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Abstract

The temporal and spectral characteristics of tonic-clonic seizures are investigated using

a neural field model of the corticothalamic system in the presence of a temporally

varying connection strength between the cerebral cortex and thalamus. Increasing

connection strength drives the system into ∼ 10 Hz seizure oscillations once a threshold

is passed and a subcritical Hopf bifurcation occurs. In this study, the spectral and

temporal characteristics of tonic-clonic seizures are explored as functions of the relevant

properties of physiological connection strengths, such as maximum strength, time above

threshold, and the ramp rate at which the strength increases or decreases. Analysis

shows that the seizure onset time decreases with the maximum connection strength and

time above threshold, but increases with the ramp rate. Seizure duration and offset

time increase with maximum connection strength, time above threshold, and rate of

change. Spectral analysis reveals that the power of nonlinear harmonics and the

duration of the oscillations increase as the maximum connection strength and the time

above threshold increase. A secondary limit cycle at ∼ 18 Hz, termed a saddle-cycle, is

also seen during seizure onset and becomes more prominent and robust with increasing

ramp rate. If the time above the threshold is too small, the system does not reach the
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10 Hz limit cycle, and only exhibits 18 Hz saddle-cycle oscillations. It is also seen that

the times to reach the saturated large amplitude limit-cycle seizure oscillation from

both the instability threshold and from the end of the saddle-cycle oscillations are

inversely proportional to the square root of the ramp rate.

Author Summary

Epilepsy, which is characterized by recurrent seizures, affects around 1% of the world1

population at some point in their lives. Tonic-clonic seizures are the most commonly2

encountered primary generalized seizures and it is widely considered that they can be3

induced by an increase in the connection strength between the cerebral cortex and the4

thalamus. In this paper, we analyze the detailed dynamics of tonic-clonic seizures along5

with their dependence on the parameters of the changing connection strength. We study6

the relationship of the seizure onset, offset, oscillation strength, and oscillation7

frequency to the duration, amplitude, and rate of change of the connection strength. A8

detailed understanding of the dynamics and their dependence on the physiological9

parameters of the brain may explain the variability of seizure dynamics among patients.10

It may also help to constitute successful seizure prediction.11

Introduction12

Tonic-clonic seizures, formerly known as grand mal seizures, are the most frequently13

encountered generalized seizures [1]. These seizures have a tonic phase, which is14

characterized by an initial increase in tone of certain muscles, followed by a clonic phase,15

which involves bilateral symmetric jerking of the extremities [2]. Tonic-clonic seizures16

have markedly different pre- and post-ictal electroencephalograms (EEG) and typically17

last 1 to 3 minutes. Primary generalized seizures, which is one of the most commonly18

seen seizures, begin simultaneously across the whole cortex [1].19

A number of authors have investigated the mechanisms of seizures using the neural20

network and neural field approaches [3–13]. Many authors have proposed that21

transitions from healthy state to the seizure state occur via bifurcations upon changing22

physiological parameters [3–9,12,13]. For example, depending on the instability region,23
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increasing excitatory connection strengths between cortex and thalamus drives the24

system into ∼ 10 Hz and ∼ 3 Hz seizure oscillations via a subcritical and supercritical25

Hopf bifurcation, respectively, once a critical value (i.e., a threshold) is26

passed [3–9,12, 13]. Results from in vivo studies have provided evidence that changes in27

corticothalamic connection strengths can induce seizures [12,14–16], which possibly28

occur due to a key cellular event triggered by GABAB (metabotropic transmembrane29

receptors for gamma-aminobutyric acid) mediated mechanisms underlying the reduction30

of the threshold for Ca2+ spikes [1, 2] due to the effects of drugs, excess or deficiency of31

neurotransmitters or neuromodulators [1, 2, 17]. However, the detailed dynamics of32

generalized tonic-clonic seizure including its dependence to the changing profile of the33

corticothalamic connection strength have never been studied in detail. The dependence34

of the spectral characteristics like the frequencies of the oscillations on the parameters35

of the changing connection strength have also not been studied.36

In this study, we apply a widely used neural field model of the corticothalamic37

system to study the dynamics of tonic-clonic seizures [3–5,7, 8, 18–20]. Neural field38

theory (NFT) is a continuum approach that predicts the average dynamics of large39

numbers of neurons [21,22]. The specific model used here [23–26] has reproduced and40

unified many observed features of brain activity based on the physiology, including41

evoked response potentials [27], activity spectra [28], arousal state dynamics, age-related42

changes in the physiology of the brain [29], and many other43

phenomena [3–5,7, 8, 18–20,30–32]. The above NFT model has also been used in seizure44

studies [3–5,7], where it has successfully unified features of tonic-clonic and absence45

seizures [3–5,7], and explain the dependence of the dynamics and interictal oscillations46

during absence seizures on the parameters of the changing connection strength between47

the cortex and the thalamus [33,34]. Previous studies have shown that a gradual48

increase of the connection strength between the cortex and thalamus near the alpha49

instability boundary shown in [8] in this model can initiate nonlinear dynamics whose50

characteristics closely resemble those of tonic-clonic seizures as a result of a subcritical51

Hopf bifurcation that destabilizes the ∼ 10 Hz alpha resonance [3, 4, 19, 31]. Changes in52

other connection strengths also introduce similar dynamics because of the universality53

properties of the Hopf bifurcation [12].54

The general property and bifurcation mechanism of the resultant tonic-clonic seizure55

