hashing and nucleus hashing protocols, the location of the feature barcode depends on 

what type of BioLegend TotalSeqTM antibodies users choose. If TotalSeqTM-A antibodies are 

used, the feature barcode is located at the 5’ end of read 2. Otherwise, the feature barcode starts 

at the 11th nucleotide from the 5’ end of read 2. ‘generate_count_matrix_ADTs’ automatically 

detects antibody type by scanning read 2 of the first 1,000 read pairs and calculating the 

percentage of read pairs containing the auxiliary sequence. If more than 50% of read pairs 

contain the auxiliary sequence, we assume the antibody type is TotalSeqTM-A, otherwise it is 

TotalSeqTM-B or TotalSeqTM-C. We allow up to 1 mismatch for matching the auxiliary sequence. 

 

For Perturb-seq protocols, we assume that the feature barcode (protospacer) is located in front of 

a user-provided anchor sequence. For V2 chemistry, we first search the anchor sequence in read 

2, allowing up to 2 mismatches or indels. We then extract the feature barcode at the 5’ end of the 

anchor sequence. For V3 chemistry, we assume users use 10x Genomics CRISPR guide capture 

assays and additionally check the Template Switching Oligo (TSO) sequence 

‘AAGCAGTGGTATCAACGCAGAGTACATGGG’ at the 5’ end of read 2, allowing up to 3 

mismatches and indels. 

 

Once we locate the feature barcode, we match it with a user-provided white list, allowing up to 3 

mismatches by default. After scanning all read pairs, ‘generate_count_matrix_ADTs’ generates a 
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feature-count matrix in CSV format: each row represents one feature, each column represents 

one cell barcode, and each element records the number of unique UMIs for the feature in the row 

in the cell barcode in the column. To speed up sequence matching, we encode cell barcodes, 

UMIs and feature barcodes into 8-byte unsigned integers (2 bits per nucleotide). 

 

CITE-seq data analysis 

Based on the generated feature-count matrix, Cumulus first calculates the log fold change 

between feature UMI counts of the antibody of interest and its IgG control as the antibody 

expression, provided that users include both antibodies of interest and their corresponding IgG 

controls in their CITE-seq assays. Let us denote the UMI counts of the antibody and its IgG 

control as �� and ��. The antibody expression ���� is calculated as  

���� � max�log �� � 1�� � 1 , 0�,       �2� 

where we add 1 to both the numerator and denominator to avoid log 0. If IgG controls are not 

provided, we calculate  ���� as 

���� � max�log �� � 1 , 0�.       �3� 

Cumulus merges the transformed antibody expression matrix into an RNA expression matrix so 

that users can plot antibody expression in 2D visualizations (e.g., t-SNE & UMAP) calculated 

based on RNA expression levels. Cumulus can optionally generate t-SNE plots solely based on 

antibody expression levels. 

 

Demultiplexing cell hashing and nucleus hashing data 

Cumulus demultiplexes cell hashing and nucleus hashing data using the DemuxEM algorithm, 

which we recently described11. 
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Chimeric read filtration for Perturb-seq data 

In Perturb-seq, sgRNAs are often amplified by dial-out PCR12 to ensure feature detection, and 

the resulting library is often over-sequenced, which can lead to a high number of false positive 

UMIs due to PCR chimeric reads54. Such false positive UMIs tend to have fewer supporting 

reads on average. Suppose we have �"�# UMIs with exact �  supporting reads. In general, we 

expect �"�# to decrease monotonically as � increases. However, if the library is over-sequenced, 

we may observe a second peak in the tail of the �"�# distribution ($�, �"� % 2# & �"� % 1# &
�"�# ' �"� � 1#), which is more likely to represent true UMIs. Cumulus detects the left boundary 

of the second peak by scanning �  consecutively. If Cumulus can find an �  such that �"�# &
�"� � 1# & �"� � 2# and � ( 10, Cumulus will filter out any UMIs with fewer than � supporting 

reads. Otherwise, Cumulus filters out any UMIs with only one supporting read. If a cell barcode 

and UMI combination contains more than 1 feature barcode, it is likely that the feature barcode 

with fewer supporting reads is produced by PCR chimeras54 and Cumulus will filter feature 

barcodes supported by no more than 10% of reads belonging to that combination. Cumulus 

generates a filtered feature-count matrix after this filtration step and lets users decide if they want 

to use the original feature-count matrix or the filtered feature-count matrix. 

 

Cirrocumulus implementation 

Cirrocumulus is a Google App Engine application for visualizing variables on a 2D or 3D 

embedding of observations. The client side of Cirrocumulus is implemented using React to 

manage state and Plotly to generate charts. The backend consists of several cloud functions to 

manage datasets stored in a NoSQL cloud database and to slice variables from a specified dataset 
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in PARQUET format, where the PARQUET file is generated by Pegasus. The slice function can 

optionally generate statistical summaries on an n-dimensional grid, thus enabling plotting of 

millions of cells. 

 

scPlot implementation 

scPlot [https://github.com/klarman-cell-observatory/scPlot] is a plotting library included as part 

of Pegasus. Plots provided include scatter plots, feature plots, dot plots and violin plots and can 

scale to millions of cells by plotting cells on a two-dimensional grid. scPlot uses HoloViews 

[http://holoviews.org/], thus allowing the same code to generate interactive plots with Bokeh for 

a Jupyter notebook and static plots with Matplotlib.  

