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Abstract 

Two-sample Mendelian randomization (MR) is increasingly used to strengthen causal inference 

using observational data. This method allows the use of freely accessible summary association 

results from genome-wide association studies (GWAS) for a range of traits. Some GWAS 

studies adjust for heritable covariables in an attempt to estimate direct effects of genetic 

variants on the trait of interest. One, both or neither of the genetic instrumental variables 

(IVs)-exposure association or genetic IVs-outcome association may have been adjusted for 

heritable covariables (referred to as GWAS covariables). However, it is unclear how this may 

affect two-sample MR analysis. We evaluated this in a simulation study comprising different 

scenarios that could motivate covariable adjustment in a GWAS. Our results indicate that the 

impact of covariable adjustment is highly dependent on the underlying causal structure. In the 

absence of residual confounding between exposure and covariable, between exposure and 

outcome, and between covariable and outcome, using covariable-adjusted summary 

associations for two-sample MR may eliminate bias due to horizontal pleiotropy. However, the 

presence of residual confounding (especially between the covariable and the outcome) leads 

to bias upon covariable adjustment, even in the absence of horizontal pleiotropy. Bias was 

lower when the true causal effect of the exposure on the outcome was zero compared to a 

non-zero causal effect. In an analysis using real data from the Genetic Investigation of 

ANthropometric Traits (GIANT) consortium and UK Biobank, the direction of the causal effect 

estimate of waist circumference on blood pressure changed upon adjustment of waist 

circumference for body mass index. Our findings indicate that using covariable-adjusted 

summary associations in MR should generally be avoided. When that is not possible, careful 

consideration of the causal relationships underlying the data (including potentially 

unmeasured confounders) is required to direct sensitivity analyses and interpret results with 

appropriate caution.  
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Introduction 

Mendelian randomization (MR) uses genetic variants to assess the influence of modifiable 

exposures on health outcomes (1, 2). As germline genetic variants are generally independent of 

confounding factors and are determined at conception, MR offers a more robust approach to 

confounding and reverse causation than other methods used in observational studies (3). 

Two-sample MR is an extension to the one-sample MR design, where estimates for the 

association of genetic variants with exposure and with outcome are derived from different 

(non-overlapping) samples from the same underlying  population (4). These estimates are 

combined to obtain the causal effect estimate of exposure on outcome (5). Given that genetic 

variants typically explain a small proportion of the variation in the exposure of interest, large 

sample sizes are required for adequately-powered MR studies. Therefore, in recent years, two-

sample MR has substantially grown in popularity (6) since it capitalizes on the use of publicly-

available summary association results from large genome-wide association studies (GWAS).  

In GWAS, estimates for the association of genetic variants with the trait of interest are often 

conditioned on covariables. As an example, GWAS of waist-to-hip ratio have adjusted 

estimates for body mass index (BMI) (7), GWAS of lung function have adjusted estimates for 

height and stratified analysis by smoking status (8), and GWAS of birth weight has excluded 

pre-term births (9). Typically, the aim of conditioning on covariables is estimating the direct 

effect of genetic variants on the trait (i.e. effects independent of the covariable) or to improve 

statistical power by reducing residual variance. However, this strategy could introduce bias in 

GWAS association estimates if the covariable is a collider (or a descendant of a collider) on a 

pathway linking the genetic variant to the trait of interest. It has previously been shown that 

conditioning on heritable covariables can bias GWAS association estimates and that the 
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magnitude of this bias is a function of the effect of the genetic variant on the covariable and 

the correlation structure between the covariable and the trait of interest (10, 11).  

Several two-sample MR studies have used summary association data from GWAS that have 

estimated the effect of genetic variants on the trait of interest conditioned on heritable 

covariables (e.g. (12-16)). The use of such GWAS data might have biased the findings of these 

MR studies for the reasons outlined above. In addition, it is challenging to predict the impact 

of such bias since data from two independent GWAS (one for the exposure and other for the 

outcome) are used in two-sample MR studies, meaning that the conditional estimates could be 

restricted to the association of genetic instruments with the exposure, with the outcome, or 

with both exposure and outcome. Despite the widespread use of covariable-adjusted summary 

associations (e.g. (12-16)), few considerations have been made about how this could affect the 

validity of results (e.g. (12-14, 17, 18)), particularly in the context of two-sample MR. In this 

paper we explore how covariable adjustment in GWAS affects two-sample MR findings using 

simulated and real data in scenarios that could motivate conditioning on a heritable covariable 

in a GWAS. 