PLOS 3/30

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 28, 2019. ; https://doi.org/10.1101/821330doi: bioRxiv preprint 

https://doi.org/10.1101/821330
http://creativecommons.org/licenses/by/4.0/


has been studied in detail in [3]. However, the impact of underlying parameter changes56

of the corticothalamic connectivity strength on tonic-clonic seizure onset, dynamics, and57

termination have not been studied in detail. In particular, an extensive study like [33]58

on the dependence of the onset and termination of tonic-clonic seizure on the temporal59

form of the connection strength is necessary to understand the variability in seizure60

events, such as difference in the onset time and duration among different subjects, and61

to help lay the foundations for tonic-clonic seizure control strategies. These analysis are62

also necessary to explain the changes in harmonic structures seen in previous63

studies [35–37] during seizure. In sort, the aims are to understand the effects of64

physiological parameters on the temporal and spectral characteristics of seizure65

dynamics, including saddle-cycle oscillations [19].66

The outline of this paper is as follows: In the Results, we explore the general67

characteristics of seizure as well as the dependence of seizure dynamics on the temporal68

variation of connection strength. In the Discussion, we provide a summary and discuss69

possible applications of our outcomes and finally, in the Methods section, we present the70

corticothalamic neural field model along with the temporal variation function and the71

numerical methods.72

Results73

In this section we investigate the dynamical characteristics of model tonic-clonic seizures74

as well as the effects of the temporal variation of the corticothalamic connection75

strength, νse on the dynamics. For the investigation of general characteristics, we keep a76

constant maximum connection strength νmax, characteristic duration t2 − t1, and77

characteristic rise time ∆, and all other parameters listed in Table 1.78

To investigate the effect of the variation of νse on seizure dynamics we vary νmax, ∆,79

and t2 − t1 individually by keeping all other parameters constant. Figure 1(a) shows the80

variation of νse with time for the parameters values specified in Table 1.81

General characteristics of tonic-clonic seizures82

Three main regions are distinguished according to the dynamics of the cortical activity83

φe (cortical excitatory field) as illustrated in Fig. 1(b): Region I from 0− 50 s is the84
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pre-ictal state when νse is too small to initiate seizure-like oscillations; Region II from85

125− 175 s is the ictal state when νse is around its maximum value, νmax, and the86

system oscillates with maximum amplitude; and Region III from 250− 330 s is the87

post-ictal state, where νse returns to its baseline value, and oscillations start decreasing88

in amplitude until they completely cease.89

Figures 1(c) and (d) show the zoomed seizure onset and offset, respectively, which90

are the transitions from Region I to II, and from Region II to III, respectively.91

The normalized power spectrum in Region II is shown in Fig. 1(e). Figure 1(e)92

shows a dominant resonance at ∼ 10 Hz with multiple harmonics in Region II, where93

power decreases gradually with frequency.94

Dynamics of seizure onset95

Figure 1(b) shows that in Region I, the system remains in the steady state because νse is96

below the bifurcation threshold. A small increase in φe due to the increase of νse is also97

seen in this region. At t = tθ, which is the time at which νse crosses the linear instability98

threshold, the fixed point loses its stability, and ∼ 18 Hz oscillations appear. The first99

few oscillations are too small to be distinguished on this scale, but their envelope100

increases exponentially until t = tsc, when the trajectory spirals further outwards to a101

large amplitude 10 Hz limit cycle, as seen in Fig. 1(c); these 18 Hz oscillations are102

termed saddle-cycle oscillations because they are due to a saddle cycle located between103

the stable steady state and the stable large amplitude limit cycle attractor. The104

envelope of the 10 Hz oscillations continues to increase from t = tsc until t = tlc, when105

the system reaches the large amplitude limit cycle. At t ≈ tlc, the amplitude of the106

oscillations overshoots because νse is still rapidly increasing. Then, the amplitude of the107

oscillations increases gradually until νse = νmax in Region II, then decreases.108

Figure 1(c) shows a clearer view of saddle-cycle oscillations, and times tsc and tlc;109

where we define tlc to be the point of inflection.110

Dynamics of seizure offset111

In Fig. 1(d), we see that the amplitude of the oscillations decreases gradually from its112

peak during the ramp down of νse. More specifically, at t = tlc2, when νse crosses the113

offset bifurcation threshold νlc2 = 0.98 mV s [3], the large limit cycle loses stability and114
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Fig 1. Corticothalamic dynamics for temporally varying νse, with ∆ = 20 s and rest of
the parameters shown in Table 1. (a) Temporal profile of νse varying from ν0 to νmax

and back. Three different regions are identified as: I = pre-ictal state, II = ictal state,
and III = post-ictal state. (b) Cortical excitatory field φe vs. t, showing a 10 Hz
spike-wave oscillation. Individual oscillations can not be distinguished on this scale. (c)
Zoom of φe at seizure onset. (d) Zoom of φe at seizure offset. (e) Power spectrum of φe
in Region II. An arbitrary dB scaling is used because clinical EEG recordings involve
additional attenuation by structures between the cortex and the electrode, which we do
not model here.

the oscillation amplitude decreases steeply to approach the stable steady state in Region115

III.116

Differences between onset and offset dynamics117

Comparing Fig. 1(c) with Fig. 1(d), we see that νθ > νlc2, as expected for transitions118

due to a subcritical Hopf bifurcation. This is further seen in Fig. 2, where we see that119

the system bifurcates from the fixed point at νse = νθ and reaches the saturated large120

amplitude attractor at νse = νlc. As νse decreases, the large amplitude attractor121

becomes unstable at νse = νlc2 and the system returns toward the fixed point.122
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Fig 2. Hysteresis between seizure onset and offset. (a) νse vs. φe. Black color shows
the variation of φe during ramp up, i.e. during onset, and gray color shows the variation
of φe during ramp down, i.e. during offset. (b) A schematic diagram of the hysteresis.
Solid lines show stable states and dashed lines show unstable ones.

