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ABSTRACT 

Brainstem regions support critical bodily functions, yet their genetic architectures and 

involvement in brain disorders remain understudied. Here, we examined volumes of 

brainstem structures using magnetic resonance imaging in 43,353 individuals. In 27,034 

genotyped healthy participants, we identified 16 genetic loci associated with whole 

brainstem volume and 10, 23, 3, and 9 loci associated with volumes of the midbrain, pons, 

superior cerebellar peduncle, and medulla oblongata, respectively. These loci were mapped 

to 305 genes, including genes linked to brainstem development and common brain 

disorders. We detected genetic overlap between the brainstem volumes and eight 

psychiatric and neurological disorders. Using imaging data from 16,319 additional 

individuals, we observed differential volume alterations in schizophrenia, bipolar disorder, 

multiple sclerosis, mild cognitive impairment, dementia, and Parkinson’s disease. Together, 

our results provide new insights into the genetic underpinnings of brainstem structures and 

support their involvement in common brain disorders.  
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Main 

The brainstem is a critical regulator of vital bodily functions and includes the midbrain, pons, and 

the medulla oblongata1,2. Regions of the brainstem subserve emotions and behavior and are 

implicated in the pathophysiology of psychiatric and neurological diseases3-6. The 

monoaminergic brainstem nuclei may play central roles in mood, psychotic, and autism spectrum 

disorders7-10. Atrophy and lesions of brainstem structures are hallmarks of neurodegenerative and 

other neurological diseases5,11. Despite their importance in human health and disease, the 

brainstem structures remain markedly understudied. 

Magnetic resonance imaging (MRI) studies have revealed cortical and subcortical 

structural alterations in psychiatric and neurological disorders12-15, and the discovery of genetic 

contributions to brain structure variation has begun16-18. However, no large-scale neuroimaging 

study has focused on the genetic architecture of brainstem regions and their involvement in 

common brain disorders. The unprecedented availability of large imaging genetics resources19 

and recent development of a Bayesian brainstem segmentation algorithm20 allowed us to estimate 

the volumes of midbrain, pons, medulla oblongata, superior cerebellar peduncle (SCP, which 

interconnects the pons and the cerebellum), and the whole brainstem in a large sample. We 

employed three complementary approaches to increase our knowledge of the genetic 

underpinnings of brainstem structures and their roles in common brain disorders. First, we 

conducted genome-wide association studies (GWAS) in healthy individuals to identify genetic 

loci associated with volumes of the brainstem structures. Second, we used summary statistics 

from recent large-scale GWAS of common brain disorders to assess genetic overlap between the 

disorders and volumes of the brainstem regions. Finally, we examined volumes of the brainstem 

structures in individuals with psychiatric or neurological illnesses in comparison to healthy 

controls. 
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Results 

We obtained raw T1 3D brain MRI data from a total of n = 49,815 individuals, collected through 

collaborations, data sharing platforms, and from in-house samples (Supplementary Tables 1-2). 

The MRI data was segmented into the whole brainstem, midbrain, pons, SCP, and medulla 

oblongata using Freesurfer 6.021 and Bayesian brainstem segmentation, robust to differences in 

MRI scanners and pulse sequence details20. We assessed the delineations in all 49,815 data sets 

by visually inspecting twelve sagittal view figures of the segmentations for each participant 

(Supplementary Fig. 1). This procedure was conducted blind to case-control status and excluded 

13% (n = 6,462) of the data sets, mainly due to insufficient field of view, image quality, and 

segmentation errors in the clinical samples. The final study sample of n = 43,353 participants 

(Supplementary Table 3) comprised healthy participants (n = 38,299, age range 3-95 years) and 

individuals with psychiatric or neurological disorders (n = 5,054, age range 5-96 years). 

 

GWAS reveals 61 genetic loci associated with brainstem volumes. The study sample included 

27,034 genotyped healthy individuals aged 40-70 years from the UK Biobank22. Using MRI and 

single-nucleotide polymorphism (SNP) data from these participants, we conducted GWAS with 

PLINK v2.023 on volumes of the midbrain, pons, SCP, medulla oblongata, and whole brainstem. 

All GWAS accounted for age, age², sex, scanning site, intracranial volume (ICV), genotyping 

batch, and the first ten genetic principal components to control for population stratification. In 

addition, the GWAS for the midbrain, pons, SCP, and medulla oblongata accounted for whole 

brainstem volume, thus revealing genetic signals beyond commonality in volume, analogous to a 

recent study of hippocampal subfields24. The GWAS for the brainstem structures were also run 

without covarying for whole brainstem volume. 
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SNP-based heritability estimated using LD score regression25 on the GWAS summary 

statistics was 32% for the whole brainstem, 29% for the midbrain, 31% for pons, 15% for SCP, 

and 23% for the medulla oblongata (all s.e. < 5%), illustrating the substantial genetic influence on 

brainstem volumes (Fig. 1a). We found genome-wide significant hits (P < 5e-8) for all brainstem 

volumes and identified a total of 125 independent significant SNPs across structures located in 61 

genomic loci, using the Functional Mapping and Annotation of GWAS (FUMA) platform 

v1.3.3c26 (Fig. 1b-c and Supplementary Table 4). Sixteen genetic loci were associated with whole 

brainstem volume and 10, 23, 3, and 9 loci were associated with volumes of the midbrain, pons, 

SCP, and medulla oblongata, respectively. Sixteen loci were associated with more than one 

brainstem volume, thus resulting in 45 unique brainstem-associated genetic regions. Individual 

Manhattan and quantile-quantile (Q-Q) plots for each brainstem volume are provided in 

Supplementary Figs. 2-3. Supplementary Fig. 4 shows regional plots for the most significant 

genetic locus for each brainstem volume. Heritability estimates and GWAS hits for the brainstem 

regions without covarying for whole brainstem volume are provided in Supplementary Figs. 5-6 

and Supplementary Table 5. 

We functionally annotated SNPs across the brainstem volumes that were in linkage 

disequilibrium (r2 ≥ 0.6) with one of the independent significant SNPs using FUMA. A majority 

of these SNPs were intronic (60.3%) or intergenic (23.7%) and 1.5% were exonic 

(Supplementary Tables 6-10). About 94% of the SNPs had a minimum chromatin state of 1 to 

7, thus suggesting they were in open chromatin regions27. Supplementary Fig. 7 provides 

information for functional SNP categories for each brainstem volume. Two of the lead SNPs 

were exonic and associated with medulla oblongata (rs13107325) and whole brainstem 

(rs13388394) volumes. The combined annotation-dependent depletion (CADD) scores of those 

SNPs were 23.1 (rs13107325) and 17.7 (rs13388394), thus indicating deleterious protein 
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effects28. rs13107325 is located in SLC39A8 and has previously been associated with multiple 

traits, including schizophrenia (SCZ) and Parkinson’s disease (PD)29. 

 

Fig. 1 | GWAS identifies 61 loci associated with brainstem volumes. a, Heritability estimates for the brainstem volumes of n = 

27,034 healthy individuals. All brainstem volumes showed substantial heritability, with highest estimates for the whole brainstem 

(h2 = 0.32) and pons (h2 = 0.31) and lowest for the medulla oblongata (h2 = 0.23) and SCP (h2 = 0.15). b, Q-Q plots for the 

brainstem volumes. c, Circular Manhattan plots of GWAS for brainstem volumes. The outermost plot in blue reflects the GWAS 

of whole brainstem volume, whereas, from the periphery to center, the turquoise, green, grey/blue, and cyan plots indicate the 

GWAS of the midbrain, pons, SCP, and medulla oblongata volumes, respectively. Red circular lines indicate genome-wide 

significance and the red radial lines are significant loci. d, Venn diagram showing number of genes mapped by the four different 

strategies, i.e., positional gene, expression quantitative trait loci (eQTL), and chromatin interaction mapping, and identification by 

the GWGAS. Seventeen genes were identified by all four approaches. Whole; whole brainstem. SCP; superior cerebellar 

peduncle. Medulla; medulla oblongata. GW(G)AS; genome-wide (gene-based) association analyses. 
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Implicated genes and genome-wide gene-based associations. We used positional, expression 

quantitative trait loci (eQTL), and chromatin interaction mapping in FUMA26 to map the 125 

independent significant SNPs to genes. These three strategies identified 280 unique genes, where 

130, 89, and 181 genes were mapped by positional, eQTL, and chromatin interaction mapping, 

respectively. 168 of these were implicated by one mapping strategy, 68 genes by two strategies, 

and 25 of the genes were implicated by three strategies (Fig. 1d, and Supplementary Table 11). 

Supplementary Fig. 8 provides visualisation of mapped genes for each brainstem volume in 

Circos plots. 

We then conducted genome-wide gene-based association analyses (GWGAS) using 

MAGMA30 and detected 87 unique genes across the brainstem volumes (Fig. 2 and 

Supplementary Table 12). Thirty-six were associated with whole brainstem volume and 22, 37, 

10, and 17 genes were associated with volumes of the midbrain, pons, SCP, and the medulla 

oblongata, respectively. Twenty-two of the genes were only associated with whole brainstem 

volume, whereas 13, 14, 6, 5 genes were only significant for midbrain, pons, SCP, and the 

medulla oblongata volumes. The most strongly associated gene for each volume identified by the 

GWGAS was RFX4 (P = 2.8e-15), PARPBP (P = 1.7e-11), DRAM1 (P = 6.2e-15), LMX1A (P = 

1.7e-10), and HOXB3 (P = 2.0e-12) for the whole brainstem, midbrain, pons, SCP, and medulla 

oblongata, respectively. Supplementary Fig. 9 provides Q-Q plots for these GWGAS. We also 

found that 25 of the genes identified by GWGAS were not mapped by the GWAS analyses, 

resulting in a total number of 305 brainstem-linked genes identified by either GWAS or 

GWGAS. Moreover, supporting robustness, seventeen of the 87 genes identified by the GWGAS 

were also implicated by all three FUMA mapping strategies (Fig. 1d, Supplementary Table 13). 
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Fig. 2 | Manhattan plots from the genome-wide gene-based association analyses for volumes of the whole brainstem (a), midbrain 

(b), pons (c), superior cerebellar peduncle (d), and medulla oblongata (e). Thirty-six genes were associated with whole brainstem 

volume and 22, 37, 10, and 17 genes were associated with volumes of the midbrain, pons, superior cerebellar peduncle, and the 

medulla oblongata, respectively. Twenty-two of the genes were only associated with whole brainstem volume, whereas 13, 14, 6, 

5 genes were only significant for volumes of the midbrain, pons, superior cerebellar peduncle, and the medulla oblongata. The red 

horizontal lines indicate genome-wide significance. 