 

Methods 

Simulation study 

We performed a series of simulations to evaluate the consequences of covariable adjustment 

in MR. We were interested in evaluating situations where the genetic instrument is marginally 

associated with both the exposure (𝑋) and a covariable (𝑊). In these situations, the GWAS 

analyst might decide to adjust for 𝑊 as an attempt to estimate the effect of genetic variants 

on 𝑋 independent of 𝑊, thus generating covariable-adjusted summary association results that 
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will be used by two-sample MR analysts, who do not have access to covariable-unadjusted 

results.  

We performed simulations under two main contexts: i) all genetic variants have directionally-

consistent direct effects on the same traits (hereafter referred to as “homogeneous genetic 

variants”); ii) some genetic variants have direct effects only on some traits (hereafter referred 

to as “heterogeneous genetic variants”). By direct effect, we mean that there is an arrow from 

the genetic variant directly into the trait in the causal diagram. 

Scenarios simulated under situation i) are illustrated in Figure 1. The measured variables are 

the genetic instrument 𝑍, the exposure variable 𝑋, the outcome variable 𝑌 and the covariable 

𝑊 that has been adjusted for in a GWAS. In all situations, 𝑋 and 𝑊 are genetically correlated 

(ie, both are marginally associated with 𝑍). The aim is to estimate the causal effect of 𝑋 on 𝑌 

using summary GWAS results in a two-sample MR framework. Therefore, there are four 

possible situations: no adjustment for 𝑊; adjusted 𝑍-𝑋 association but unadjusted 𝑍-𝑌 

association; unadjusted 𝑍-𝑋 association but adjusted 𝑍-𝑌 association; or both 𝑍-𝑋 and 𝑍-𝑌 

associations adjusted for 𝑊. 

Figure 1 depicts the assumed causal structures that we evaluated in the simulations. In 

scenarios A1-A5, 𝑊 fully mediates the effect of 𝑍 on 𝑋. In scenarios B1-B5, 𝑍 independently 

affects both 𝑋 and 𝑊 (in other words, 𝑍 is a confounder of the 𝑋-𝑊 association). In scenarios 

C1-C5, 𝑋 fully mediates the effect of 𝑍 on 𝑊. In scenarios D1-D5, the effect of 𝑍 on 𝑋 and 𝑊 is 

mediated by a common cause 𝑅, so that the effect of 𝑍 on 𝑊 is correlated with the effect of 𝑍 

on 𝑋, even though there is no causal effect from 𝑋 to 𝑊 or vice-versa. In all scenarios A1-5 to 

D1-5, the instrumental variable assumptions hold, so that 𝑍 is a valid instrument to estimate 

the causal effect of 𝑋 on 𝑌. However, this is not the case in scenarios E1-E5 and F1-F5, which 

are identical to B1-B5 and D1-D5 (respectively), except that 𝑊 has a direct effect on 𝑌 (ie, 

horizontal pleiotropy). More specifically, the 𝑍-𝑊 and 𝑍-𝑋 associations are independent in 
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scenarios E1-E5, meaning that in these scenarios there is horizontal pleiotropy, but the InSIDE 

(Instrument Strength Independent of Direct Effects) assumption holds. However, in scenarios 

F1-F5, the InSIDE assumption is violated because Z has an effect on a common cause of 𝑊 and 

𝑋. 

In scenarios A1-F1, there are no unmeasured confounders (other than R). To isolate the 

implications of unmeasured confounders when controlling for 𝑊, different confounders were 

included in different scenarios: 𝑋-𝑊 confounder 𝑈𝑋,𝑊 in scenarios A2-F2; 𝑊-𝑌 confounder 

𝑈𝑋,𝑊 in scenarios A3-F3; 𝑋-𝑌 confounder 𝑈𝑋,𝑌 in scenarios A4-F4; and finally all three 

confounders simultaneously in scenarios A5-F5. 