Analytical prediction of onset and offset transition times123

Paralleling the analytic prediction of the characteristic time required to develop absence124

seizures [33], we next predict characteristic tonic-clonic onset and offset times.125

For ν(t) ≈ νθ, the oscillation amplitude A obeys126

dA

dt
≈ C [ν(t)− νθ]A, (1)

where C is a constant, and ν(t) is the instantaneous value of νse. Because νse only127

varies with time t, we can make the approximation ν(t)− νθ ≈ c(t− tθ) near the128

threshold, when the oscillation starts at Aθ. This yields129

A = Aθ exp
[
c (t− tθ)2/2

]
. (2)

with c = Cdν(t)/dt|t=tθ ; then A = Alc at t = tlc130

exp

[
c(tlc − tθ)2

2

]
=
Alc
Aθ

, (3)

tlc − tθ =
k√

dν(t)/dt|t=tθ
, (4)

where k = [(2/C) ln(Alc/Aθ)]
1/2. Similar analysis predicts that the transition time131

tlc − tsc from the saddle-cycle attractor to the larger limit cycle also follows this scaling.132
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The decrease of oscillation amplitude during the ramp down period can be133

approximated as134

dA

dt
≈ −C ′ [ν(t)− νlc2]A, (5)

dA

dt
= −C ′′ [t− tlc2]A, (6)

where C ′ and C ′′ are constants, and tlc2 is the offset bifurcation threshold as mentioned135

in previous sections. This yields136

ln (A/Alc2) = −C
′′

2
(t− tlc2)

2
, (7)

which indicates a superexponential decrease during seizure offset.137

Dynamics during ictal state plateau138

Figure 3 shows the phase space trajectory of φe for the default parameters in Table 1,139

except ∆ = 2 s, which we use to see the saddle-cycle attractor more clearly. Figure 3(a)140

shows the trajectory of φe on the φe - dφe/dt plane. In the left edge of the figure, we141

see the evolving fixed point, which first appears as straight line and then moves towards142

the right with increasing νse. Once the system crosses the linear instability threshold,143

the fixed point becomes unstable and the trajectory spirals out to a large amplitude144

limit cycle attractor via an unstable saddle-cycle attractor. The amplitude of the large145

attractor increases gradually until νse = νmax, then decreases until νlc2, where it146

becomes unstable and the system spirals back to the stable fixed point; no saddle-cycle147

is seen during the inward spiral. Three segments of the trajectory are shown in Figs148

3(b) – (d), to clarify these dynamics. Figure 3(b) shows φe spiraling outward from the149

steady state to the saddle-cycle attractor with amplitude ≈ 30 s−1. Figure 3(c) shows150

the outward spiral from the saddle cycle to the limit cycle attractor with amplitude151

≈ 90 s−1. Figure 3(d) shows the inward spiral during ramp down of νse.152

Figure 4 shows the dynamic spectrum of φe from Fig. 1(b). A sudden appearance of153

10 Hz oscillation with multiple harmonics at t = tθ is seen. These harmonics resemble154

with the harmonics seen in [3], both experimentally and theoretically. The power of the155

harmonics decreases with harmonic number and their duration decreases slightly. We156
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Fig 3. Phase space trajectory of φe for ∆ = 2 s, and rest of the default parameters as
in Table 1. (a) Trajectory from from t = 5 s to t = 295 s. Initial small straight line
labeled with FP corresponds to the evolving fixed point; small dark gray segment
labeled with SC corresponds to the saddle-cycle attractor; black segment labeled with
LC corresponds to the large amplitude limit cycle attractor. The fixed point and center
of the clockwise limit cycle trajectory move from left to right during ramp up and right
to left during ramp down. (b) Trajectory from t = 104 s to t = 107 s. (c) Trajectory
from t = 114.5 s to t = 150 s. (d) Trajectory from t = 200 s to t = 295 s.

find a frequency broadening during the seizure onset at ∼ 113.5 s, due to the rapid157

change of the amplitude of the oscillations. Frequency broadening of the first few158

harmonics during seizure offset is also seen, and there is a slight frequency drop.159

Dynamics of corticothalamic seizure propagation160

Figures 5 (a) and (b) show the time series of the fields φr during onset and offset,161

respectively. Similarly, Figs 5 (c) and (d) show the time series of the fields φs during162

onset and offset.163

From these plots we observe that (i) during onset φr reaches much higher amplitudes164

than φe; and, (ii) the ratio between the amplitude of the small oscillations that develop165

after crossing the bifurcation and the amplitude of the saturated limit cycle is smaller166

for φe than it is for φr and φs.167

In order to study the interplay among φe, φr, and φs in more detail, we plot their168

limit cycle phase space trajectories and time series at νse ≈ νmax in Fig. 6. Figures 6(a)169

PLOS 9/30

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 28, 2019. ; https://doi.org/10.1101/821330doi: bioRxiv preprint 

https://doi.org/10.1101/821330
http://creativecommons.org/licenses/by/4.0/


Fig 4. Dynamic spectrum for νmax = 1.2 mV s with the parameters in Table 1. A
Hanning window of 600 data points, an overlap of 200 points, and sampling frequency of
200 Hz was used. The color bar shows the dB scale.