 

Preprocessing 

Pegasus selects high quality cells based on a combination of the following criteria, with user-

provided parameters: 1) number of unique molecular identifiers (UMIs) between 

")��_+)�,, )-�_+)�,� , default: )��_+)�, � 100 and )-�_+)�, � 600,000 ; 2) number of 

expressed genes (at least one UMI) between ")��_/���,, )-�_/���,�, default: )��_/���, �
500  and )-�_/���, � 6000 ; 3) percentage of UMIs from mitochondrial genes less than 

�������_)��1, default: �������_)��1 � 10%. Pegasus then selects robust genes, defined as 

genes detected in at least � percentage of cells, where � is a user-defined parameter; default: 

� � 0.05% (equivalent to 3 cells out of 6,000 cells). Next, Pegasus normalizes the count vector 

of each cell, such that the sum of normalized counts from robust genes is equal to 100,000 

transcripts per 100K (TP100K), and transforms the normalized expression matrix into the natural 
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log space by replacing expression value 3 into log�3 � 1�. Additional details are available in 

Supplementary Note 1. 

 

Highly variable gene selection 

The standard HVG selection procedure operates in the original expression space. However, 

almost all downstream analyses are conducted in log expression space. To reconcile this 

inconsistency, we develop a new HVG selection procedure that operates directly in log 

expression space.  

 

We select HVGs only from robust genes. Suppose we have 4 cells and 5 robust genes. We 

denote the log expression of gene / in cell � as 6�� . We first estimate the mean and variance for 

each robust gene / as 

7̂� � 14 9 6��

�

�	


    -�:     ;<�
� � 14 % 1 9�6�� % 7̂���

�

�	


.      �4� 

We then fit a LOESS55 curve of degree 2 (span parameter 0.02) between the estimated means 

and variances (Supplementary Fig. 1a) and denote the LOESS-predicted variance for gene / as 

;>�
�. Any gene / with ;<�

� ? ;>�
� has a higher than expected variance.  

We calculate the difference and fold change between the estimated and LOESS-predicted 

variances as 

;� � ;<�
� % ;>�

�     and     B� � ;<�
�;>�
�

.            �5� 
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We then rank each robust gene with respect to ;� and B� in descending order, and denote their 

rankings as �-�C��/� and �-�C
�/� respectively. Lastly, we define the overall ranking as the 

sum of the two rankings 

�-�C�/� � �-�C��/� � �-�C
�/�,      �6� 

 and select the top � robust genes with respect to �-�C�/� as HVGs. 

 

The new procedure handles batch effects naturally. Suppose we have � biologically different 

groups, each group C has ��  batches and each batch CD has ���  cells. We additionally denote the 

mean within batch CD and within group C as 7̂��� and 7̂��, respectively. Because we have  

9�6���� % 7̂���� � 0���

�	


   -�:  9 ����7̂��� % 7̂�����

�	


� 0,            �7� 

We can decompose the variance ;<�
�  into three components – within-batch variance ( ;<�


� ), 

between-batch variance (;<��
� ) and between-group variance (;<��

� ) – as follows: 

;<�
� � 14 % 1 9�6�� % 7̂���

�

�	


� 14 % 1 9 9 9��6���� % 7̂���� � �7̂��� % 7̂��� � �7̂�� % 7̂����

���

�	


��

�	


�

�	


 

� 1
� � 1 � � ������� � �̂���
�

���

���

��

���

	

���

� 1
� � 1 � � ���
�̂��� � �̂����

��

���

	

���

� 1
� � 1 ��� ���

�

���


��̂�� � �̂�
�  
	

���

 

� ;<�

� � ;<��

� � ;<��
� .                                                                        �8� 

 

We remove the variance term (;<��
� ) due to batch effects by redefining ;<�

� as  

;<�
� G ;<�


� � ;<��
� ,                      �9� 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint 

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25

and plug in the new redefined variance term to the previously described procedure to select 

HVGs. If we use the redefined variance terms in HVG selection, we are in the batch-aware mode. 

We provide a detailed description of the new procedure in the Supplementary Note 1 1. 

 

We also implemented the standard HVG selection procedure, which handles batch effects using 

the method in Seurat v339, and documented implementation details in the Supplementary Note 1. 

 

Batch correction with the L/S adjustment method 

For simplicity, let us assume that we only have one biological group with ) batches and each 

batch D has ��  cells. We model the log gene expression level of gene / at batch D’s �th cell as 

6��� � I� � J�� � K��L��� ,       �10� 

where I�  is the baseline expression level of gene /, L���  is the error term, which follows a 

distribution with a mean 0  and a variance ;�
� . In addition, J��  and K��  are the additive and 

multiplicative batch effects, respectively. We estimate these parameters for each gene separately 

as follows: 

I<� � 14 9 9 6���

��

�	


�

�	


,          �11� 

J<�� � 1��

9 6���

��

�	


% I<�,        �12� 

;<� � M14 9 9N6��� % I<� % J<��O�

��

�	


�

�	


,          �13� 
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KP�� � Q 1�� % 1 ∑ N6��� % I<� % J<��O���

�	
 ;<�

.             �14� 

 

We denote 6���
�  as the batch adjusted expression level, which is calculated as 

6���
� � 6��� % I<� % J<��KP��

� I<�.         �15� 

We provide a more detailed description of the L/S method in the Supplementary Note 1, 

including how to handle multiple biological groups. 