To simulate data under situation ii), the same underlying causal structure used for situation i) 

was used, with the exception that, in all simulations, there were four non-overlapping 

subgroups of genetic variants: some with direct effects on 𝑋 only, some on 𝑊 only, some on 

both 𝑋 and 𝑊 (but not 𝑅), and some on 𝑅 only. 

Even though Figure 1 depicts 𝑋 as a having a non-null causal effect on 𝑌, all of these scenarios 

were also simulated for both a null and non-null causal effect from X to Y. A detailed 

description of the data generating model is provided in the Supplementary Material. 

For analyses using unadjusted variant-exposure summary association results (regardless of 

whether the variant-outcome associations were adjusted for 𝑊), we selected variants with an 

unadjusted association with the exposure achieving a 𝐹 statistic of 10 or more. The same 

applies for analysis using adjusted variant-exposure summary association results. 
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Real data example: assessing the causal effect of waist circumference on 

blood pressure 

We conducted an illustrative analysis to explore the impact of covariable adjustment in MR in 

a real data setting. The exposure of interest was waist circumference (WC), the outcome 

variables were systolic (SBP) and diastolic blood pressure (DBP), and the covariable was BMI. 

We selected genetic instruments of unadjusted WC and BMI-adjusted WC from the Genetic 

Investigation of ANthropometric Traits (GIANT) consortium (7) and calculated the 

corresponding instrument-BP summary association results using an interim release of UK 

Biobank data (19). Details on the data sources are provided in the Supplementary Material. 

BMI was used as a covariable due to its strong correlation with WC, meaning that variants that 

affect WC might also affect BMI due to their effect on overall adiposity. Here, we assume that 

two distinct causal structures (Figure 2) are plausible. In panel A, the genetic variant has a 

direct effect on a latent variable (which we refer to as adiposity), which manifests itself in 

measurable constructs such as WC and BMI. Panel B depicts a scenario where the genetic 

variant has a direct effect on WC rather than on adiposity. Those mechanisms are not mutually 

exclusive, since different genetic variants can present those different direct effects, or even a 

single genetic variant can have direct effects on both. Of note, WC, BP, BMI and adiposity are 

analogous to 𝑋, 𝑌, 𝑊 and 𝑅 (respectively) in Figure 1. 

We aimed at replicating scenarios in which the summary association results (either unadjusted 

or adjusted for the covariable) are already available. Therefore, we selected two sets of WC 

genetic instruments: one using the unadjusted GWAS results; and another using the BMI-

adjusted GWAS. In each case, independent genetic variants were selected as WC instruments if 

P-value <5×10-8. After quality control (described in detail in the Supplementary Materials), 37 

single nucleotide polymorphisms (SNPs) and 60 SNPs were retained as genetic instruments for 
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BMI-unadjusted and BMI-adjusted WC, respectively. Prior to analysis, data was harmonised 

following the steps described in Hartwig et al (6) (as detailed in the Supplementary Material). 

As in the simulation study, four situations were considered: i) unadjusted instrument-WC and 

unadjusted instrument-BP associations; ii) adjusted instrument-WC and unadjusted 

instrument-BP associations; iii) unadjusted instrument-WC and adjusted instrument-BP 

associations; and iv) adjusted instrument-WC and adjusted instrument-BP associations. 

Statistical analyses 

Causal effect estimates were obtained using multiplicative random effects inverse-variance 

weighting (IVW) (5, 20). In the simulation study, coverage and average causal effect estimates 

were obtained across 5 000 simulated datasets. Coverage was defined the proportion of times 

that 95% confidence intervals included the true causal effect.  

Results 

Simulation study 

Supplementary Table 1 displays the number of select genetic instruments and mean 𝐹 statistic 

of the instrument-𝑋 association (among selected instruments), in analyses adjusted and not 

adjusted for 𝑊. Since instruments are selected from the exposure GWAS the set of genetic 

instruments vary according to the analysis. Taking row 1 of Supplementary Table 1 as an 

example, on average 27 variants were used for analyses using unadjusted instrument-𝑋 

associations, and 19 variants for analyses using adjusted instrument-𝑋 association. The mean 

𝐹 statistic of 293 corresponds to the strength of association between the selected variants 

(here, 26 on average) and 𝑋 estimated without adjusting for 𝑊, while the value of 345 

corresponds to the strength of association between the selected variants (here, 19 on average) 

and 𝑋 estimated adjusting for 𝑊. 
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Homogeneous genetic instruments 

For homogeneous genetic instruments, we only evaluated scenarios A5-F5 because in other 

scenarios adjustment for 𝑊 yielded in no variants achieving the instrument strength criterion.  