114 115 116 117
0

100

200

300

r (s
-1

)

214 215 216 217
0

50

100

150

114 115 116 117
t (s)

0

100

200

300

s (s
-1

)

214 215 216 217

t (s)

0

50

100

150

(a) (b)

(d)(c)

Fig 5. Time series of fields during seizure onset and offset: (a) φr at seizure onset. (b)
φr at seizure offset. (c) φs at seizure onset. (d) φs at seizure offset.
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and (b) show the time series and phase space trajectory of φe, respectively. Figures 6(c)170

and (d) show the time series and phase space trajectory of φr, respectively. A t0/2 time171

shift between the peaks of φe and φr is seen due to the propagation delay between these172

populations. We also see a wide minimum between two successive peaks of φr. The173

phase space in Fig. 6(d) shows similar trajectory to Fig. 6(d), but with greater174

amplitude. Figures 6(e) and (f) show the time series and phase space of φs, respectively,175

and they show an equal amplitude but wider peak than Figs 6(c) and (d). Figure 6176

shows that all three fields exhibit slightly different trajectories, with the higher177

amplitudes of φr and φs near the maximum firing rate.178

Close examination of Fig. 6 reveals the signal flow through the populations. A peak179

of φe reaches φr and φs simultaneously t0/2 later. The peak of φe coincides180

approximately with the bottom of the trough of φr, and a positive excitation with the181

maximum firing rate appears, which suppress φs. This suppression then reduce the182

excitation of φe a time t0/2 later and causes an exponential decay. A negative183

perturbation to φe results, which then propagates to the thalamus again and reduces184

the excitation of φr after a further time t0/2, which allows a positive excitation of φs185

almost immediately. This positive excitation then flows to φe and initializes the next186

cycle of the loop.187

In molecular level, the imbalance between inhibitory and excitatory conductances188

induced by blocking synaptic and voltage-gated inhibitory conductances, or by189

activating synaptic and voltage-gated excitatory conductances incorporates the positive190

feedback, which leads to seizures [17,38]. Seizures are suppressed by the opposite191

manipulations: increasing inhibition or decreasing excitation [17,38].192

Impact of temporal variation of νse on seizure dynamics193

In this section, we investigate the effects of the temporal variation of νse on the model194

seizure dynamics by varying the maximum connection strength νmax, duration t2 − t1,195

and rise time ∆, holding all other parameters at the values in Table 1.196

We first analyze the impact of the variation of νse on the overall dynamics of φe, as197

shown in Fig. 7. For νmax = 1 mV s in Fig. 7(a), φe increases with νse as shown in198

Fig. 16, then returns smoothly to the initial steady state value as νse returns to ν0.199
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Fig 6. Mid-seizure limit cycle dynamics of φe, φs, and φr from t = 149.7 s to t = 150 s
with other parameters as in Table 1. (a) Time series of φe at νse ≈ νmax. (b) Phase
space trajectory of φe. (c) φr at νse ≈ νmax. (d) Trajectory of φr. (e) φs at νse ≈ νmax.
(f) Trajectory of φs. P and R are successive minimums and Q is the intermediate
maximum.

Figures 7(b) and (c) show that increasing νmax, yields periodic oscillations of increasing200

magnitude as corticothalamic feedback strengthens; oscillations also start earlier and are201

damped away later because the system crosses onset threshold earlier and offset202

threshold later for higher νmax. However, the system does not return to its initial steady203

state for νmax > 1.542 mV s; instead it moves to the high firing steady state of Fig. 16.204

Figures 7(d) – (f) show the effects of varying ramp width ∆ from 2 s to 60 s. Figure205

7(d) shows that for the step-like variation of νse for ∆ = 2 s, the oscillations rapidly206

reach maximum amplitude after the transition to the large amplitude attractor and also207

decrease sharply from their maximum to the initial steady state once the system crosses208

the threshold during ramp down. Figures 7(e) and (f) show that the slower ramp for209

larger ∆ implies that the amplitude of the oscillations during seizure onset and offset210

decreases more gradually.211

Figures 7(g) – (i) show the effects of variation of the characteristic time t2 − t1 from212

20 s to 100 s. As expected, the duration of seizure oscillations increases with t2 − t1.213
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Fig 7. Time series for different temporal profiles of νse, with other parameters as in
Table 1. (a) φe vs. t for νmax = 1 mV s. Individual oscillations cannot be distinguished.
(b) νmax = 1.05 mV s. (c) νmax = 1.25 mV s. (d) ∆ = 2 s. (e) ∆ = 20 s. (f) ∆ = 60 s.
(g) t2 − t1 = 20 s. (h) t2 − t1 = 40 s. (i) t2 − t1 = 60 s.