 

Since batch correction transforms a sparse expression matrix into a dense matrix, which uses 

much more memory, we only calculate batch-adjusted expression levels for genes of interest, 

such as HVGs. We rewrite (15) as  

6���
� � 1KP��

6��� � SI<� % I<� � J<��KP��

T,        �16� 

and use a two-step procedure to correct batch effects: First, we calculate and save batch-

correction factors 



����
 and I<� % ��������

����
 for all genes. Second, we calculate adjusted expression 

levels only for genes of interest using (16). We save the batch-correction factors for all genes, 

such that we can calculate batch-adjusted expression levels for any gene instantly in the future. 

 

kBET acceptance rate 

kBET40 acceptance rate measures if cells from different batches mix well in the local 

neighborhood of each cell. Pegasus implements the kBET acceptance rate calculation procedure 

as follows: We define U � �U
, … , U�� as the ideal batch mixing frequency, where U� � ��

�
. For 
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each cell �, we find its C nearest neighbors (including itself) using the HNSW algorithm41 and 

denote the number of neighbors belonging to batch D as ���
� . Then we calculate its W� test statistic 

with ) % 1 degrees of freedom as 

X�
� � 9 N���

� % U� 
 CO�U� 
 C�

�	


,       �17� 

and its p value as  

��
� � 1 % Y��
NX�

�O,              �18� 

where Y��
��� is the cumulative density function. 

 

The kBET acceptance rate is calculated as the percentage of cells that accept the null hypothesis 

at significance level I: 

CZ[
 �-�� �  ∑ \���
� ' I��

�	
 4 ] 100%,         �19� 

where \��� is the indicator function, and C and I are user-specified parameters. 

 

kSIM acceptance rate 

The kSIM acceptance rate requires ground truth cell type information and measures if the 

neighbors of a cell has the same cell type as it does. If a method over-corrects the batch effects, it 

will have a low kSIM acceptance rate. We use the HNSW algorithm to find C nearest neighbors 

(including the cell itself) for each cell � and denote the number of neighbors that have the same 

cell type as � as ��
� . In addition, we require at least ^ fraction of neighbors of cell � to have the 

same cell type as � in order to say cell � has a consistent neighborhood. The kSIM acceptance rate 

is calculated as follows: 
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C_\` �-�� �  ∑ \���
�C ' ^��

�	
 4 ] 100%,        �20� 

where C and ^ are user-specified parameters.  

 

Dimensionality reduction by Principal Components Analysis 

Pegasus calculates the top ) principal components based on highly variable genes. It utilizes the 

randomized PCA algorithm56 implemented in Scikit-learn package57 to speed up the 

computation. By default, Pegasus sets ) � 50. 

 

k-nearest neighbors (k-NN) graph construction 

Pegasus uses the HNSW41 algorithm with parameters ` � 20 , �Ua � 200 , �U_ � 200 , to 

construct k-NN graphs. By default, Pegasus searches the top 100 nearest neighbors (including 

the cell itself) for each cell (� � 100). Because HNSW is an approximate algorithm, it cannot 

always return the cell itself as the 1st nearest neighbor. For any cell missing itself as the 1st 

nearest neighbor, Pegasus sets itself as the 1st nearest neighbor and picks the top 99 nearest 

neighbors returned by HNSW as the 2nd to 100th nearest neighbors. HNSW has a random index 

building process, which produces different indices in different runs if multiple threads are used. 

For reproducibility purposes, Pegasus provides two modes of running HNSW: robust mode and 

full speed mode. In robust mode, Pegasus runs the index building process with only one thread 

and runs the neighbor searching process with multiple threads. In full speed mode, Pegasus also 

runs the index building process with multiple threads. In either mode, Pegasus stores the 

neighbor searching results in the AnnData18 object. Without explicit notification, Pegasus runs 

HNSW in the robust mode. 
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Diffusion maps and diffusion pseudotime maps 

We provide a high-level summary here and a more detailed description in Supplementary Note 

1. 

 

To compute diffusion maps, we first construct an affinity matrix b���  based on the top ) 

principal components. This affinity matrix is also used in community-detection-based clustering 

algorithms. We construct b based on the top � nearest neighbors found by the HNSW algorithm. 