As shown in Supplementary Table 2, using covariable-adjusted associations did not eliminate 

bias due to horizontal pleiotropy in presence of unmeasured confounders (scenarios E5 and F-

5), and introduced bias even in the absence of horizontal pleiotropy. The bias was mainly 

driven by the use of covariable-adjusted instrument-𝑌 associations, and was generally higher 

when the true causal effect was non-zero. Similar trends were observed in the coverage of the 

95% confidence intervals. 

Heterogeneous genetic instruments 

Figure 3 displays the bias (see Supplementary Figure 1 for coverage) of the IVW estimate when 

instrument selection is performed among heterogeneous genetic variants. In the absence of 

unmeasured confounders (scenario 1), using adjusted instrument-𝑌 associations (especially in 

combination with adjusted instrument-𝑋 associations) eliminated bias due to horizontal 

pleiotropy. However, the presence of a 𝑊-𝑌 confounder (scenario 3) resulted in bias in 

analyses using covariable-adjusted instrument-𝑌 associations even in the absence of horizontal 

pleiotropy and under the causal null. Moreover, in the presence of a non-null causal effect, the 

presence of a 𝑋-𝑊 confounder (scenario 2) led to bias in analyses using unadjusted 

instrument-𝑋 and adjusted instrument-𝑌 associations. Similar trends were observed in the 

coverage of the 95% confidence intervals (Supplementary Figure 1). In general, in cases where 

𝑊 does not have a direct effect on 𝑌 (A-D, and thus none of the variants have horizontal 

pleiotropic effects), the bias was considerably lower in analysis using unadjusted than adjusted 

instrument-𝑌 association estimates. On the other hand, in the presence of horizontal 

pleiotropy mediated by 𝑊, analysis using unadjusted instrument-𝑌 association estimates 
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presented more bias. Bias was larger and coverage lower when the true causal effect was non-

zero. 

Real data example 

Supplementary Figure 2 displays the correlation between coefficients for SNP-unadjusted and 

SNP-adjusted WC associations. Coefficients were uncorrelated (r=-0.04) among genetic 

instruments for unadjusted WC (n = 37) and moderately correlated (r=0.47) among genetic 

instruments for adjusted WC (n = 60). Distributions of test statistics for SNP-traits associations 

are shown in Supplementary Figure 3. 

In the unadjusted SNP-exposure and SNP-outcome analysis, each standard unit increase in WC 

was related to an increase of 0.06 mmHg in SBP (95% CI: -0.01, 0.13) and of 0.12 mmHg in DBP 

(95% CI: 0.05, 0.19). These effects changed in direction when only adjusting the SNP-outcome 

association for BMI (SBP: -0.09, 95%CI: -0.17, -0.02; DBP: -0.11, 95%CI: -0.19, -0.04). Effect 

estimates also changed direction, but were consistent with the null when adjusting the SNP-

exposure association without (SBP: -0.06, 95%CI: -0.14, 0.01; DBP: -0.02, 95%CI: -0.09, 0.05) or 

with concomitant adjustments for SNP-outcome associations (SBP: -0.04, 95%CI: -0.11, 0.03; 

DBP: 0.01, 95%CI: -0.06, 0.08) (Figure 4).  

After excluding SNPs associated with BMI (p < 0.05), results were similar for the adjusted SNP-

exposure analyses. The exclusion of BMI-related SNPs dramatically restricted the number of 

SNPs included in the unadjusted SNP-exposure analyses (two out of 37 SNPs), and, as a result, 

estimates are highly imprecise (Figure 5).  