Seizure onset time214

Figure 8 quantifies the effects of νmax and ∆ on seizure onset. We do not revisit the215

variation with t2 − t1 because its effects were already discussed in the previous216

subsection.217

Figure 8(a) shows that tθ decreases with increasing νmax, because the system reaches218

νθ earlier for a higher νmax. Figure 8(b) shows the variation of tθ with ∆. For ∆ < 10 s,219

tθ increases slightly with ∆, because due to the high rate of change, νse rapidly220

approaches its maximum, crossing all the bifurcation values. At longer ∆ ≥ 10 s, the221

temporal profile of νse becomes smooth and flat topped like Fig. 1(a) and νse gradually222

ramps up to the bifurcation point, so the system crosses the threshold later for a larger223

∆, resulting in a decrease in tθ.224

Dynamic spectrum225

In this section we discuss the effects of changing the temporal profile of νse on the power226

spectrum of φe and use its evolution to further clarify the occurrence of saddle cycles.227

Figure 9(a) shows the dynamic spectrum for νmax = 1.05 mV s. During the seizure,228

we observe a peak at approximately ∼ 10 Hz with several harmonics. We also find lower229
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Fig 8. Effects of temporal variation of νse on seizure onset with parameters as in Table
1. (a) tθ vs. νmax. (b) tθ vs. ∆.

frequency drop and broadening during seizure onset and offset as in Fig. 4. Figure 9(b)230

shows that for νmax = 1.15 mV s, harmonics have greater duration and power than231

Fig. 9(a); frequency broadening is also more prominent. Figure 9(c) shows that for232

νmax = 1.55 mV s, there is no oscillation after t = 143.52 s. A detailed investigation233

shows that the power of the peaks increases significantly with νmax and t2 − t1, but234

decreases slightly with ∆, especially at higher order harmonics. A small peak around235

205 s shows that the system returns to the initial steady state via small oscillation after236

it crosses the offset bifurcation.237

Characteristic transition times238

In this section we test the analytic prediction made in earlier sections. Figure 10(a)239

shows tlc − tθ vs. (dνse/dt)
−1/2

. A least-squares fit to these data yields240

tlc − tθ = a(dνse/dt)
− 1

2 − b, (8)

with a = (0.042± 0.004) V1/2 s and b = (0.9± 1.4) s, which is consistent with Eq. (4).241

Figure 10(b) shows (dνse/dt)
−1/2

vs. tlc − tsc. A least-squares fit yields242

tlc − tsc = a′(dνse/dt)
− 1

2 + b′, (9)
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Fig 9. Dynamic spectrum vs. νmax for the parameters in Table 1. The power density of
the harmonics is calculated using a Hanning window of 600 data points, an overlap of
200 points, and sampling frequency of 200 Hz, the color bar at top shows the dB scale.
(a) Dynamic spectrum for νmax = 1.05 mV s. (b) νmax = 1.15 mV s. (c) νmax = 1.55
mV s.

with a′ = (0.003± 0.001) V1/2 s and b′ = (0.0± 0.2) s, which has the same scaling as243

Eq. (4).244

Figure 10(c) shows ln(A/Alc2) vs. (t− tlc2)2 for ∆ = 10 s, which follows Eq. (7)245

until the amplitudes of the oscillations start to decrease super-exponentially towards the246

steady state. A least-squares fit to the linear decrease yields247

ln (A/Alc2) = −a′′ (t− tlc2)
2 − b′′. (10)

with a′′ = (0.0116± 0.0002) s−2 and b′′ = (0.018± 0.004). The figure shows that the248

decrease of the envelope follow the linear fit for a relatively short time, after which the249

decrease becomes steeper. By using Eqs (2) and (3), it can be also shown that decrease250

within the linear region also follows the same scaling as Eq. (4).251

Saddle Cycle252

Previously, we mentioned the presence of a small amplitude ∼ 18 Hz saddle cycle. The253

system orbits there for few seconds, then spirals out towards the large amplitude limit254
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Fig 10. Dependence of seizure transition times on (dνse/dt)
−1/2

with the default

parameters as in Table 1 and ∆ ranges from 2 s to 50 s. (a) tlc − tθ vs. (dνse/dt)
−1/2

;

(b) tlc − tsc vs. (dνse/dt)
−1/2

, and (c) ln(A/Alc2) vs. (t− tlc2)2 for ∆ = 10 s and time
ranges from 190 s to 250 s. Error bar represent uncertainties of the least-squares fits.
Points with no error bars are not considered for the least-squares fit.

cycle attractor. However, this saddle-cycle is not observed in all cases, for example, a255

colose zoom near the onset of all subfigures of Fig. 7 will show that the small amplitude256

saddle-cycle oscillations like Fig. 1(c) are only prominent in Figs 7(c) and (d). Here, we257

explore the dependence of the saddle-cycle oscillations on νmax and ∆.258

Figure 11 shows the variation of saddle-cycle oscillations with respect to νmax, with259

other parameters as in Table 1. Figure 11(a) shows the phase space trajectory for260

νmax = 1.15 mV s. No saddle-cycle attractor is seen in this figure. Figure 11(b) shows261

the trajectory for νmax = 1.25 mV s. A small saddle-cycle attractor is seen between the262

fixed point and the large amplitude attractor. Figures 11(c) and (d) show the263

trajectories for νmax = 1.35 mV s and 1.45 mV s, respectively. The saddle cycle264

increases in size with νmax. A similar investigation shows that similar phenomena occur265

when ∆ is varied, with the saddle cycle being most prominent for small ∆, completely266

disappearing for ∆ & 20 s.267

To understand the relation between the saddle-cycle oscillation and rate of change of268

νse more clearly, we calculate the power spectrum for different νmax and ∆. Figure 12(a)269

shows the variation of the power spectrum with νmax. For a small νmax, there is no270

PLOS 16/30

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 28, 2019. ; https://doi.org/10.1101/821330doi: bioRxiv preprint 

https://doi.org/10.1101/821330
http://creativecommons.org/licenses/by/4.0/


Fig 11. Effects of variation of νmax on saddle-cycle with rest of the parameters as in
Table 1. (a) Phase space trajectory for νmax = 1.15 mV s. (b) Trajectory for
νmax = 1.25 mV s.(c) Trajectory for νmax = 1.35 mV s. (d) Trajectory for νmax = 1.45
mV s.