Let us define a cell c’s neighborhood set 4�c� as the set consisting of c’s 2nd to � th nearest 

neighbors. We then define the following locally scaled Gaussian kernel between any two cells c 

and d :  

��c, d� � S 2;�;�;�
� � ;�

�
T


� exp S% gc % dg�;�
� � ;�

�
T,     �21� 

where, c is a vector containing the top ) PC coordinates of cell c, and  ;� is c’s local kernel 

width, defined as ;� � mediani:�|� � 2, … , �k, where :�  is the distance between cell c and its 

�th neighbor. To eliminate the effects of sampling density, we additionally define the following 

density-normalized kernel19: 

���c, d� � ��c, d�l�c�l�d�,       �22� 

where l�c� is the sampling density term of cell c and defined as: 

l�c� � 9 ��c, d�
� �!�" �$ � �!�"

.     �23� 

The affinity matrix b is constructed using the density-normalized kernel: 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint 

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/


 30

b�c, d� � m���c, d�, d n 4�c� 1� c n 4�d�0, 1�o��p�,� 	.      �24� 

 

We then calculate the Markov chain transition matrix q and the symmetric “transition” matrix r 

based on the affinity matrix: 

q � s�
b,        s � :�-/ t9 b�c, d�
�

u,      �25� 

r � s�


�bs�



�,         q � s�



�rs


�.                    �26� 

Since r is symmetric, it has the eigen decomposition of r � vwv%. In addition, we know that in 

practice all r’s eigenvalues are in �%1, 1# and x � s�

�y is its eigenvector for eigenvalue z � 1 

(Supplementary Note 1). We also know that q shares the same eigenvalues as r and its right 

eigenvectors { and left eigenvectors | are 

{ � s�


�v,     | � s


�v            �27� 

Next, to speed up the calculation, we approximate diffusion maps using only the top � diffusion 

components (Supplementary Note 1), where � is a user-specified parameter with default value 

� � 100. First, we calculate the top � eigenvalues and eigenvectors of r using the Implicitly 

Restarted Lanczos Method58 (via scipy.sparse.linalg.eigsh function). We also provide the 

alternative option to calculate the top �  eigenvalues using the randomized SVD algorithm56 

(Supplementary Note 1). We order these � eigenvalues by magnitude: 

1 � z& ? |z
| ' |z�| ' } ' |z��
|,           �28� 

and define a family of approximated diffusion maps i{�k� ' parameterized by timescale �: 
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{��c�� � ~ z

� �
���z�
� ������z��


� ���
����.            �29� 

Note that we use the right eigenvectors of the transition matrix q to construct diffusion maps. 

Using the eigenvectors of q  is consistent with the original diffusion map paper19 and 

recommended in the spectral clustering literature47. The DPT paper20 constructs diffusion maps 

using eigenvectors of the symmetric matrix r instead.  

 

We next define approximated diffusion pseudotime maps i{�
�k� '()*+ based on approximated 

diffusion maps: 

{�
��c�� � 9 {���c���

��	


�
��
���
� z


1 % z

�1 % z


�
���
z�

1 % z�
�1 % z�

������z��


1 % z��

�1 % z��


���
�����
���
�.            �30� 

In particular, when � � ∞, we recover the DPT method (except it uses the eigenvectors of r). 

We wish to pick a timescale � that smoothens out most of the noise but little signal. We select � 

based on the von Neumann entropy46 of the graph induced by each timescale. For each �, its 

power matrix q�  induces a graph with the following Laplacian and density matrices 

(Supplementary Note 1): 

���� � � % q�,       �N����O � ������-��N����O.          �31� 

We derive the von Neumann entropy _��� for the top � diffusion components from the density 

matrix �N����O (Supplementary Note 1): 
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_��� � % 9"�����#� 
 log "�����#�

��


�	&

,    po���   "�����#� � 1 % z�
�∑ 1 % z�

���

�	&

 .         �32�  
_���  increases as �  increases and reaches its maximum log �� % 1�  when � � ∞ . Because 

smaller eigenvalues of q (likely representing noise) decrease to 0 (and hence contribute a 1 to 

the entropy) much more rapidly than large eigenvalues (likely representing signal)45, we expect 

to observe a high rate of increase in _��� initially when noise is smoothed out and then a low rate 

of increase when signal begins to be removed (Supplementary Fig. 4b). We pick the timescale � 

as the knee point of this von Neumann entropy curve. 

Let us denote �� � � �_���� as the point for timescale � in the curve. We find the kneepoint by 

scanning all �s (where t is an integer) between 1 and )-��, and pick the � that is furthest from 

�� % �
 , the segment connecting the two endpoints of the curve. )-��  is a user-provided 

parameter set to  )-�� � 5000 by default. We calculate the distance between point �� and the 

segment �� % �
 as follows: 

:�, � g��� % �
� ] ��� % �
�gg�� % �
g .           �33� 

  

For the selected �, given a user-specified cell � as the root, we calculate the diffusion pseudotime 

distance from root to any other cell c as  

��
���, c� � g{�

���� % {�
��c�g.           �34� 

We then normalize the diffusion pseudotime distance into "0, 1# as the diffusion pseudotime. 

 

Modularity-based community detection algorithms 
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We construct a weighted undirected graph � � ��, [, p� from the affinity matrix b. In the 

graph, vertex set � contains all cells, and an edge �+, �� n [ if and only if b,,. ? 0. The weight 

of the edge is calculated as: 

p�+, �� � �	 b,,.median�/�  b�,�  ] 100� /100	 .     �35� 

Community detection algorithms try to find a partition a of cells that maximizes the following 

modularity function59: 

� � 12) 9 S�� % J ��
�2)T

� 0

,             �36� 

where each � n a consists of cells in that community, J is the resolution parameter controlling 

the total number of communities, and 

) �  9 p�+, ��
!,,." 1

,        �� � 9 p�+, ��
, �,. �,!,,." 1

,         �� � 9 9 p�+, ��
!,,." 1, � 

.     �37� 

 

Pegasus supports two modularity-based community detection algorithms: Louvain21 and 

Leiden22. For both algorithms, Pegasus sets the resolution J � 1.3 by default and reports each 

community as a separate cluster. 