 

Discussion 
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Our results indicate that the impact of covariable adjustment in two-sample MR depends on 

the causal relation and confounding structure between genetic instruments, exposure, 

covariable and outcome. In addition, the magnitude and direction of bias will vary depending 

on whether associations between instrument-exposure, instrument-outcome or both are 

adjusted for the same covariables. In an analysis using real data from GIANT consortium and 

UK Biobank, the estimated causal effect of waist circumference on blood pressure changed 

substantially upon adjustment for BMI. 

The strong dependence of the results on the underlying causal structure was expected. In the 

absence of unobserved common causes (confounders) between exposure-covariable, 

exposure-outcome and covariable-outcome, covariable adjustment eliminates bias due to 

horizontal pleiotropy mediated by such covariable (scenarios E and F). However, absence of 

unobserved confounding is unrealistic in observational studies and is one of the primary 

motivations for performing MR. In the presence of unobserved confounding, mainly between 

the covariable and the outcome, covariable adjustment will likely lead to bias even in the 

absence of horizontal pleiotropy due to collider bias where genetic instruments are marginally 

associated with the covariable. Therefore, minimising horizontal pleiotropy is generally an 

invalid justification for using covariable-adjusted summary association results for two-sample 

MR. 

Bias was generally weaker when the true causal effect of the exposure on the outcome is null, 

and this was consistent among the several scenarios we evaluated. This suggests that 

covariable adjustment has a lower impact on testing the null hypothesis than on estimating a 

non-zero causal effect. Indeed, even in the absence of any unmeasured confounding, 

covariable adjustment may lead to bias when the true causal effect is not null. Therefore, null 

results from a MR analysis using covariable-adjusted summary association results are generally 

more reliable (in the sense of being less likely to be a consequence of covariable-adjustment 
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bias) than non-null results, assuming that it is generally unlikely that bias due to using 

covariable-adjusted summary associations perfectly balances out a given non-null true causal 

effect. 

Using covariable-adjusted instrument-outcome summary associations was also consistently 

related to more bias compared to using covariable-adjusted instrument-exposure summary 

associations. The exception was scenarios where there was horizontal pleiotropy. However, 

since attempting to minimise horizontal pleiotropy via covariable adjustment is generally 

unjustified due to the likely presence of unmeasured confounders, we are primarily concerned 

with the scenarios where there is no horizontal pleiotropy. Another result that was generally 

consistent across the different scenarios was that selecting genetic instruments after 

covariable adjustment (i.e., using covariable-adjust summary instrument-exposure association 

results) presented less bias than selection before adjustment. This also minimises other 

possible problems, such as running into lack of association between the instrument and the 

exposure upon covariable adjustment, which could compromise precision and lead to weak 

instrument bias. 

To our knowledge, this is the first study to systematically assess the impact of covariable 

adjustment in (two-sample) MR. Conditioning on a heritable covariable can introduce bias 

when the covariable is a collider in the pathway between instrument-exposure and/or 

instrument-outcome. Collider bias can also be introduced in MR studies in other settings, such 

as in disease progression studies which include a selected (i.e., case-only) group of individuals 

(17). 

It is important to emphasise that using covariable-adjusted GWAS summary association results 

in two-sample MR studies differs from applying multivariable MR (MVMR) on unadjusted 

GWAS summary association results to estimate the effect of two or more exposures on an 

outcome (18). The focus of our paper is to investigate bias in two-sample MR due to using 
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covariable-adjusted summary association results, especially in the case when those are the 

only available option (e.g., when using summary data from GWAS consortia that only 

performed covariable-adjusted analyses). We are not primarily concerned with whether using 

covariable-adjusted summary associations reduces bias due to horizontal pleiotropy, even 

though our results indicate that this is unlikely to be the case in the presence of unmeasured 

confounding. When one aims to use covariable data for this aim, MVMR should be preferred, 

because MVMR uses genetically predicted variations in both the exposure and covariable(s), 

and is therefore less susceptible to collider bias (21). 

One of the strengths of our study was that our simulations covered a wide range of scenarios, 

thus allowing a detailed evaluation of covariable-adjustment bias in a variety of situations. The 

simulation study was also complemented with a real data example illustrating the strong 

influence that covariable-adjustment may have not only on the magnitude, but also on the 

presence and direction of the causal effect estimate. However, any simulation study is a 

simplification of a reality that is likely to be much more complex. It is impossible to simulate all 

possible scenarios that might be of relevance to this topic. Moreover, some results, especially 

quantitative estimates of bias and coverage, are highly dependent on the data-generating 

model. Therefore, our results should be interpreted qualitatively, as general indications of 

some of the main aspects related to covariable-adjustment in MR. It was reassuring that some 

results (as described above) were consistent across scenarios, which indicates that they may 

apply generally (although not universally) to covariable-adjusted MR.  