Fig 12. (Color online) Variation in the power of the saddle-cycle oscillations with rest
of the parameters in Table 1. (a) Power spectrum vs. νmax. (b) Power spectrum vs. ∆.
Legends show the corresponding values of νmax and ∆.

peak around 18 Hz, but a peak at approximately 18 Hz appears when νmax ≥ 1.2 mV s271

and becomes more prominent and strong with increasing νmax. Figure 12(b) shows that272

the power of the peak around 18 Hz decreases with ∆ and disappears for ∆ & 20 s.273

These results imply that the presence of saddle-cycle oscillations depends on the rate274

of change of of νse. Figure 13 illustrates the presence or absence of saddle-cycle275

oscillations for 236 different combinations of νse and ∆ as a function of the value of276

dνse/dt. When dνse/dt < 7× 10−3 mV, there are no saddle-cycle oscillations; for277

dνse/dt > 9× 10−3 mV, the system always exhibits saddle-cycle oscillations; while for278

7× 10−3 . dνse/dt . 9× 10−3 mV, there is a narrow mixed region where the presence279

of saddle cycle cannot be predicted solely from the rate of change of νse.280
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Fig 13. Dependence of saddle-cycle oscillations on dνse/dt. Gray crosses show the
presence of a saddle-cycle and black crosses show its absence.

In order to see why saddle cycles are only seen for high dνse/dt, we show the time281

evolution of 10 Hz and 18 Hz frequency peaks for ∆ = 2 s and ∆ = 50 s in Fig. 14282

during seizure onset with other parameters as in Table 1. In Fig. 14(a), for ∆ = 50 s283

and dνse/dt = 0.003 mV, the 10 Hz peak always rise faster than the 18 Hz peak, and284

hence, always has more power and dominates the spectrum; no saddle cycles are seen in285

the trajectory. On the other hand, in Fig. 14(b), for ∆ = 2 s and dνse/dt = 0.03 mV,286

the 18 Hz peak rises faster than the 10 Hz peak during onset so there is a ∼ 2 s window287

in which the 18 Hz peak dominates and hence, the system is seen to exhibit saddle-cycle288

oscillations during onset in Fig. 1, after which the 10 Hz peak dominates. Now, since, νθ289

is a the bifurcation threshold and does not depend on the temporal profile, but νlc290

depends on the temporal profile and the time to reach the 10 Hz limit cycle (i.e.,291

tlc − tθ), we conclude that νlc is the parameter that defines the existence of the saddle292

cycle. The system will exhibit saddle cycle oscillation only if νsc > νlc at tsc.293

Discussion294

We have used an established neural field model of the corticothalamic system [3] to295

study the dependence of tonic-clonic seizures on the temporal profile of a296

corticothalamic connection strength νse that induces seizures. The effects of varying297

other connection strengths can also be qualitatively predicted using these outcomes298

because they will exhibit similar dynamics due to the universality properties of the Hopf299

bifurcation. Also, the function [Eq. (20)] used to vary the connection strength is an300

approximation of what seems to occur in living systems. This function is an301
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Fig 14. Temporal variation of frequency peaks during seizure onset; black solid line
shows the ∼ 18 Hz peak; gray dashed line shows the ∼ 10 Hz peak with parameters
from Table 1. (a) ∆ = 50 s; (b) ∆ = 2 s.

improvement over previous piece-wise linear functions [3]. The parameters and the302

shape of Eq. (20) could be customized in the future using experimental data. The key303

outcomes are:304

(i) The system exhibits ∼10 Hz limit cycle oscillations once the connection strength305

crosses the bifurcation threshold of νθ = 1.025 mV s, which is the characteristic306

frequency of tonic-clonic seizure via a subcritical Hopf bifurcation. The system returns307

to the resting equilibrium when the connection strength decreases below the offset308

threshold, νlc2 = 0.98 mV s. The difference in onset and offset bifurcation values causes309

hysteresis; consistent with previously published results that used piecewise linear310

variation of νse, rather than the present more realistic continuous gradual variation.311

(ii) For νmax & 1.542 mV, the system moves to another steady state near maximum312

firing rate and only returns to the initial steady state once νse returns below an offset313

threshold.314

(iii) The amplitude of φe increases with the maximum connection strength, νmax,315

because an increase of the connectivity strength increases the strength of the positive316

feedback loop between the cortex and the thalamus.317

(iv) Because increasing the maximum connection strength νmax increases the318

amplitudes of the oscillations, it increases the power and the characteristic number of319

harmonics. The power of the harmonics also increases with the seizure duration t2 − t1,320

but decreases slightly with the ramp duration ∆.321
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(v) The characteristic transition times required to reach the saturated limit cycle322

oscillation from the seizure threshold or the end of the saddle-cycle oscillations to the323

steady state are predicted and verified numerically to be inversely proportional to the324

square root of the rate of change of the connection strength.325

(vi) The system can also show transient ∼ 18 Hz saddle-cycle oscillation at the326

beginning of the seizure for high dνse/dt before moving to the 10 Hz attractor. These327

saddle-cycles become more prominent as dνse/dt increases; a system with328

dνse/dt < 7× 10−3 mV never exhibits saddle-cycles, whereas one with329

dνse/dt > 9× 10−3 mV always does.330

Overall, the present study enables the varying spectral and temporal characteristics331

of seizures to be related to underlying physiological changes of the brain, such as changes332

in the connection strength between the cortex and the thalamus. The outcomes can be333

used for explaining the variability of seizure onset properties and seizure frequency334

across subjects by examining the temporal and spectral characteristics of seizure [39–41].335