 

The Louvain algorithm21 optimizes the modularity function � in two phases: (1) in the move 

phase, each node is inspected and moved to the community that yields the largest increase in �; 

(2) in the aggregation phase, each community aggregates into a new node to form an aggregated 

graph. The algorithm starts from the partition that each cell is its own community and repeats the 

two phases until there is no increase in �. Pegasus uses the louvain-igraph implementation from 

Vincent Traag [https://github.com/vtraag/louvain-igraph]. Note that the latest release of louvain-
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igraph package (v0.6.1) contains a bug that prevents it from being reproducible even when the 

same random seed is used. Thus, Pegasus installs this package directly from the github master 

branch, in which the bug is fixed. 

 

The Leiden algorithm22 is a recent improvement over the Louvain algorithm and consists of three 

phases: (1) a move phase, which is similar to Louvain’s; (2) a refinement phase, when each 

community found in (1) is examined and may be split into sub-communities; (3) an aggregation 

phase, when each sub-community from (2) is aggregated into a new node and assigned to an 

initial partition based on communities from (1). Pegasus uses the leidenalg implementation from 

Vincent Traag [https://github.com/vtraag/leidenalg]. Applying the Leiden algorithm on 

communities detected from previous Leiden runs can further improve the modularity function22. 

Thus, following SCANPY18, Pegasus runs the Leiden algorithm iteratively on the graph � until 

� does not further improve (n_iterations = -1 by default). 

  

Spectral-community-detection algorithms for fast clustering 

Pegasus provides two spectral-community-detection algorithms: spectral-Louvain and spectral-

Leiden. Spectral-community-detection algorithms aggregate cells into thousands of groups of 

cells, where each group consists of cells that are likely from the same “real” cluster, and then 

apply community detection algorithms such as Louvain and Leiden on the groups instead of on 

individual cells to achieve a major speedup.  

 

Our variant of the spectral clustering47 algorithm partitions cells into groups by applying the k-

means algorithm on calculated diffusion pseudotime component space, using a 2-level clustering 
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strategy. We first partition the cells into C
  clusters using the scikit-learn’s KMeans function 

with default parameters. We further partition each of the C
 clusters into C� sub-clusters using 

the KMeans function with �_���� �  1. This procedure will give us C
 
 C� cell groups, on which 

we then apply community detection algorithms. Pegasus sets C
 � 30 and C� � 50 by default. If 

diffusion pseudotime components are not calculated, Pegasus will apply the k-means algorithm 

on the PC space instead. 

 

t-SNE, UMAP and FLE 

Pegasus calculates a t-SNE using the Multicore-TSNE package implemented by Dmitry Ulyanov 

[https://github.com/DmitryUlyanov/Multicore-TSNE]. We found and fixed a random-seed-

related bug in this package that prevents the package from reproducing the exact t-SNE 

coordinates, and provide a bug-free version of the package at [https://github.com/lilab-

bcb/Multicore-TSNE]. Pegasus uses the following t-SNE parameters by default: perplexity=30, 

early_exaggeration=12, learning_rate=1000, n_iter=1000 and n_iter_early_exag=250. 

 

Pegasus calculates a FIt-SNE, which are fast approximations of t-SNE embeddings, using the 

pyFIt-SNE package from Kluger lab [https://github.com/KlugerLab/pyFIt-SNE]. Pegasus uses 

the following FIt-SNE parameters by default: perplexity=30, early_exaggeration=12, 

learning_rate=1000, max_iter=1000, stop_early_exag_iter=250 and mom_switch_iter=250. 

 

Pegasus calculates a UMAP based on the k-NN graph constructed by the HSNW algorithm, 

using the umap package from Leland Mclnnes [https://github.com/lmcinnes/umap]. Pegasus uses 
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the following UMAP parameters by default: n_neighbors=15, min_dist=0.5, spread=1.0, 

n_epochs=250 and learning_rate=1.0. 

 

Pegasus calculates an FLE using the forceatlas2 package, a Java package developed for scSVA29. 

The forceatlas2 package improved upon the Gephi’s ForceAtlas227 Java code by providing more 

efficient parallelization29 and stops iterations if the average distance between FLE coordinates in 

adjacent iterations is no greater than K  or the maximum number of iterations ��  is reached, 

where K and ��  are user-specified parameters. Pegasus sets K � 2.0 and �� � 5000 by default.  

 

Deep-learning-based visualization 

To generate Net-* embeddings, we first subsample cells by local density. To estimate a proxy of 

the local density for each cell we denote as :�  the distance from cell � to its kth nearest neighbor 

in the calculated k-NN graph, where k is a user-provided parameter set to k = 25 by default. :�  is 

inversely proportional to the local cell density such that �� , the probability of sampling cell �, is 
�� � 1:�

� ,          �38� 

where I is a parameter that determines how much local density should influence the sampling 

process. If I � 0, we recover uniform sampling. In Pegasus, we set I � 1. We then subsample P 

percent of cells based on sampling probabilities i��k, where P is a user-specified parameter set to 

10% by default.   