 

Gene sets implicated by the significant genes. We conducted gene sets analyses and identified 

78 Gene Ontology sets significantly associated with whole brainstem volume, and 34, 58, 6, and 

56 gene sets associated with volumes of the midbrain, pons, SCP, and medulla oblongata, 

respectively (Supplementary Table 14). The most significant gene set for whole brainstem 

volume was natural killer cell mediated immunity (P = 2.47e-10), positive regulation of epithelial 
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cell proliferation for midbrain (P = 8.97e-06), anterior posterior pattern specification for pons (P 

= 1.68e-11), imp biosynthetic process for SCP (P = 4.96e-06), and embryonic skeletal system 

development for medulla oblongata (P = 2.66e-14). Notably, HOX genes, which encode 

transcription factors with central roles in nervous system development31,32 were included in the 

nine most significant gene sets for pons and in the 24 gene sets most strongly associated with 

medulla oblongata. We also employed the ConsensusPathDB33 to identify over-represented 

pathways for the mapped genes and found 13, 1, 25, and 58 significant pathways for volumes of 

the whole brainstem, pons, SCP, and medulla oblongata, respectively (Supplementary Table 15).  

 

Genetic overlap between brainstem volumes and common brain disorders. To further 

examine the polygenic architecture of brainstem volumes and the potential genetic overlap 

between brainstem regions and common brain disorders, we used GWAS summary statistics for 

attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), bipolar 

disorder (BD), major depression (MD), SCZ, Alzheimer’s disease (AD), multiple sclerosis (MS), 

and PD, as outlined in Methods. We then generated conditional Q-Q plots34-36 for the brainstem 

regions and the eight clinical conditions. The conditional Q-Q plots compare the association with 

one trait (e.g., whole brainstem volume) across all SNPs and within SNPs strata determined by 

the significance of their association with another trait (e.g., SCZ). Polygenic overlap exists if the 

proportion of SNPs associated with the first trait increases as a function of the strength of 

association for the second trait and is visualized as a successive leftward deflection from the null 

distribution34. The conditional Q-Q plots for brainstem volumes and the clinical conditions 

showed successive increments of SNP enrichment for whole brainstem, midbrain, pons, SCP, and 

medulla oblongata (Supplementary Fig. 10), consistent with polygenic overlap across volumes 
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and disorders. Conditional Q-Q plots illustrating the genetic overlap between whole brainstem 

volume and SCZ, BD, and PD are provided in Fig. 3a-c. 

 We leveraged the genetic overlap to discover more of the genetic underpinnings of 

brainstem volumes by employing conditional false discovery rate (FDR) statistics37,38. The 

conditional FDR builds on an empirical Bayesian statistical framework, combines summary 

statistics from a trait of interest with those of a conditional trait, and thus increases power to 

detect genetic variants associated with the primary trait. We ran the conditional FDR analyses for 

each of the brainstem volumes conditioned on the eight disorders and discovered a total of 208 

genetic loci for the whole brainstem, and 111, 270, 55, and 125 loci for the midbrain, pons, SCP, 

and medulla oblongata, respectively. These regions were located in 52 unique genetic loci for 

whole brainstem volume, and 29, 63, 21, and 25 unique loci for volumes of the midbrain, pons, 

SCP, and medulla oblongata, respectively (Fig. 3d, Supplementary Tables 16-20). The loci 

identified by the conditional FDR included all brainstem-associated genetic regions discovered 

by the GWAS. Supplementary Fig. 11 provides Manhattan plots for the genetic loci detected by 

the conditional FDR analyses for each brainstem region. 
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Fig. 3 | a, Conditional Q-Q plots for whole brainstem volume conditioned on SCZ (left) and vice versa (right), demonstrating 

genetic overlap. b, Conditional Q-Q plots for whole brainstem volume conditioned on PD (left) and vice versa (right), showing 

genetic overlap between these phenotypes. c, Conditional Q-Q plots for whole brainstem volume conditioned on BD (left) and 

vice versa (right), demonstrating genetic overlap. d, Enhanced discovery of genetic loci for each of the brainstem volumes when 

conditional false discovery rate analyses were run for each of the brainstem volumes conditioned on the eight brain disorders. 

These analyses revealed a total of 208 genetic loci for whole brainstem volume, and 111, 270, 55, and 125 loci for volumes of the 

midbrain, pons, SCP, and medulla oblongata, respectively. These genetic regions were located in 52 unique genetic loci for whole 

brainstem volume, and 29, 63, 21, and 25 unique loci for volumes of the midbrain, pons, SCP, and medulla oblongata. e, 

conjunctional false discovery rate analysis detected shared genetic loci across brainstem volumes and the eight clinical 

conditions. The largest numbers of shared loci were found for SCZ (31), BD (14), and PD (17), whereas 8, 4, 6, 9, and 5 

genetic loci were jointly shared for ASD, ADHD, MD, AD, and MS, respectively, and the brainstem volumes. WBS; whole 

brainstem. MID; midbrain. SCP; superior cerebellar peduncle. MED; medulla oblongata. ADHD; attention-deficit/hyperactivity 

disorder. ASD; autism spectrum disorders. BD; bipolar disorder. MD; major depression. SCZ; schizophrenia. AD; Alzheimer’s 

disease. MS; multiple sclerosis. PD; Parkinson’s disease. 
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To further characterize the genetic overlap between brainstem volumes and the eight 

clinical conditions, we performed conjunctional FDR analyses, which enable detection of 

genetic loci shared between two phenotypes34-36. These analyses revealed shared loci across 

the brainstem structures and the clinical conditions (Fig. 3e). We found the largest number of 

loci shared between brainstem volumes and SCZ (31), BD (14), and PD (17). For ASD, 

ADHD, MD, AD, and MS, there were 9, 4, 6, 5, and 5 genetic loci jointly associated with the 

brainstem volumes and the disorders, respectively (Fig. 3e). Notably, the shared genetic loci 

exhibited a mixed pattern of allelic effect directions, i.e., disorder-linked genetic variants were 

associated with both larger and smaller brainstem volumes. Manhattan plots and details for the 

genetic loci shared between the eight clinical conditions and the brainstem volumes are 

provided in Fig. 4a-h and in Supplementary Table 21. 

We ran Gene Ontology gene sets analyses for genes nearest to the shared loci across the 

brainstem regions for each disorder and found 33 significant gene sets for SCZ, mainly involving 

central nervous system, neuronal, and cellular developmental processes (Supplementary Table 

22). There were no significant gene sets for the other disorders.  

We also examined genetic correlations between brainstem volumes and the common 

brain disorders using LD score regression25 (Supplementary Fig. 12). There were correlations 

with uncorrected P < 0.05, including positive associations between brainstem volumes and 

PD, yet these were not significant after multiple testing corrections. 
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Fig. 4 | Manhattan plots for genetic loci shared between brainstem volumes and eight common brain disorders: a, 4 shared 

loci in ADHD, b, 9 shared loci in ASD, c, 14 shared loci in BD, d, 6 shared loci in MD, e, 31 shared loci in SCZ, f, 5 shared 

loci in AD, g, 5 shared loci in MS, and h, 17 shared loci in PD. WBS; whole brainstem. MID; midbrain. SCP; superior 

cerebellar peduncle. MED; medulla oblongata. ADHD; attention-deficit/hyperactivity disorder. ASD; autism spectrum 

disorders. BD; bipolar disorder. MD; major depression. SCZ; schizophrenia. AD; Alzheimer’s disease. MS; multiple sclerosis. 

PD; Parkinson’s disease. 

 

Brainstem volumes in common brain disorders. We compared brainstem volumes between 

individuals with common brain disorders and healthy controls (HC) (age range 5-96 years): 

ADHD (n = 681 patients/n = 992 HC), ASD (n = 125/n = 140), BD (n = 464/n = 1,513), major 

depressive disorder (MDD; n = 211/n = 93), SCZ (n = 1,044/n = 2,079), prodromal SCZ or at risk 
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mental state (SCZRISK; n = 91/n = 402), non-SCZ psychosis spectrum diagnoses (PSYMIX; n = 

308/n = 1,430), dementia (n = 756/n = 1,921), mild cognitive impairment (MCI; n = 987/n = 

1,655), MS (n = 257/n = 1,053), and PD (n = 138/n = 67). Supplementary Tables 1-3 provide 

information on the individual cohorts. Linear models were run covarying for sex, age, age², ICV, 

and scanner site using R39. The analyses for volumes of midbrain, pons, SCP, and medulla 

oblongata were run both with and without covarying for whole brainstem volume, and were 

adjusted for multiple testing using FDR (Benjamini-Hochberg, accounting for all 99 tests). Fig. 5 

depicts the resulting case-control differences.  