In conclusion, our findings indicate that using summary association results adjusted for 

heritable covariables may lead to bias in two-sample MR due to unmeasured confounding. We 

recommend avoiding adjustment for such covariables in the context of MR. When only 

covariable-adjusted data is available, it is important to carefully consider the causal structure 

underlying the research question to understand the potential impact on the results. In such 
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cases, we recommend that researchers refrain from interpreting the causal estimate too 

literally (which indeed requires parametric assumptions in addition to the core instrumental 

variable assumptions even in the absence of covariable adjustment) and focus on testing the 

causal null hypothesis. To account for horizontal pleiotropy due to measured covariables, 

MVMR should be preferred over non-genetic covariable adjustment. 
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Figures 

Figure 1. Causal structures that were assessed in the simulation study. 𝒁: genetic instrument; 

𝑾: covariable; 𝑹: possible direct consequence of 𝒁; 𝑿: exposure; 𝒀: outcome: 𝑼: 

unmeasured common cause.  
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Figure 2. Causal diagrams representing the assumed causal relationships in the two-sample Mendelian randomization analysis of waist circumference 

(WC) on blood pressure (BP). The genetic instruments (SNPs) are assumed to influence WC by either affecting overall body adiposity (proxied by BMI) [A] 

or by specifically changing body fat distribution [B]. The grey solid lines represent the effect of confounders between exposure-outcome (UX,Y), exposure-

covariable (UX,W) and covariable-outcome (UW,Y). The dashed lines represent the relationship being tested between WC and BP. 

 

 

BMI: body mass index; IV: instrumental variable; SNP: single nucleotide polymorphism; U: unmeasured confounders. 
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Figure 3. Mean bias across 5,000 simulations of the causal effect estimate using 

heterogeneous genetic instruments. 

 

𝛽: True causal effect of the exposure (𝑋) on the outcome (𝑌). 

Scenarios A-F assume different causal relationships among 𝑋, 𝑌, the instrument (𝑍), the 

covariate (𝑊) and a common cause of 𝑋 and 𝑊 affected by 𝑍 (𝑅). In scenarios A1-F1, there are 

no unmeasured confounders. In scenarios A2-F2, there is an unmeasured common cause of 𝑋 

and 𝑊. In scenarios A3-F3, there is an unmeasured common cause of 𝑊 and 𝑌.  In scenarios 

A4-F4, there is an unmeasured common cause of 𝑋 and 𝑌.  In scenarios A5-F5, all these three 

unmeasured confounders are present. The scenarios are illustrated in Figure 1 and described 

in detail in the “Simulation study” section. 
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Figure 4. Two-sample Mendelian randomization estimates of the effect of waist circumference (WC) on systolic blood pressure (SBP) or diastolic 

blood pressure (DBP) for different combinations of adjustments for BMI in SNP-exposure or SNP-outcome association. 

 

Effect estimates are expressed as mean difference, and 95% CI, of SBP or DBP (in mmHg) per standard unit increase in WC. 37 SNPs and 60 SNPs were 

used as instruments for waist circumference unadjusted and adjusted for BMI, respectively. 
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Figure 5. Two-sample Mendelian randomization estimates of the effect of waist circumference (WC) on systolic blood pressure (SBP) or diastolic blood pressure 

(DBP) including (BMI SNPs: yes) or removing (BMI SNPs: no) SNPs associated with BMI. 

 

Effect estimates are expressed as mean difference, and 95% CI, of SBP or DBP (in mmHg) per standard unit increase in WC. 37 SNPs and 60 SNPs were used as 

instruments for WC unadjusted and adjusted for BMI, respectively. After removing instruments associated with BMI (p-value < 0.05), 2 SNPs and 45 SNPs were 

retained as instruments for unadjusted and BMI-adjusted WC, respectively. 
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