 

Next, we train a deep-learning-based regressor, using a neural network with 1 input layer and 4 

hidden layers. The input layer connects with the top ) principal components for each cell and 

the 4 hidden layers contain 100, 75, 50, and 25 ReLU units respectively. We train the network 
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using scikit-learn’s MLPRegressor with a stochastic gradient decent solver, an adaptive learning 

rate and a L2 penalty parameter of 0.1. We additionally scale the inputs and outputs of the neural 

network, such that the maximal standard deviation of the inputs and outputs are 1.0 and 15.0 

respectively. 

 

In the final refinement step, Pegasus changes the following parameters for each embedding 

method. For t-SNE: learning_rate=0.33 ] 4, where 4 is the total number of cells, n_iter=150 

and n_iter_early_exag=0. For UMAP: learning_rate=10 and n_epochs=30. For FLE: �� � 1500. 

 

Differential expression analysis 

Pegasus can perform Welch’s t-test, Fisher’s exact test and the Mann-Whitney U test between 

cells within and outside of a cluster. It controls the False Discovery Rate (FDR) at 5% using the 

Benjamini-Hochberg procedure60. Pegasus can optionally calculate the Area Under the ROC 

curve (AUROC) for each gene by considering the binary classification problem that uses the 

gene as the only feature to predict if a cell is within or outside of a cluster. Pegasus performs 

these analyses in parallel across genes to speed up the calculation process and outputs results for 

all genes in a spreadsheets. If AUROC is calculated, genes are ranked by their AUROC values. 

 

Feature importance scores from LightGBM 

Pegasus trains a LightGBM30 classifier on the log expression matrix to predict cluster labels. It 

uses 90% of the cells as the training data and 10% of the cells as the test data. It stops training 

the classifier once the prediction accuracy on the test dataset drops, and then extract each gene’s 

feature importance score from the trained classifier. To assign genes with high importance scores 
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to each cluster, for each gene with a high importance score, it clusters the mean log expression 

levels of all clusters into 3 groups using the k-means algorithm, and assigns each of the 3 groups 

as strongly up-regulated, weakly up-regulated and down-regulated based on the mean log 

expression of the group. It then removes the group with largest size (as not significant) and 

assigns the gene to clusters in the other two groups. 

 

Marker-based cell type annotation 

To annotate cell types, Pegasus first loads known marker genes for each cell type from a user-

provided JSON file. Each marker gene is associated with a sign (positive or negative) and a 

weight. The format of the JSON file is defined at [https://cumulus-

doc.readthedocs.io/en/latest/cumulus.html#how-cell-type-annotation-works]. For each cluster, 

Pegasus enumerates all putative cell types and calculates a score between 0 and 1 per cell type, 

describing how likely cells from the cluster are to be of the specific cell type. To calculate the 

score, Pegasus assigns each marker a maximum impact value of 2. For a positive marker, if it is 

not up-regulated, its impact value is 0. Otherwise, if U� the fold change in the percentage of cells 

expressing this marker (within vs. outside of the cluster) satisfies U� ' 1.5, it has an impact 

value of 2 and is recorded as a strong supporting marker. If U� & 1.5, it has an impact value of 

1 �  2� � 


&.�
 and is recorded as a weak supporting marker. For a negative marker, if it is up-

regulated, its impact value is 0. If it is neither up-regulated nor down-regulated, its impact value 

is 1. Otherwise, if 



2�
' 1.5, it has an impact value of 2 and is recorded as a strong supporting 

marker. If 



2�
& 1.5, it has an impact value of 1 � 
/2� � 


&.�
 and is recorded as a weak supporting 

marker. The overall score is calculated as the ratio between the sum of impact values and the 

sum of weights multiplied by 2 from all expressed markers. Pegasus will evaluate all possible 
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cell subtypes recursively if the current cell type score is no less than 0.5. Finally, Pegasus reports 

putative cell types with scores no less than minimum_report_score in descending order with 

respect to cell type scores for all clusters. By default, Pegasus sets minimum_report_score = 0.5. 

 

BENCHMARKING EXPERIMENTS 

Benchmarked tools and benchmarking environments 

We tested each component of Pegasus v0.15.0 and benchmarked it with SCANPY v1.4.4.post1 

and Seurat v3.1.0 on key analysis tasks (Supplementary Tables 1 and 2) using a high-

performance local server (Cloud-based times as part of a Cumulus workflow are in Table 1). The 

server has 28 CPU threads (1 Intel Xeon E5-2660v4 processor; 14-Core 2.00GHz, 35MB Cache) 

and 256 GB DDR4 ECC registered memory. In benchmarking, we used all 28 CPU threads 

whenever possible. For reproducibility, we have prepared a Docker image that has all three tools 

and their dependencies installed. This Docker image also contains instructions on how to 

reproduce the results shown in this manuscript. The Docker image is available at 

[https://hub.docker.com/r/cumulusprod/cumulus-experiment].  

 

We also benchmarked Cumulus on cloud with running Cell Ranger + Seurat/SCANPY pipeline 

(on a 32 CPU-thread, 120GB Google Cloud virtual machine) on the bone marrow dataset. We 

used Cell Ranger v2.2.0 for this benchmark. The virtual machine for running Seurat (v3.1.0) and 

SCANPY (v1.4.4.post1) is created on Google compute engine zone us-west1-d, the same zone 

on which Cumulus ran its analysis step.  