 

Fig. 5 | Volumes of brainstem structures in individuals with common brain disorders compared to healthy controls. There were 

differential volumetric alterations in individuals with BD, SCZ, DEM, MCI, MS, and PD after adjusting for multiple testing. 

ADHD; attention-deficit/hyperactivity disorder. ASD; autism spectrum disorders. BD; bipolar disorder. MDD; major depressive 

disorder. PSYMIX; non-SCZ psychosis spectrum diagnoses. SCZRISK; prodromal SCZ or at risk mental state. SCZ; 

schizophrenia. DEM; dementia. MCI; mild cognitive impairment. MS; multiple sclerosis.  PD; Parkinson’s disease. WBS; whole 

brainstem. SCP; superior cerebellar peduncle. Medulla; medulla oblongata. 
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BD was associated with smaller medulla oblongata volume and larger pons volume, when 

accounting for the whole brainstem. Individuals with SCZ showed smaller volumes of all 

brainstem structures compared to HC, but not significantly for the midbrain, pons, and medulla 

oblongata when regressing out whole brainstem volume, consistent with a general effect across 

the brainstem regions. Volumes of whole brainstem, midbrain, and pons were smaller in the 

individuals with dementia compared to HC, whereas medulla oblongata volume was larger. A 

highly similar pattern was found for individuals with MCI, with smaller volumes of the whole 

brainstem, midbrain, and pons, and larger medulla oblongata volume when accounting for whole 

brainstem. Individuals with MS showed smaller volumes of the whole brainstem, midbrain, pons, 

and medulla oblongata, whereas individuals with PD had larger volume of the whole brainstem, 

midbrain, and medulla oblongata. 

 We ran further analyses of associations between brainstem volumes and clinical 

characteristics in the individuals with MCI, dementia, MS, SCZ, and PD and details of these 

analyses are provided in Supplementary Figs. 13-14. There were significant associations between 

Mini-Mental State Examination40 scores and brainstem volumes in dementia and MCI, indicating 

smaller pons and larger medulla oblongata volumes in more severely affected individuals (all P < 

2e-04). In MS, there were brainstem volume decreases also in the subgroup of patients without 

infratentorial lesions (n = 91; all P < 0.05) and significant negative associations between the 

Expanded Disability Status Scale41 scores and brainstem volumes in patients with infratentorial 

lesions (n = 153; P < 0.05). There was no significant association between the Global Assessment 

of Functioning scale42 or Positive and Negative Syndrome Scale43 scores and brainstem volumes 

in individuals with SCZ. We found no evidence for tremor severity influencing brainstem 

volumes in individuals with PD.  
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Discussion 

The midbrain, pons, and medulla oblongata have central roles in human health and disease, yet 

no large-scale neuroimaging study has focused on their structure and genetic underpinnings. 

Here, we discovered novel genetic loci associated with brainstem volumes and found genetic 

overlap with eight psychiatric and neurological disorders, revealing that the brainstem may play 

important roles in common brain disorders. Indeed, leveraging clinical imaging data we found 

differential alterations of brainstem volumes in individuals with SCZ, BD, MS, dementia, MCI, 

and PD.  

We identified 61 genetic loci associated with brainstem volumes using GWAS. Sixteen of 

these loci were associated with more than one volume, thus resulting in 45 unique brainstem-

associated genetic regions. There is to our knowledge no previous study of the genetic 

underpinnings of midbrain, pons, SCP, and medulla oblongata volumes, yet a recent landmark 

study of ~8,400 individuals in UK Biobank identified four SNPs on chromosomes four 

(rs10027331), nine (rs10983069), 11 (rs10792032), and 12 (rs11111090) associated with 

Freesurfer-based volume of the whole brainstem44. These SNPs are within four of the genetic loci 

linked to whole brainstem volume in the present study. 

The brainstem volume-associated genetic loci detected by the GWAS of this study were 

linked to 305 genes. Seventeen of these genes were identified by both the GWGAS and by all 

three FUMA mapping strategies (Supplementary Table 13). Among these genes, MAPT, KIF1B, 

KATNA1, NLN, and SGTB are notable. MAPT encodes tau protein, which is produced throughout 

neurons of the brain45. Accumulation of tau is a hallmark of the neurodegenerative tauopathies, 

including AD and frontotemporal dementia45. MAPT has also been linked to PD46 and rare 

mutations and common variants of MAPT increase progressive supranuclear palsy risk, where 

brainstem volume loss is a central disease characteristic47. KIF1B is involved in axonal transport 
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of mitochondria and synaptic vesicles and plays important roles in development of myelinated 

axons48. Loss of the gene results in impaired development of brainstem nuclei and impaired 

formation of synapses in the mouse spinal cord49. KATNA1 is implicated in axon outgrowth 

regulation50 and neuronal migration during development51. NLN regulates neurotensin 

signaling52, which has been linked to the pathophysiology of psychiatric and neurological 

disorders, including SCZ and PD53,54. The most significant locus for whole brainstem volume was 

mapped to SGTB, which is expressed at high levels in the brain and promotes neuronal 

differentiation and neurite outgrowth55. Although further studies are needed to clarify the 

relationship between these genes and brainstem structures, their implication by both the GWGAS 

and the three FUMA mapping approaches are suggestive of a role in brainstem volume variation. 

The Gene Ontology gene sets analyses of the GWAS findings showed that HOX genes 

were included in the nine most significant gene sets for pons and in the 24 gene sets most 

strongly associated with medulla oblongata volume. In addition, nine HOX genes (HOXB1-9) 

were associated with volumes of both pons and medulla oblongata in the GWGAS. HOX genes 

encode Hox proteins, which are transcription factors with central roles in nervous system 

development31,32. The HOXB1-4 genes are critical for the development of the embryonic 

hindbrain, which gives rise to the pons, the medulla oblongata, and the cerebellum32. For 

example, HOXB1 mutations can cause congenital bilateral facial palsy, hearing loss, and 

strabismus56. The HOX genes are not, however, expressed in the embryonic midbrain, which 

develops into the midbrain. Consistent with the embryonic genetic division between the hindbrain 

and the midbrain, HOX genes were not associated with the midbrain in the gene sets or in the 

GWGAS analyses of the current study. 

There was polygenic overlap between the brainstem regions and the eight psychiatric and 

neurological disorders of the present study. We leveraged the genetic overlap to uncover more of 
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the genetic architecture of the brainstem volumes and identified 52, 29, 63, 21, and 25 loci 

associated with volumes of the whole brainstem, midbrain, pons, SCP, and medulla oblongata, 

respectively, using conditional FDR. These loci included all brainstem-associated genetic regions 

identified by the GWAS. The polygenic overlap also indicates a role for brainstem regions in 

common brain disorders and gene sets analyses implicated cellular and neurodevelopmental 

processes in the genetic loci shared with SCZ.  

Further studies of how the overlapping genetic regions influence brainstem structure and 

the risk for common brain disorders are warranted, yet several of the shared loci are noteworthy. 

The most significant shared locus for SCZ and the second-most significant shared locus for 

PD was rs13107325, which was associated with midbrain volume in SCZ and medulla oblongata 

volume in both disorders. rs13107325 is located in the metal ion transporter gene SLC39A8. We 

also found that rs4845679 was jointly associated with volumes of pons, SCP, and medulla 

oblongata and both SCZ and BD. The nearest gene for rs4845679 is KCNN3, which is expressed 

at high levels in the adult brain and encodes a protein that contributes to the 

afterhyperpolarization in neurons57. The most significant locus for ASD was rs9891103, which 

was jointly associated with whole brainstem volume, and its nearest gene was MAPT. rs8070942 

and rs3865315 were shared between ASD and SCZ, respectively, and medulla oblongata volume. 

The nearest gene for these SNPs was KANSL1, which is expressed in the brain and encodes a 

nuclear protein involved in histone acetylation58. 

We also found that the genetic loci shared between brainstem structures and the brain 

disorders exhibited a mixed pattern of allelic effect directions, i.e., disorder-linked genetic 

variants were associated with both larger (same effect direction) and smaller (opposite effect 

direction) brainstem volumes. A consistent direction of effect across overlapping genetic loci is a 

requirement for a significant genetic correlation as assessed using LD score regression25. For 
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example, a recent study showed that SCZ and educational attainment may share >8K causal 

genetic variants, yet their genetic correlation is close to zero due to shared variants with opposite 

effect directions59. Thus, a mixed pattern of allelic effect directions might be one explanation for 

the lack of robust genetic correlations between the brainstem volumes and the disorders in the 

present study.  

We detected brainstem volume differences between individuals with SCZ, BD, dementia, 

MCI, MS, and PD and their respective HC groups. The monoaminergic nuclei of the brainstem 

are implicated in psychotic and mood disorders4,60-63, yet there are few volumetric studies of 

brainstem regions in these illnesses. The results of the present study suggest a general volume 

decrease across brainstem regions in SCZ, consistent with previous studies of the whole 

brainstem64,65. BD, on the other hand, was associated with reduced volume of the medulla 

oblongata and a relative sparing or even increase of pons volume in the current study. Whether 

brainstem differences in SCZ and BD are genetically mediated and involved in the development 

of these disorders or illness effects that emerge during the course of the diseases mandates future 

studies. 

Compared to healthy peers, individuals with dementia showed smaller volumes of the 

midbrain and pons and larger relative volume of medulla oblongata. Notably, we found a highly 

similar pattern in individuals with MCI. To our knowledge, there is no previous study showing 

reduced brainstem volumes in MCI, although one recent report found greater whole brainstem 

volume reduction over one year in individuals with MCI that converted to dementia than in those 

who did not convert66. There is a scarcity of structural brainstem studies in dementia, yet the 

results of the present study are consistent with a few previous findings suggesting volume 

decreases mainly in midbrain and pons in dementia20,67,68. Here, we extend these findings to MCI, 

thus suggesting that structural midbrain and pons alterations could be present in the early phases 
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of dementia. The smaller volumes of whole brainstem, midbrain, pons, and the medulla oblongata 

in individuals with MS are consistent with the limited number of previous volumetric brainstem 

studies of the disorder69-71. 