It may thus be possible to constrain the physiological properties of the corticothalamic336

connection strength dynamics of a subject by comparing the wave properties of seizure337

oscillations, such as amplitude, and frequency, with theory. Real-time fitting of the338

theoretical dynamics to observed waveforms may also be feasible, leading to the339

possibility of implementing feedback control systems based on the dynamics.340

Methods341

In this section, we present a brief description of the corticothalamic neural field model342

used, along with the form of temporal variation of corticothalamic coupling343

strength [3, 4, 8].344

Corticothalamic Field Model345

To investigate the dynamics of tonic-clonic seizure, we use the neural field model of the346

corticothalamic system seen in Fig. 15. In this study we use the same analytical model347

of [33], but in different parametric regime suitable to study the tonic-clonic seizure. The348

neural populations are denoted as: e = excitatory cortical; i = inhibitory cortical; s =349

thalamic relay neurons; r = thalamic reticular nucleus; and n = external inputs. The350
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dynamical variables within each neural population a are the local mean cell-body351

potential Va, the mean rate of firing at the cell-body Qa, and the propagating axonal352

fields φa. The firing rates Qa are related to the potentials Va by the response function

e

i

r

s

Fig 15. Schematic diagram of the corticothalamic model system. The neural
populations shown are cortical excitatory (e), inhibitory (i), thalamic reticular (r),
thalamic relay (s), and n = external inputs. The parameter νab quantifies the
connection to population a from population b. Inhibitory connections are shown with
dashed lines.

353

Qa(r, t) = S[Va(r, t)], (11)

where S is a smooth sigmoidal function that increases from 0 to Qmax as Va increases354

from −∞ to ∞, with355

S(Va) =
Qmax

1 + exp[−π(Va − θ)/σ
√

3]
, (12)

where θ is the mean neural firing threshold, σ is the standard deviation of this356

threshold, and Qmax is the maximum firing rate [3, 8].357

In each neural population, firing rates Qa generate propagating axonal fields φa that358

approximately obey the damped wave equation [3, 8]359

Daφa(r, t) = Qa(r, t), (13)
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where the spatiotemporal differential operator Da is360

Da =
1

γ2a

∂2

∂t2
+

2

γa

∂

∂t
+ 1− r2a∇2, (14)

where γa = va/ra is the damping rate, ra and va are the characteristic range and361

conduction velocity of axons of type a, and ∇2 is the Laplacian operator. The smallness362

of ri, rs, and rr enables us to set γa ' ∞ except for a = e. The cell-body potential Va363

results after postsynaptic potentials have propagated through the dendritic tree and364

then been summed as their resulting currents charge the soma. For excitatory and365

inhibitory neurons within the cortex, this is approximated via the second-order366

delay-differential equation [8]367

DαVa(r, t) = νaeφe(r, t) + νaiφi(r, t) + νasφs(r, t− t0/2), (15)

where a = e, i and the temporal differential operator is given by368

Dα =
1

αβ

d2

dt2
+

(
1

α
+

1

β

)
d

dt
+ 1. (16)

The quantities α and β in Eq. (16) are the inverse decay and rise times, respectively, of369

the cell-body potential produced by an impulse at a dendritic synapse. Note that input370

from the thalamus to the cortex is delayed in Eq. (15) by a propagation time t0/2. For371

neurons within the specific and reticular nuclei of the thalamus, it is the input from the372

cortex that is time delayed, so373

DαVa(r, t) = νaeφe(r, t− t0/2) + νasφs(r, t) + νarφr(r, t) + νanφn(r, t), (17)

where a = s, r. The connection strengths are given by νab = Nabsab , where Nab is the374

mean number of synapses to neurons of type a from type b and sab is the strength of375

the response in neurons a to a unit signal from neurons of type b. The final term on the376

right-hand side of Eq. (17) describes inputs from outside the corticothalamic system. In377

order to simplify the model we only include the connections shown in Fig. 15, so only 10378

of the possible 16 connections between the four neural populations are nonzero [8]. We379

also assume the random intracortical connectivity and the number of connections380
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between populations is proportional to the number of synapses [42,43]. This random381

connectivity assumption provides Nib = Neb for all b, so νee = νie, νei = νii and382

νes = νis [30].383

Setting all spatial and temporal derivatives in Eqs (12)− (17) to zero determines384

spatially uniform corticothalamic steady states. The steady state firing rate, φ
(0)
e of φe385

is then given by [18]386

S−1(φ(0)e )− (νee + νei)φ
(0)
e = νesS

{
νseφ

(0)
e + νsrS

[
νreφ

(0)
e

+(νrs/νes)
(
S−1(φ(0)e )− (νee + νei)φ

(0)
e

)]
+ νsnφ

(0)
n

}
. (18)