 

Bone marrow datasets pre-processing 
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We preprocessed the bone marrow data set by filtering out any cell with fewer than 500 genes or 

more than 6,000 genes, or where at least 10% of UMIs were from mitochondrial genes, retaining 

274,182 cells. We then selected robust genes with � � 0.05% , normalized expression into 

TP100K and log-transformed the expression matrix. 

 

HVG selection  

We applied the standard and new HVG selection procedures to the log-transformed expression 

matrix separately, followed by the same downstream analyses on the resulting two sets of HVGs, 

using Pegasus with default parameters: batch correction, dimensionality reduction via PCA, k-

NN graph construction, community detection using the Louvain algorithm, 2D visualization 

using FIt-SNE, differential expression analysis and marker-based cell type annotation. 

 

We compared the highly variable genes selected using the two procedures with a list of immune 

genes curated by the ImmPort34 team (Supplementary Fig. 1b) from 

[https://www.immport.org/shared/geneData/GOappend1.xls], which contains 1,534 genes (with 

duplicates) annotated with immune-related gene ontology (GO) terms. The comparison results 

are available in Supplementary Data 2. 

 

We evaluated the similarity between clusters obtained using the two HVG selection procedures 

with the adjusted mutual information61 (AMI) score defined below: 

�`\��, �� � \��, �� % [i\��, ��k12 "���� � ����# % [i\��, ��k ,          �39� 

where �  and �  represent two cluster settings, �  denotes entropy and \  denotes mutual 

information. 
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Benchmarking of batch correction methods 

We benchmarked Pegasus, ComBat, MNN, BBKNN and Seurat V3 using a subset of data from 

the bone marrow dataset, consisting of the first 10x Genomics channel from each of the 8 donors. 

Following the preprocessing steps above, we retained 34,654 cells. We then applied the new 

HVG selection procedure and downstream analyses described above (without batch correction) 

to obtain cell-type-annotated clusters (Supplementary Fig. 2b).  

 

The clustering results showed one particular donor-specific effect (Supplementary Fig. 2b), 

with one donor-3-specific CD14+ monocyte cluster and one donor-3-specific T cell cluster. Since 

we do not want to count this donor-specific effect as “biology” when we compute kSIM 

acceptance rates, we constructed a ground truth for kSIM acceptance rates as follows. First, we 

merged the monocyte cluster into the larger monocyte cluster to its right. The donor-3-specific T 

cell cluster is adjacent to five other T cell clusters. We trained a LightGBM30 classifier that 

predicted cluster labels based on log expression levels using cells from the 5 clusters (90% 

training data + 10% validation data). The classifier’s accuracy on test data was 85.4%. We then 

used this classifier to assign each cell in the donor-3-specific T cell cluster into one of the 5 

adjacent T cell clusters. 

 

To generate batch-corrected results, we applied the same preprocessing step to the 34,654 cell 

dataset, selected top 2,000 HVGs using the new batch-aware HVG selection procedure, and 

extracted the HVG-specific gene-count matrix. With Pegasus, we applied the L/S adjustment 

method to the matrix to obtain batch-corrected expression levels. With SCANPY, we obtained 
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ComBat-corrected and MNN-corrected expression levels. With Seurat v3 we obtained Seurat-

corrected expression levels. We performed PCA, k-NN graph construction, and UMAP on the 

corrected expression matrices. With BBKNN, we used its output k-NN graph to replace 

Pegasus’s k-NN graph and kept other analyses the same.  

 

We used kBET and kSIM acceptance rates on UMAP 2D coordinates. For kBET acceptance rate, 

we set C � 25 and I � 0.05. For kSIM acceptance rate, we set C � 25 and ^ � 0.9. 

 

Benchmarking approximate nearest neighbor finding methods 

We benchmarked the approximate nearest neighbor finding algorithms used by Pegasus, 

SCANPY and Seurat on the bone marrow dataset with default parameters. Pegasus ran the 

HNSW algorithm in full speed mode, SCANPY used the algorithm implemented in UMAP, and 

Seurat used the RcppAnnoy package at 

[https://cran.rstudio.com/web/packages/RcppAnnoy/index.html]. We ran the three methods on 

coordinates from the top 50 PCs produced by Pegasus and sought for top 100 nearest neighbors 

(including the cell itself). We also ran the brute force k-NN searching algorithm using scikit-

learn57 to compute the ground truth. We evaluated each method’s performance using recall, 

defined as the percentage of k nearest neighbors that are also in the ground truth, and speed. 

 

Diffusion pseudotime maps 

We preprocessed the bone marrow dataset, selected HVGs using the new procedure, corrected 

batch effects, ran PCA and k-NN graph construction as described in HVG selection section. We 

generated diffusion pseudotime maps (with the parameters noted in Fig. 2b and Supplementary 
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Fig. 4), visualized diffusion pseudotime maps using the FLE algorithm, and annotated the 

resulting trajectories using the cell type annotation described in the HVG selection section (with 

new HVG procedure). 