We found larger volumes of the whole brainstem, midbrain, and medulla oblongata in the 

individuals with PD. There was no indication that tremor severity could explain the volume 

increases. Notably, some previous studies detected enlargement of the brainstem and other brain 

structures in PD72-74 and the individuals with PD of the present study were in the early phase of 

the disorder and none used anti-Parkinson drugs. However, the PD sample was small and 

replication studies are needed to further explore how clinical characteristics, such as disorder 

phase and medication use, and potential confounds, including within-scanner motion, may factor 

into measurements of brainstem volumes in PD.  

The resolution of the MRI data of the present study does not allow for analyses of 

individual brainstem nuclei. We also note that the effect sizes for the brainstem changes in the 

brain disorders of this study were small to moderate. However, larger effect sizes might be 

revealed in future studies of brainstem nuclei and the effects observed in the present study should 

not be interpreted as clinically insignificant. Rather, the findings of this study highlight the 

potential importance of the brainstem across psychiatric and neurological disorders and should 

stimulate research efforts to further clarify the roles of brainstem subregions in the etiologies and 

treatments of common brain disorders.  

In summary, the current study provides new insights into the genetic architecture of 

brainstem regions, identifies the first genetic loci linked to volumes of the midbrain, pons, SCP, 

and the medulla oblongata, and shows genetic and imaging evidence for an involvement of 

brainstem regions in common brain disorders. Altogether, these findings encourage further 

studies of brainstem structures in human health and disease.  
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Supplementary figures 

 

Supplementary Fig. 1 | We manually assessed the delineations in all magnetic resonance imaging data sets (n = 49,815) by 

visually inspecting twelve sagittal view figures of the segmentations for each participant, as illustrated in a-d. a and b are 

examples of two datasets included in the study, whereas c and d are data sets excluded due to insufficient field of view (FOV). 

Data sets were excluded from the study if one of the following requirements was not met: 1. the field of view included the whole 

brainstem, 2. the superior boundary of the midbrain approximated an axial plane through the mammillary body and the superior 

edge of the quadrigeminal plate, 3. the boundary between mibrain and pons approximated an axial plane through the superior 

pontine notch and the inferior edge of the quadrigeminal plate, 4. the boundary between between pons and medulla oblongata 

approximated an axial plane at the level of the inferior potine notch, 5. the inferior boundary of the medulla oblongata 

approximated an axial plane at the level of the posterior rim of the foramen magnum, 6. there were no substantial segmentation 

errors for the anterior and posterior boundaries of midbrain, pons, and medulla oblongata, and 7. the superior boundary of the SCP 

approximated the inferior boundary of the midbrain tectum, the inferior boundary of the SCP was defined by the merging with the 

cerebellum, and the anterior boundary of the SCP was defined by the posterior boundary of the pons.This visual quality control 

procedure excluded 13% (n = 6,462) of the data sets, mainly due to insufficient FOV, image quality, and segmentation errors in 

the clinical samples. SCP; superior cerebellar peduncle. 
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Supplementary Fig. 2 | Manhattan plots for volumes of the whole brainstem (a), midbrain (b), pons (c), superior cerebellar 

peduncle (d), and medulla oblongata (e) from the genome-wide association studies. 16 genetic loci were associated with whole 

brainstem volume and 10, 23, 3, and 9 loci were associated with volumes of the midbrain, pons, superior cerebellar peduncle, and 

medulla oblongata, respectively. The red horizontal lines indicate genome-wide significance.  
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Supplementary Fig. 3 | Q-Q plots for volumes of the whole brainstem (a), midbrain (b), pons (c), superior cerebellar peduncle 

(d), and medulla oblongata (e) from the genome-wide association studies. SCP; superior cerebellar peduncle.  
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Supplementary Fig. 4 | Regional plots for the most significant genetic locus from the genome-wide association studies for 

volumes of the whole brainstem at chromosome 5 (a), midbrain at chromosome 7 (b), pons at chromosome 12 (c), superior 

cerebellar peduncle at chromosome 1 (d), and medulla oblongata at chromosome 12 (e). SCP; superior cerebellar peduncle. 
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Supplementary Fig. 5 | Heritability estimates for the brainstem volumes of n = 27,034 healthy individuals when not accounting 

for the whole brainstem. All brainstem volumes showed substantial heritability, which highest estimates for the midbrain (h2 = 

0.33) and pons (h2 = 0.35) and lowest for the medulla oblongata (h2 = 0.20) and SCP (h2 = 0.19). SCP; superior cerebellar 

peduncle. 
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Supplementary Fig. 6 | Manhattan plots for volumes of the midbrain (a), pons (b), superior cerebellar peduncle (c), and medulla 

oblongata (d) from the genome-wide association studies when not accounting for whole brainstem volume. The red horizontal 

lines indicate genome-wide significance. Additional information for the significant loci is provided in Supplementary Table 5. 
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Supplementary Fig. 7 | Functional single-nucleotide polymorphism categories from the genome-wide association studies for 

volumes of the whole brainstem (a), midbrain (b), pons (c), superior cerebellar peduncle (d), and medulla oblongata (e). 

WBS; whole brainstem. MID; midbrain. SCP; superior cerebellar peduncle. MED; medulla oblongata. UTR; untranslated 

region.  
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Supplementary Fig. 8 | Examples of Circos plots of mapped genes for the whole brainstem at chromosome 12 (a), midbrain at 

chromosome 14 (b), pons at chromosome 1 (c), superior cerebellar peduncle at chromosome 4 (d), and medulla oblongata at 

chromosome 4 (e). The plots show mapped genes of significant genetic loci from the genome-wide association studies of 

brainstem volumes (blue regions). The genes were linked to the loci by eQTL mapping (green lines) and chromatin interactions 

(orange lines). Green color indicates genes implicated by eQTLs, orange color indicates genes mapped by chromatin 

interactions, and genes implicated by both strategies are in red color. The outer layers show the Manhattan plots of single 

nucleotide polymorphisms from the genome-wide association studies. 
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Supplementary Fig. 9 | Q-Q plots for volumes of the whole brainstem (a), midbrain (b), pons (c), superior cerebellar peduncle 

(d), and medulla oblongata (e) from the genome-wide gene-based association analyses. SCP; superior cerebellar peduncle. 
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Supplementary Fig. 10 | Conditional Q-Q plots for brainstem volumes given associations with the disorder (left figures) and vice 

versa (right figures), for attention deficit hyperactivity disorder (a), autism spectrum disorder (b), bipolar disorder (c), major 

depression (d), schizophrenia (e), Alzheimer’s disease (f), multiple sclerosis (g), and Parkinson’s disease (h). ASD; autism 

spectrum disorders. BD; bipolar disorder. MD; major depression. SCZ; schizophrenia. AD; Alzheimer’s disease. MS; multiple 

sclerosis. PD; Parkinson’s disease. 

 

 

Supplementary Fig. 11 | Manhattan plots of genetic loci for each brainstem region identified by the condition false discovery rate 

analyses when conditioned on the eight brain disorders. These analyses revealed a total of 208 independent significant single-

nucleotide polymorphisms (SNPs) for whole brainstem volume (a), 111 SNPs for midbrain volume (b), 270 SNPs for pons 

volume (c), 55 SNPs for superior cerebellar peduncle volume (d), and 125 SNPs for medulla oblongata volume (e). ASD; autism 

spectrum disorders. BD; bipolar disorder. MD; major depression. SCZ; schizophrenia. AD; Alzheimer’s disease. MS; multiple 

sclerosis. PD; Parkinson’s disease. 
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Supplementary Fig. 12 | Genetic correlations between brainstem volumes and eight brain disorders. There were correlations 

between brainstem volumes and ASD, ADHD, and PD with uncorrected P < 0.05, yet these were not significant after multiple 

testing corrections. ADHD; attention deficit hyperactivity disorder. ASD; autism spectrum disorder. BD; bipolar disorder. MD; 

major depression. MS; multiple sclerosis. PD; Parkinson’s disease. SCZ; schizophrenia.  
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Supplementary Fig. 13 | Associations between brainstem volumes and clinical variables. We ran analyses of associations 

between brainstem volumes and clinical characteristics in the individuals with MCI, DEM, MS, SCZ, and PD. Across individuals 

with MCI and DEM (n = 1610), there were negative associations between Mini-Mental State Examination (MMSE) scores40 and 

medulla oblongata volume before (r = -0.11 , P = 1.8e-05) and after (r = -0.13, P = 3.5e-07) accounting for whole brainstem 

volume. In addition, there was a significant positive association between MMSE and pons volume when adjusted for the whole 

brainstem (r = 0.10, P = 1.7e-04). All MRIs from the individuals with MS were examined by two neuroradiologists and then 

divided into two groups according to presence of infratentorial lesions. There was no significant difference in brainstem volumes 

between patients with (n = 153) and without (n = 91) infratentorial lesions (all P > 0.05; results not shown in the figure). Patients 

without lesions had reduced volumes relative to the controls of the whole brainstem (Cohen’s d = -0.23, P = 0.03), midbrain 

(Cohen’s d = - 0.26, P = 0.01), and medulla oblongata (Cohen’s d = -0.22, P = 0.03; results not shown in the figure). There were 

significant reductions in volumes of patients with infratentorial lesions relative to controls for the whole brainstem (Cohen’s d = - 