The properties of steady states in the corticothalamic model have been studied387

extensively in [8, 18], and we use the outcomes to identify the stable and unstable388

regions of the steady state. Figure 16 shows the steady state dependence of φ
(0)
e on νse389

with other parameters as in Table 1. It is seen that there are two stable steady state390

solutions: one corresponds to low mean firing rate and another to very high mean firing391

rate [18]. The low firing steady state was identified with normal states of brain activity392

in previous studies [8, 26]. The low firing-rate fixed point loses its stability at νse = νθ.393

A steep increase in φ
(0)
e is seen near νi because the increasing νse push the sigmoid from394

its minimum by increasing the νseφ
(0)
e in Eq. (18), which results in an increase of the395

gain between the thalamus and the cortex. With further increase of νse, the system396

eventually moves to a steady state with near-maximum firing rate. This high firing397

steady state is beyond the scope of our model because it will lead to effects such as398

hypoxia, which are not included here.399

Temporal Ramping400

Brain activity propagates via the coupling of the various neuronal populations. Previous401

studies have shown that a gradual ramp-up of the coupling strength between the402

neuronal populations can lead from a stable steady state to periodic seizure403

oscillations [3, 33]. It is also seen that the dynamical and spectral characteristics of the404

resultant seizure-like oscillations depend on the physiological properties of the ramp of405

the coupling strength, such as, the maximum amplitude of the ramp, ramp rate, and406

characteristic duration [33].407
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Fig 16. (color online) Steady states solution of the corticothalamic system for the
variation of νse for tonic-clonic seizure. Black lines and the letter ‘S’ represent the
stable steady state, and red lines and the letter ‘U’ represent the unstable steady states.
Here νθ is the threshold value when the stable steady state becomes unstable. The inset
shows zoomed view of the area around νθ.

In this paper, we ramp the coupling strength νse from an initial value ν0 to a408

maximum value νmax and back to see the impact of the ramp characteristics on409

tonic-clonic seizures, with [33]410

νse = ν0 + (νmax − ν0)

[
f(t)− fmin

fmax − fmin

]
, (19)

411

f(t) = tan−1
[
t− t1

∆

]
− tan−1

[
t− t2

∆

]
, (20)

where t is the time. The ramp rise is centered on t1, and the ramp fall is centered on t2,412

and ∆ is the characteristic rise time. Now, 0 6 f(t) 6 π, so we normalize by dividing by413

fmax − fmin as seen in Eq. (19), where fmax and fmin are the maximum and minimum414

values of f(t) actually encountered in a given instance.415

Numerical Methods416

We use NFTsim [44] to solve Eqs (11) – (17) numerically for the spatially uniform case417

in which the ∇2 term in Eq. (14) is zero. To vary νse temporally, we use Eqs (19) and418

(20). This involves solving ordinary delay differential equations, because there is a419
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Table 1. Nominal parameters of the neural field model from [3].

Parameter Value Unit Meaning
νee 1.2 mV s Excitatory corticocortical

connectivity
νei −1.8 mV s Inhibitory corticocortical

connectivity
νes 1.4 mV s Specific thalamic to corti-

cal connectivity
νre 0.2 mV s Cortical to thalamic retic-

ular connectivity
νrs 0.2 mV s Specific to reticular thala-

mic connectivity
νse 1.0 mV s Cortical to specific thala-

mic connectivity
νsr −1.0 mV s Reticular to specific thala-

mic connectivity
νsnφn 2.0 mV Subthalamic input
Qmax 250 s−1 Maximum firing rate
θ 15 mV Mean neuronal threshold
σ 6 mV Threshold standard devia-

tion
γe 100 s−1 Damping rate
α 60 s−1 Decay rate of membrane

potential
β 240 s−1 Rise rate of membrane po-

tential
t0 80 ms Corticothalamic return

time (complete loop)
t1 100 s Center of the ramp rise
t2 200 s Center of the ramp fall
νmax 1.2 mV s Maximum value of νse
ν0 0.8 mV s Minimum value of νse
∆ 10 s Characteristic rise time

propagation time delay t0/2 between the different neural populations present in Eqs420

(15) and (17). Hence, a fourth-order Runge-Kutta integration is employed to solve these421

equations, with an integration time step of 10−4 s and store time histories of the delay422

terms t0/2 into the past.423

Because extensive comparisons with experiment have demonstrated that the normal424

brain operates close to stable fixed points [3, 8, 18,30,32], we start our simulations from425

a corticothalamic steady state with low firing rate. However, because of the delay time426

t0/2, we must specify these initial steady-state conditions to apply for times427

−t0/2 < t 6 0.428
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We use the parameters in Table 1 as the initial parameters, which are taken from [3]429

with ν0 = 0.8 mV s in all cases. A constant input νsnφn = 2 mV is used and no external430

noise is applied in the simulations as the seizure onset occurs spontaneously.431

Simulations are 300 s long, and we record the output time series every 5 ms. For all432

simulations, we use the default parameters shown in Table 1 unless otherwise specified.433

The default parameters we used are the corresponding parameter set of [3] for434

tonic-clonic seizure which push the system into the vicinity of alpha instability. For the435

dynamic spectrum and power spectrum analysis, we employ the FFT (fast Fourier436

transform) algorithm with a Hanning window of 600 data points with an overlap of 200437

points and sampling frequency of 200 Hz.438
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