 

Spectral community detection algorithms 

We preprocessed the bone marrow dataset as described in HVG selection section, selected 

HVGs, corrected batch effects, ran PCA, k-NN graph construction, calculated a diffusion 

pseudotime map and performed 2D visualization using FIt-SNE with default parameters. We 

then generated different cluster settings using either the spectral clustering, Louvain, spectral-

Louvain, Leiden, or spectral-Leiden algorithm. We performed differential expression analysis 

and marker-based cell type annotation for each of the clusterings separately. 

 

Deep-learning-based visualization 

We preprocessed the bone marrow dataset as described in HVG selection section, selected 

HVGs, corrected batch effects, ran PCA, k-NN graph construction, diffusion pseudotime map 

calculation using default parameters. We then ran Net-tSNE vs. t-SNE, Net-UMAP vs. UMAP 

and Net-FLE vs. FLE and annotated each visualization using cell types calculated in the HVG 

selection section (with the new HVG procedure). 

 

Benchmarking Pegasus, SCANPY and Seurat on the full bone marrow dataset 

We benchmarked Pegasus, SCANPY and Seurat on 10 tasks using the full bone marrow data of 

274,182 cells. To ensure a fair comparison, whenever possible, all three methods received the 

same input computed using Pegasus with default parameters for each task. The only exception is 
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Seurat, which does not accept a pre-computed affinity matrix as input for clustering. Thus, we 

provided Seurat with pre-computed principal components (PCs) instead and asked it to compute 

the affinity matrix before clustering. In addition, we used the future [https://cran.r-

project.org/web/packages/future/] framework for parallelization as suggested at 

https://satijalab.org/seurat/v3.0/future_vignette.html. For the batch correction step, we made each 

10x channel as a separate batch, which resulted in 63 batches in total. We used Seurat v3’s 

integration method39, BBKNN38 and L/S adjustment method35 to correct batch effects in Seurat, 

SCANPY and Pegasus, respectively. For k-NN graph construction, we set k = 100 for all three 

methods and set Pegasus in full speed mode. For Louvain-like and Leiden-like clustering, 

Pegasus used spectral-Louvain and spectral-Leiden algorithms, and Seurat and SCANPY used 

Louvain and Leiden algorithms. For t-SNE-like visualization, Seurat and Pegasus used FIt-SNE 

and SCANPY used Multicore-TSNE. For UMAP-like visualization, Pegasus used Net-UMAP, 

and Seurat and SCANPY used UMAP. We excluded the k-NN graph construction times for 

SCANPY and Pegasus, because it was accounted for in the k-NN graph construction task. Seurat 

calculates the k-NN graph again in the UMAP step using the umap Python package and thus we 

included k-NN graph construction time. For FLE-like visualization, Pegasus used Net-FLE and 

SCANPY used the fa2 package [https://github.com/bhargavchippada/forceatlas2]. The function 

calls, commands and parameters used for the three methods can be found in Supplementary 

Note 2. 

 

Benchmarking Pegasus, SCANPY and Seurat v3 on the 1.3 million mouse brain dataset 

We obtained the 1.3 million mouse brain data set from https://support.10xgenomics.com/single-

cell-gene-expression/datasets/1.3.0/1M_neurons. The unfiltered data contains 1,306,127 cell 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2019. ; https://doi.org/10.1101/823682doi: bioRxiv preprint 

https://doi.org/10.1101/823682
http://creativecommons.org/licenses/by-nc-nd/4.0/


 45

barcodes. We preprocessed this data set by filtering out any cell with fewer than 500 genes or 

more than 6,000 genes, or with at least 10% of UMIs from mitochondrial genes. After filtration, 

we retained 1,286,072 cells. We selected robust genes with � � 0.05%, normalized expression 

into TP100K and log-transformed the expression matrix. Next, we benchmarked the three 

methods as described above. Since the fa2 package was too slow for our dataset, instead of 

running it for 5,000 iterations, we only ran it for 500 iterations and estimated total time by 

multiplying a factor of 10. The function calls, commands and parameters used for the three 

methods can be found in Supplementary Note 2. 

 

Cloud computing execution time and cost  

Cumulus utilizes Google Cloud Platform’s preemptible instances. Jobs running in preemptible 

instances can be kicked off by others’ jobs with higher priority but are 5x cheaper. By default, 

Cumulus allows up to 2 tries using preemptible instances before switching to non-kicked-off 

instances. Cumulus execution time is read out from Terra execution logs. To estimate the 

execution time of mkfastq and count steps on a 32 CPU-threads virtual machine (Table 1), we 

only sum over Terra-reported Docker running times of successful mkfastq and count runs, 

respectively. The analysis time for Seurat and SCANPY are estimated by running each tool on a 

same 32 CPU threads, 120 GB memory Google Cloud virtual machine instance. Since both 

Seurat and SCANPY do not have functions to aggregate 10x samples into a big count matrix, we 

used the aggregated matrix produced by Cumulus as their input and excluded the matrix 

aggregation time. In addition, since Seurat’s batch correction failed in the previous 

benchmarking (Fig. 2e), we reduced the number of batches from 63 to 8 (one per donor) and the 

number of PCs used from 30 (default) to 20. See Supplementary Note 2 for details on how 
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Seurat, SCANPY and Cumulus analysis step were run. The total computational costs were 

reported by Terra and we calculated the average cost per sample by dividing 63.  
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