0.30, P = 3.4e-04), the midbrain (Cohen’s d = -0.36, P = 1.9e-05), the pons (Cohen’s d = -0.24, P = 3.9e-03), and medulla 
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oblongata (Cohen’s d = - 0.29, P = 4.9e-04; results not shown in the figure). Across individuals with MS, there were no significant 

associations between brainstem volumes and EDSS (all P > 0.05). However, in the individuals with infratentorial lesions, there 

were negative associations between Expanded Disability Status Scale (EDSS)41 and volumes of the whole brainstem (r = - 0.21, P 

= 0.03), pons (r = - 0.20, P = 0.045), and medulla oblongata (r = - 0.24, P = 0.01). There were no significant association between 

EDSS and volumes of the brainstem in the individuals without infratentorial lesions (all P > 0.41). In SCZ, there was no 

significant association between brainstem volumes and symptom or function scores of the Global Assessment of Functioning 

scale42 or positive and negative scores of the Positive and Negative Syndrome Scale43 (all P > 0.05). There were no significant 

relationships between brainstem volumes and the Movement Disorder Society‐sponsored revision of the Unified Parkinson's 

Disease Rating Scale III sum score75 or the Hoehn and Yahr Stage score76 (all P > 0.05) in the individuals with PD (results not 

shown in the figure). MCI; mild cognitive impairment. DEM; dementia. MS; multiple sclerosis. SCZ; schizophrenia. PD; 

Parkinson’s disease. MRI; magnetic resonance imaging.  
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Supplementary Fig. 14 | Tremor and brainstem volumes in individuals with Parkinson’s disease (PD).We examined whether the 

volume increases in the individuals with PD were related to tremor, which could cause increased within-scanner motion and 

confound the brainstem segmentation. Here, we used item 2.10 of the Unified Parkinson's Disease Rating Scale III75: 

“Over the past week, have you usually had shaking or tremor? 0: Normal: Not at all. I have no shaking or tremor; 1: Slight: 

Shaking or tremor occurs but does not cause problems with any activities.; 2: Mild: Shaking or tremor causes problems with only 

a few activities; 3: Moderate: Shaking or tremor causes problems with many of my daily activities; and 4: Severe: Shaking or 

tremor causes problems with most or all activities.” Thirty individuals had a tremor score of 0, 74 individuals had a score of 1, 22 

individuals had a score of 2, 2 individuals had a score of 3, and none had a score of 4. We then grouped the individuals according 

to the tremor level and compared brainstem volumes between these groups using a linear model, covarying for gender, intracranial 

volume, scanner, age, and age2. There were no significant effects of tremor group on brainstem volumes (all P > 0.13). 
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Methods 

Methods are available at http://..... 
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Pharma, Trommsdorff, Servier, and Roche. None of these external parties had any role in the 

analysis, writing or decision to publish this work. All other authors declare no competing 
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Additional information 

Supplementary information is available for this paper at … 

 

Karolinska Schizophrenia Project (KaSP)  

Members of the Karolinska Schizophrenia Project (KaSP): L Farde6, L Flyckt6, G Engberg58, S 
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Collste6, P Victorsson6, A Malmqvist58, M Hedberg58, F Orhan58, C M Sellgren58 
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Online methods 

Samples 

We collected data from cohorts of participants with common brain disorders and healthy 

individuals through collaborations, data sharing platforms, and from in-house samples (n = 

49,815). All included samples have been part of previously published works and data collection 

for each sample was performed with participants’ written informed consent and with approval by 

the respective local Institutional Review Boards. Supplementary Table 1 provides details for each 

sample and refers to previously published works from the included samples.    

 

Preprocessing of MRI data, brainstem segmentations, and quality control procedures 

Raw T1-weighted MRI data for all individuals was stored and analyzed locally at the University 

of Oslo. The whole brainstem, midbrain, pons, SCP, and medulla oblongata were then delineated 

using Freesurfer 6.021 and Bayesian brainstem segmentation20. The brainstem segmentation 

method is based on a probabilistic atlas and Bayesian inference and is robust to changes in MRI 

scanners and pulse sequence details20. We then manually assessed the delineations in all MRI 

data sets (n = 49,815) by visually inspecting twelve sagittal view figures of the segmentations for 

each participant, as shown in Supplementary Fig. 1. This visual quality control (QC) procedure 

for each data set was conducted blind to case-control status. Data sets were excluded from the 

study if one of the following requirements was not met: 1. the field of view included the whole 

brainstem, 2. the superior boundary of the midbrain approximated an axial plane through the 

mammillary body and the superior edge of the quadrigeminal plate, 3. the boundary between 

mibrain and pons approximated an axial plane through the superior pontine notch and the inferior 

edge of the quadrigeminal plate, 4. the boundary between between pons and medulla oblongata 

approximated an axial plane at the level of the inferior potine notch, 5. the inferior boundary of 
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the medulla oblongata approximated an axial plane at the level of the posterior rim of the 

foramen magnum, 6. there were no substantial segmentation errors for the anterior and posterior 

boundaries of midbrain, pons, and medulla oblongata, and 7. the superior boundary of the SCP 

approximated the inferior boundary of the midbrain tectum, the inferior boundary of the SCP was 

defined by the merging with the cerebellum, and the anterior boundary of the SCP was defined by 

the posterior boundary of the pons. This QC procedure excluded 13% (n = 6,462) of the data sets, 

mainly due to insufficient field of view (e.g., not fully covering the inferior part of the medulla 

oblongata), insufficient data quality, and segmentation errors in the clinical samples, resulting in 

a final sample size of n = 43,353 (Supplementary Table 3). 

 

Genome-wide association studies for brainstem volumes and identification of genomic loci 

The genetic analyses for the brainstem volumes were based on MRI and genetic data from 

healthy individuals of the UK Biobank Resource (sample size n = 27,034 after the QC 

procedures). We restricted all genetic analyses to individuals with White European ancestry, as 

determined by the UK Biobank study team. We applied standard quality control procedures to the 

UK Biobank v3 imputed genetic data, removing SNPs with an imputation quality score < 0.5, a  

minor allele frequency < 0.05, missing in more than 5% of individuals, and failing the Hardy 

Weinberg equilibrium tests at a P < 1e-6.  

We performed GWAS on the brainstem volumes in the 27,034 healthy adults using 

PLINK 2.023. All GWAS accounted for age, age², sex, scanning site, ICV, genetic batch, and the 

first ten genetic principal components to account for population stratification. In addition, the 

GWAS for the midbrain, pons, SCP, and medulla oblongata accounted for whole brainstem 

volume. The MHC region was excluded from the analysis.  
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We identified genetic loci related to brainstem volumes using the FUMA platform 

v1.3.3c26. Independent significant SNPs were identified by the genome-wide significant threshold 

(P < 5e-8) and by their independency (r2 ≤ 0.6 within a 1 mb window). Independent significant 

SNPs with r2 < 0.1 within a 1 mb window were defined as lead SNPs. Genomic risk loci were 

found by merging lead SNPs if they were closer than 250 kb. Candidate SNPs were defined as all 

SNPs in LD (r2 ≥ 0.6) with one of the independent significant SNPs in the genetic loci. 

 

Functional annotation, gene-based association, and gene-set analysis 

We functionally annotated all candidate SNPs of brainstem volumes that were in linkage 

disequilibrium (r2 ≥ 0.6) with one of the independent significant SNPs using the FUMA platform 

v1.3.3c26. FUMA is based on information from 18 biological repositories and tools and 

functionally annotates GWAS results. The platform prioritizes the most likely causal SNPs and 

genes by combining positional, eQTL, and chromatin interaction mapping26. FUMA annotates 

significantly associated SNPs with functional categories, combined CADD scores28, 

RegulomeDB scores77, and chromatin states26. A CADD score above 12.37 is suggestive of a 

deleterious protein effect28. The RegulomeDB score indicates the regulatory functionality of 

SNPs based on eQTLs and chromatin marks, whereas the chromatin state indicates the 

accessibility of genomic regions accessibility using 15 categorical states, as predicted by 

ChromHMM based on 5 chromatin marks for 127 epigenomes78,79. 

We conducted genome-wide gene-based association and gene-set analyses using 

MAGMA30 in FUMA on the complete GWAS input data. MAGMA performs multiple linear 

regression to obtain gene-based P-values and the Bonferroni-corrected significant threshold was 

P = 0.05/18158 genes = 2.75e-6. We performed a MAGMA30 gene-set analysis for curated gene 

sets and GO terms obtained from MsigDB80. To identify over-represented pathways for the 
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mapped genes, we used the ConsensusPathDB33. ConsensusPathDB is a database system that 

integrates functional interactions, including binary and complex protein-protein, genetic, 

metabolic, signaling, gene regulatory and drug-target interactions, as well as biochemical 

pathways33.  

 

Analyses of genetic overlap between brainstem volumes and eight brain disorders 

To further examine the genetic architecture of brainstem volumes and the genetic relationships 

between brainstem regions and common brain disorders, we obtained GWAS summary statistics 

for ADHD81, ASD, SZ, and BD from the Psychiatric Genomics Consortium82-84, for MD from the 

Psychiatric Genomics Consortium and 23andMe85,86, for AD from the International Genomics of 

Alzheimer's Project87, for MS from the International Multiple Sclerosis Genetics Consortium88, 

and for PD from the International Parkinson Disease Genomics Consortium46,89. We then 

employed conditional Q-Q plots90 and conditional FDR and conjunctional FDR statistics34,91 to 

assess polygenic overlap between brainstem volumes and the eight brain disorders.  

The conditional Q-Q plots compare the association with a primary trait across all SNPs 

and within SNPs strata determined by their association with the secondary trait. Genetic 

overlap exists if the proportion of SNPs associated with a phenotype increases as a function of 

the strength of the association with a secondary phenotype90. In conditional Q-Q plots, this 

enrichment is visualized as successive leftward deflections from the null distribution, and can 

be directly interpreted in terms of the true discovery rate (1−FDR)34-36. In this work, we 

plotted the empirical cumulative distribution of nominal P-values in one phenotype (e.g., whole 

brainstem volume) for all SNPs and for subsets of SNPs with significance levels in another 

phenotype (e.g., SCZ) below the indicated cut-offs (P ≤ 1, P ≤ 0.1, P ≤ 0.01, and P ≤ 0.001).  
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The conditional FDR statistical framework applies genetic association summary statistics 

from a trait of interest together with those of a conditional trait to estimate the posterior 

probability that a SNP has no association with the primary trait, given that the P-values for that 

SNP in both the primary and conditional traits are lower than the observed P-value34-36. This 

method can enhance the detection of genetic variants associated inserted the primary trait via re-

ranking SNPs compared to nominal P-value based ranking. Here, we used an FDR level of 0.05 

per pairwise comparison for conditional FDR. 

To detect genetic jointly associated with the brainstem volumes and the eight clinical 

conditions, we used the conjunctional FDR method at a threshold of 0.0534-36. The conjunctional 

FDR is an extension of conditional FDR and is defined by the maximum of the two conditional 

FDR values for a specific SNP. This method estimates a posterior probability that a SNP is null 

for either trait or both at the same time, given that the P values for both phenotypes are as small, 

or smaller, than the P-values for each trait individually. Manhattan plots were constructed based 

on the ranking of the conjunctional FDR to show the genomic location of the shared genetic risk 

loci. The empirical null distribution in GWASs is affected by global variance inflation and all p-

values were therefore corrected for inflation using a genomic inflation control procedure. All 

analysis was performed after excluding SNPs in the major extended histocompatibility complex 

(hg19 location Chr 6: 25119106–33854733) and 8p23.1 regions (hg19 location Chr 8: 7242715–

12483982) for all cases and MAPT and APOE regions for PD and AD, respectively, since 

complex correlations in regions with intricate LD can bias the FDR estimation. We also ran 

pairwise genetic correlations between brainstem volumes and the eight psychiatric and 

neurological disorders using LD score regression25. Here, the SNPs were pruned using a pairwise 

correlation coefficient approximation to LD (r²), where SNPs were disregarded at r² < 0.2 and 

pruning performed with 20 iterations90. 
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Statistical analysis of brainstem volumes, brain disorders, and clinical variables  

Statistical analyses for group comparisons were conducted using linear models in R statistics39. 

We included all healthy individuals that were imaged on the same scanners as the patients they 

were compared with, in the respective control groups. For clinical conditions where patients were 

imaged on multiple scanners, we included scanner site as a covariate in the analyses. For each of 

the clinical conditions, we ran linear models covarying for sex, age, age-orthogonalized age², 

ICV, and adjusted for multiple testing using FDR (Benjamini-Hochberg). The group analyses for 

volumes of midbrain, pons, SCP, and medulla oblongata were run both with and without 

covarying for whole brainstem volume.  

Information concerning illness severity was available from individuals with MCI, 

dementia, MS, SCZ, and PD. 1610 individuals with MCI or dementia had MMSE score40, 

whereas 190 individuals with MS had EDSS scores41. Linear models were run to examine the 

relationships between the clinical variables and brainstem volumes covarying for sex, age, age-

orthogonalized age², ICV, and scanner site. Two neuroradiologists assessed the imaging data 

from the individuals with MS and found that n = 153 participants had infratentorial MS lesions 

detectable with MRI, whereas n = 91 did not. 384 individuals with SCZ had function scores of 

the Global Assessment of Functioning scale42, whereas 264 individuals had symptom scores from 

the scale. 616 and 614 individuals with SCZ had positive and negative scores, respectively, from 

the Positive and Negative Syndrome Scale43. 128 individuals with PD had Unified Parkinson's 

Disease Rating Scale III scores75 and the Hoehn and Yahr Stage score76. To examine whether 

tremor level might influence the measurements of brainstem volumes in PD, we used the self-

report tremor item 2.10 of the Unified Parkinson's Disease Rating Scale III75 and examined 

brainstem volumes across these tremor scores using linear models.  
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Code availability 

The code needed to reproduce the results is available from the authors upon request. 
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The genetic architecture of human brainstem structures and their involvement in common 

brain disorders 

 

This supplementary file contains Supplementary Tables 1-3. 

 

Supplementary Table 1: Summary of included samples.  

 

Supplementary Table 2: Summary of magnetic resonance imaging characteristics of included 
samples. 

 

Supplementary Table 3: Size and demographic information of final study samples after quality 
control procedures. 
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Supplementary Table 1. Summary of included samples.  

Sample Source Comment Reference 

ABIDE1 http://fcon_1000.projects.nitrc.org/  Primary support for the work by Adriana Di Martino 
was provided by the NIMH (K23MH087770) and the 
Leon Levy Foundation. Primary support for the work 
by Michael P. Milham and the INDI team was 
provided by gifts from Joseph P. Healy and the 
Stavros Niarchos Foundation to the Child Mind 
Institute, as well as by an NIMH award to MPM 
(R03MH096321). 

1 

ABIDE2 http://fcon_1000.projects.nitrc.org/ Primary support for the work by Adriana Di Martino 
and her team was provided by the National Institute 
of Mental Health (NIMH 5R21MH107045). Primary 
support for the work by Michael P. Milham and his 
team provided by the National Institute of Mental 
Health (NIMH 5R21MH107045); Nathan S. Kline 
Institute of Psychiatric Research). Additional Support 
was provided by gifts from Joseph P. Healey, Phyllis 
Green and Randolph Cowen to the Child Mind 
Institute. 

2 

ABM Authors ABM was supported by the Research Council of  
Norway (grant number 247372) and Health South 
East Research Funding Agency (grant number 
2105052). 
 

3 

ADDNEUROMED Authors AddNeuroMed consortium was led by Simon 
Lovestone, Bruno Vellas, Patrizia Mecocci, Magda 
Tsolaki, Iwona Kłoszewska, Hilkka Soininen. Their 
work was supported by InnoMed (Innovative 
Medicines in Europe), an integrated project funded by 
the European Union of the Sixth Framework program 
priority (FP6-2004- LIFESCIHEALTH-5). 
 

4,5 

ADHD200 http://fcon_1000.projects.nitrc.org/ F. Xavier Castellanos, David Kennedy, Michael 
Milham, and Stewart Mostofsky are responsible for 
the initial conception of the ADHD-200 Consortium. 
Consortium steering committee includes Jan 
Buitelaar, F. Xavier Castellanos, Dan Dickstein, 
Damien Fair, David Kennedy, Beatriz Luna, Michael 
Milham (Project Coordinator), Stewart Mostofsky, 
and Julie Schweitzer. Data aggregation and 
organization was coordinated by the INDI team, 
which included Saroja Bangaru, David Gutman, 
Maarten Mennes, and Michael Milham. Web 
infrastructure and data storage were coordinated by 
Robert Buccigrossi, Albert Crowley, Christian 
Hasselgrove, David Kennedy, Kimberly Pohland, and 
Nina Preuss. The ADHD-200 Global Competition 
Coordinators were Damien Fair (Chair of Selection 
Committee, Editor in Chief for Global Competition 
Special issue) and Michael Milham 

6,7 

ADHDWUE Authors Primary support for the study was provided by the 
German Research Foundation, grant number DFG 
KFO 125/2. 
 

8,9 

ADNI1 
ADNI2 

http://adni.loni.usc.edu/ 
http://adni.loni.usc.edu/ 

Data collection and sharing for this project was 
funded by the Alzheimer's Disease Neuroimaging 
Initiative (ADNI) (National Institutes of Health Grant 
U01 AG024904) and DOD ADNI (Department of 
Defense award number W81XWH-12-2-0012). ADNI 
is funded by the National Institute on Aging, the 
National Institute of Biomedical Imaging and 
Bioengineering, and through generous contributions 
from the following: AbbVie, Alzheimer’s 
Association; Alzheimer’s Drug Discovery 
Foundation; Araclon Biotech; BioClinica, Inc.; 
Biogen; Bristol-Myers Squibb Company; CereSpir, 
Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; 
Eli Lilly and Company; EuroImmun; F. Hoffmann-La 
Roche Ltd and its affiliated company Genentech, Inc.; 
Fujirebio; GE Healthcare; IXICO Ltd.; Janssen 
Alzheimer Immunotherapy Research & Development, 
LLC.; Johnson & Johnson Pharmaceutical Research 
& Development LLC.; Lumosity; Lundbeck; Merck 
& Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx 

10,11 
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Research; Neurotrack Technologies; Novartis 
Pharmaceuticals Corporation; Pfizer Inc.; Piramal 
Imaging; Servier; Takeda Pharmaceutical Company; 
and Transition Therapeutics. The Canadian Institutes 
of Health Research is providing funds to support 
ADNI clinical sites in Canada. Private sector 
contributions are facilitated by the Foundation for the 
National Institutes of Health (www.fnih.org). The 
grantee organization is the Northern California 
Institute for Research and Education, and the study is 
coordinated by the Alzheimer’s Therapeutic Research 
Institute at the University of Southern California. 
ADNI data are disseminated by the Laboratory for 
Neuro Imaging at the University of Southern 
California. 

BETULA Authors Betula was supported by a Wallenberg Scholar Grant 
(KAW).  
 

12 

CAMCAN https://camcan-archive.mrc-
cbu.cam.ac.uk/dataaccess/ 

Data collection and sharing for this project was 
provided by the Cambridge Centre for Ageing and 
Neuroscience (CamCAN). CamCAN funding was 
provided by the UK Biotechnology and Biological 
Sciences Research Council (grant number 
BB/H008217/1), together with support from the UK 
Medical Research Council and University of 
Cambridge, UK. 

13,14 

CIMH Authors CIMH was supported by the Deutsche 
Forschungsgesellschaft (DFG, projects ZI1253/3-1, 
ZI1253/3-2, KI 576/14-2, ME 1591/6-2) and the 
European Community‘s Seventh Framework 
Programme (FP7/2007–2013) grant agreement 
#602450 (IMAGEMEND). 
  

15,16 

CORR http://fcon_1000.projects.nitrc.org/   17 
DLBS http://fcon_1000.projects.nitrc.org/  18 

DS000030 (CNP) https://openfmri.org/ DS* data sets were obtained from the OpenfMRI 
database. DS000030 work was supported by the 
Consortium for Neuropsychiatric Phenomics (NIH 
Roadmap for Medical Research grants UL1-
DE019580, RL1MH083268, RL1MH083269, 
RL1DA024853, RL1MH083270, RL1LM009833, 
PL1MH083271, and PL1NS062410). DS000115 was 
supported through NIH Grants P50 MH071616 and 
R01 MH56584. DS000119 was supported by the 
National Institutes of Mental Health (NIMH RO1 
MH067924). Enami Yasui provided assistance with 
data collection.  DS000171: Trisha Patrician and 
Natalie Stroupe assisted with screening of 
participants. Allan Schmitt and Franklin Hunsinger 
collected the MR data. 
 

19,20 

DS000115 (CCNMD) https://openfmri.org/ 21,22 

DS000119 https://openfmri.org/ 23 

DS000171 https://openfmri.org/ 24 

DS000202 https://openfmri.org/ 25,26 

DS000222 https://openfmri.org/ 27 

HCP https://www.humanconnectome.org Data were provided [in part] by the Human 
Connectome Project, MGH-USC Consortium 
(Principal Investigators: Bruce R. Rosen, Arthur W. 
Toga and Van Wedeen; U01MH093765) funded by 
the NIH Blueprint Initiative for Neuroscience 
Research grant; the National Institutes of Health grant 
P41EB015896; and the Instrumentation Grants 
S10RR023043, 1S10RR023401, 1S10RR019307. 
 

28 

HUBIN Authors This study was supported by the Swedish Research 
Council (2006-2992, 2006-986, K2007-62X-15077-
04-1, 2008-2167, K2008-62P-20597-01-3. K2010-
62X-15078-07-2, K2012-61X-15078-09-3, 2017-
00949), the regional agreement on medical training 
and clinical research between Stockholm County 
Council and the Karolinska Institutet, the Knut and 
Alice Wallenberg Foundation, and the HUBIN 
project. 
 

29 

HUNT Authors The HUNT Study is a collaboration between HUNT 
Research Centre, Faculty of Medicine and Health 
Sciences, Norwegian University of Science and 
Technology (NTNU), Nord-Trøndelag County 
Council, Central Norway Regional Health Authority, 
and the Norwegian Institute of Public Health. HUNT-
MRI and the genetic analysis were funded by grants 

30,31 
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from the Liaison Committee between the Central 
Norway Regional Health Authority and NTNU to 
principal investigator Asta Håberg, and the 
Norwegian National Advisory Unit for functional 
MRI. We thank the HUNT MRI participants, MRI 
technicians and the Department of Diagnostic 
Imaging at Levanger Hospital, Professor Lars Jacob 
Stovner (NTNU) and the administrative staff at 
HUNT.  
 

IXI http://brain-development.org/ixi-
dataset/ 
 

 32 

KASP Authors KaSP was supported by grants from the Swedish 
Medical Research Council (SE: 2009-7053; 2013-
2838; SC: 523-2014-3467), the Swedish Brain 
Foundation, Åhlén-siftelsen, Svenska 
Läkaresällskapet, Petrus och Augusta Hedlunds 
Stiftelse, Torsten Söderbergs Stiftelse, the 
AstraZeneca-Karolinska Institutet Joint Research 
Program in Translational Science, Söderbergs 
Königska Stiftelse, Professor Bror Gadelius Minne, 
Knut och Alice Wallenbergs stiftelse, Stockholm 
County Council (ALF and PPG), Centre for 
Psychiatry Research, KID-funding from the 
Karolinska Institutet.  
 

33,34 

MALTOSLO Authors The study was funded by the South-Eastern Norway 
Regional Health Authority (2015-2015078), Oslo 
University Hospital, a research grant from Mrs. 
Throne-Holst, and the Ebbe Frøland foundation.  
 

35,36 

NCNG Authors The sample collection was supported by grants from 
the Bergen Research Foundation and the University 
of Bergen, the Dr Einar Martens Fund, the K.G. 
Jebsen Foundation, the Research Council of Norway, 
to SLH, VMS, AJL, and TE. The authors thank Dr. 
Eike Wehling for recruiting participants in Bergen, 
and Professor Jonn-Terje Geitung and Haraldplass 
Deaconess Hospital for access to the MRI facility. 
Additional support by RCN grants 177458/V50 and 
231286/F20.  
 

37 

NIMAGE Authors This project was supported by grants from National 
Institutes of Health (grant R01MH62873 to SV 
Faraone) for initial sample recruitment, and from 
NWO Large Investment (grant 1750102007010 to JK 
Buitelaar), NWO Brain & Cognition (grant 433-09-
242 to JK Buitelaar), ZonMW Grant 60-60600-97-
193, and grants from Radboud University Medical 
Center, University Medical Center Groningen, 
Accare, and VU University Amsterdam for 
subsequent assessment waves. NeuroIMAGE also 
receives funding from the European Community’s 
Seventh Framework Programme (FP7/2007 – 2013) 
under grant agreements n° 602805 (Aggressotype), n° 
278948 (TACTICS), and n° 602450 
(IMAGEMEND), and from the European 
Community’s Horizon 2020 Programme 
(H2020/2014 – 2020) under grant agreements n° 
643051 (MiND) and n° 667302 (CoCA). 
 

38 

NORCOG Authors The Norwegian register of persons assessed for 
cognitive symptoms (NorCog) includes clinical and 
biological data from memory clinics in Norway 
(https://www.aldringoghelse.no-/norkog/). The 
register is owned by Oslo University Hospital and 
administered by Norwegian National Advisory Unit 
on Ageing and Health. The NORCOG sample 
includes individuals with mild cognitive impairment 
and dementia.  
  

39 

OASIS http://www.oasis-brains.org/ The study was supported by grants P50 AG05681, 
P01 AG03991, R01 AG021910, P50 MH071616, 
U24 RR021382, R01 MH56584. 
 

40,41 

PING http://pingstudy.ucsd.edu/ Data used in the preparation of this article were 
obtained from the Pediatric Imaging, Neurocognition 
and Genetics (PING) Study database 
(http://ping.chd.ucsd.edu/). PING was launched in 

42 
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2009 by the National Institute on Drug Abuse (NIDA) 
and the Eunice Kennedy Shriver National Institute Of 
Child Health & Human Development (NICHD) as a 
2-year project of the American Recovery and 
Reinvestment Act. The primary goal of PING has 
been to create a data resource of highly standardized 
and carefully curated magnetic resonance imaging 
(MRI) data, comprehensive genotyping data, and 
developmental and neuropsychological assessments 
for a large cohort of developing children aged 3 to 20 
years. The scientific aim of the project is, by openly 
sharing these data, to amplify the power and 
productivity of investigations of healthy and 
disordered development in children, and to increase 
understanding of the origins of variation in 
neurobehavioral phenotypes. For up-to-date 
information, see http://ping.chd.ucsd.edu/. Data 
collection and sharing for this project was funded by 
the Pediatric Imaging, Neurocognition and Genetics 
Study (PING) (National Institutes of Health Grant 
RC2DA029475). PING is funded by the National 
Institute on Drug Abuse and the Eunice Kennedy 
Shriver National Institute of Child Health & Human 
Development. PING data are disseminated by the 
PING Coordinating Center at the Center for Human 
Development, University of California, San Diego. 
 

PNC https://www.med.upenn.edu Support for the collection of the data sets was 
provided by grant RC2MH089983 awarded to R. Gur 
and RC2MH089924 awarded to H. Hakonarson.  
 

43,44 

PPMI http://www.ppmi-info.org/ Parkinson’s disease progression markers initiative 
(PPMI) is an observational clinical study to verify 
progression markers in PD. The study includes a 
comprehensive set of clinical, imaging (including 
structural MRI) and biosample data. The study is 
sponsored by the Michael J. Fox foundation for 
Parkinson’s Research and is made possible by 
restricted donations to the Foundation from a 
consortium of Parkinson’s drug development 
stakeholders. PPMI is led by Principal Investigator 
Ken Marek, MD, President and Senior Scientist of the 
Institute for Neurodegenerative Disease in New 
Haven, Connecticut. Funding partners include abbvie, 
Allergan, Avid, Biogen, BioLegend, Bristol-Myers 
Squibb, Celgene, Denali, GE Healthcare, Genentech, 
GlaxoSmithKline, Lilly, Lundbeck, Merck, Meso 
Scale Discovery, Pfizer, Piramal, Prevail 
Therapeutics, Roche, Sanofi Genzyme, Servier, 
Takeda, Teva, ucb, verily, Voyager Therapeutics, and 
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Society for MS research. Healthy controls were 
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46 

SALD http://fcon_1000.projects.nitrc.org/  47 

SCHIZCONNECT1 http://schizconnect.org/ Data used in preparation of this article were obtained 
from the SchizConnect (http://schizconnect.org) 
database. As such, the investigators within 
SchizConnect contributed to the design and 
implementation of SchizConnect and/or provided data 
but did not participate in analysis or writing of this 
report. Data collection and sharing for this project 
was funded by NIMH cooperative agreement 1U01 
MH097435 
SCHIZCONNECT1 comprised BrainGluSchi, 
COBRE and MCIC samples (COINS). 
SCHIZCONNECT2 comprised NUSDAST and 
NUNDA samples. 
The respective samples were supported by the 
following grants: BrainGluSchi: NIMH 
R01MH084898-01A1. COBRE: 5P20RR021938 
/P20GM103472 from the NIH to Dr. Vince Calhoun. 
MCIC: Department of Energy under Award Number 
DE-FG02-08ER64581. NUSDAST: NIMH Grant 
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Supplementary Table 2. Summary of magnetic resonance imaging characteristics of included 

samples.  

Sample Number of 
scanners/ 
protocols 
included 

Parameters References 

ABIDE1 20 http://fcon_1000.projects.nitrc.org/indi/abide/scan_params/  1 

ABIDE2 16 2 

ABM 2 Philips 3T Ingenia: TR=3000ms, TE=3.61ms, FA=8° (2x 
same scanner and protocol, except for sagittal phase-
encoding vs. axial phase encoding) 

66 

ADDNEUROM
ED 

6 GE 1.5T: TR=8.59, TE=3.8, FA=8° 
GE 1.5T: TR=10.4, TE=4.09, FA=9° 
GE 1.5T: TR=10.2, TE=4.1, FA=8° 
GE 1.5T: TR=10.2, TE=4.1, FA=8° 
Siemens 1.5T: TR=2400, TE=3.5, FA=8° 
Picker 1.5T: TR=13, TE=3, FA=20° 

4,5 

ADHD200 6 Philips 1.5 T Gyroscan: TR=8ms, TE=3.76ms, FA=8°; 
Siemens 3T Allegra: TR=2530ms, TE=3.25ms, FA=8°;  
Siemens 3T Trio: TR=2300ms, TE=3.58ms, 10°; 
Siemens 3T Trio: TR=1700ms, TE=3.92ms, FA=12° 
Siemens 3T Trio: TR=2100ms, TE=3.43ms, FA=8° 
Siemens 3T Trio: TR=2400ms, TE=3.08ms, FA=8° 

6,7 

ADHDWUE 1 Siemens 1.5T Avanto: TR=2250ms, TE=3.93ms, FA=8° 8,9 

ADNI1 54 http://adni.loni.usc.edu/methods/mri-tool/mri-analysis/  10,11 

ADNI2 53 

BETULA 1 GE 3T: TR=8.2ms, TE=3.2ms, FA=12° 12 

CAMCAN 1 Siemens 3T Trio: TR=2250ms, TE=2.99ms, FA=9° 13,14 

CIMH 1 Siemens 3T Trio: TR=1570ms, TE=2.75ms, FA=15° 15,16 

CORR 34 http://fcon_1000.projects.nitrc.org/indi/CoRR/html/_static/s
can_parameters/  

17 

DLBS 1 Philips 3T: TR=8.135ms, TE=3.7ms, FA=18° 18 

DS000030 
(CNP) 

2 Siemens 3T Trio: TR=1900ms, TE=2.26ms, FA=12° 19,20 

DS000119 1 Siemens 3T Allegra: TR=1570ms, TE=3.04ms, FA=8° 23 

DS000171 1 Siemens 3T Skyra: TR=2300ms, TE=2.01ms, FA=9° 24 

DS000202 1 Philips 3T Achieva: TR=7.6ms, TE=3.7ms, FA=8° 25,26 

DS000222 1 Siemens 3T Trio: TR=1550ms, TE=2.34ms, FA=9° 27 

HCP 1 Customized 3T scanner: TR=2400ms, TE=2.14, FA=8° 28 

HUBIN 1 GE 1.5 T signa Echo-speed: TR=24ms, TE=6.0ms, FA=35° 29 

HUNT 1 GE 1.5T Signa HDx: TR=10.2ms, TE=4.1ms, FA=10° 30,31 

IXI 3 Philips 3T: TR=9.6ms, TE=4.6ms, FA=8°  
Philips 1.5T: TR=9.8ms, TE=4.6ms, FA=8°  
GE 1.5T: TR=6.0ms, TE=2.5ms 

32 

KASP 1 GE 3T Discovery MR750: TR=7.91ms, TE=3.06ms, 
FA=12° 

67,68 

MALTOSLO 1 Philips 3T Achieva: TR=8.4ms, TE=2.3ms, FA=7° 36,69 

NCNG 3 Siemens 1.5T Sonata: TR=2730ms, TE=3.43ms, FA=7° 37 
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Siements 1.5T Avanto: TR=2400ms, TE=3.61ms, FA=8° 
GE 1.5T Signa: TR=9.5ms, TE=3.1ms, FA=7° 

NIMAGE 2 Siemens 1.5T Sonata: TR= 2730ms, TE=2.95ms, FA=7° 
Siemens 1.5T Avanto: TR= 2730ms, TE=2.95ms, FA=7° 

38 

NORCOG 3 GE 3T Signa HDxT: TR=7.8ms, TE=2.956ms, FA=12° (one 
subset with HNS coil, one subset with 8HRBRAIN coil) 
GE 3T Discovery GE750: TR=8.16ms, TE=3.18ms, FA=12° 

39 

OASIS 1 Siemens 1.5T Vision: TR=9.7ms, TE=4ms, FA=10° 40,41 

PING 11 http://pingstudy.ucsd.edu/resources/neuroimaging-
cores.html  

42 

PNC 1 Siemens 3T Trio: TR=1810ms, TE=3.51ms, FA=9° 43,44 

SALD 1 Siemens 3T Trio: TR=1900ms, TE=2.52ms, FA=9° 47 

SCHIZCONNEC
T1 
(BrainGluSchi, 
COBRE, MCIC) 

5 Siemens 3T Trio: 2530ms, TE=TE = 1.64, 3.5, 5.36, 7.22, 
9.08ms, FA=7° 
Siemens 1.5T Sonata: TR=12ms, TE=4.76, FA=20° 
Siemens 3T SMS Trio: TR=2530ms, TE=3.81ms, FA=7°  
Siemens 1.5T Avanto: TR=12ms, TE=4.76ms, FA=20° 

48-53 

SCHIZCONNEC
T2 (NUNDA, 
NUSDAST) 

2 Siemens 3T Trio: TR=2400ms, TE=3.16ms, FA=8°  
Siemens 1.5T Vision: TR=9.7ms, TE=4ms, FA=10° 

SCORE 1 Siemens 1.5T Vision: TR=9.7ms, TE=4ms, FA=12° 54,55 

SLIM 1 Siemens 3T Trio: TR=1900ms, TE=2.52ms, FA=9° 56,57 

STROKEMRI/ 
MOT 

2 GE 3T Signa HDxT: TR=7.8ms, TE=2.956ms, FA=12° 
GE 3T Discovery GE750: TR=8.16ms, TE=3.18ms, FA=12° 

58 

TOP/ RSI-MS 4 Siemens 1.5T Sonata: TR=2730ms, TE=3.93ms, FA=7° 
GE 3T Signa HDxT: TR=7.8ms, TE=2.956ms, FA=12° (one 
subset with HNS coil, one subset with 8HRBRAIN coil) 
GE 3T Discovery GE750: TR=8.16ms, TE=3.18ms, FA=12° 

59-62,70 

UBA 1 Siemens 3T Verio: TR=2000ms, TE=3.37ms, FA=8° 63 

UKBB 3 Siemens 3T Skyra: TR=2000ms, TE=2.01ms, FA=8° (3 
identical scanning sites) 

64 

UNIBA 1 GE 3T Signa: TR=25ms, TE=3ms, FA=6°  65 
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Supplementary Table 3. Size and demographic information of final study samples after quality 
control procedures. 

Sample Number of subjects per group Age: mean ± sd in years (group) Sex: f/m 

ADHD 681 patients; 992 HC  17.5±9.9 (ADHD); 17.4±9.7 (HC)  702/971 

ASD 125 patients; 140 HC  18.7±9.7 (ASD); 17.1±9.8 (HC)  34/231 

BD 464 patients; 1,531 HC  33.7±10.7 (BD); 39.1±15.9 (HC)  1,031/946 

MDD 211 patients; 93 HC  38.8±13.5 (MDD); 39.5±13.9 (HC) 201/103 

PSYMIX 308 patients; 1,430 HC  28.9±9.3 (PSYMIX); 39.3±16.2 (HC) 852/886 

SCZ 1,044 patients; 2,079 HC  33.6±11.0 (SCZ); 37.7±15.2 (HC)  1,323/1,800 

SCZRISK 91 patients; 402 HC  23.7±5.0 (SCZRISK); 31.2±11.7 (HC)  223/270 

DEM 756 patients; 1,921 HC  75.4±7.7 (DEM); 51.4±22.0 (HC)  1,434/1,243 

MCI 987 patients; 1,655 HC  72.2±8.4 (MCI); 53.3±21.3 (HC)  1,264/1,378 

MS 257 patients; 1,053 HC  40.9±10.0 (MS); 41.4±17.6 (HC)  745/565 

PD 138 patients; 67 HC 61.2±9.1 (PD); 60.2±11.3 (HC) 73/132 

UK Biobank sample 27,034 HC 55.6±7.4 (HC) 13,931/13,103 

All HC 38,299 HC 50.0±15.7 (HC) 19,963/18,336 

All participants 43,353   

ADHD; attention-deficit/hyperactivity disorder. ASD; autism spectrum disorders. BD; bipolar disorder. HC; healthy 
controls. MDD; major depression. PSYMIX; non-SCZ psychosis spectrum diagnoses. SCZ; schizophrenia. 
SCZRISK; prodromal SCZ or at risk mental state. DEM; dementia. MCI; mild cognitive impairment. MS; multiple 
sclerosis. PD; Parkinson’s disease. 
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