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Abstract 
Introduction: Feature selection prevents over-fitting in predictive models. This study aimed to present an effective feature selection method that 
leads to a reliable classification of fall-risk in older subjects using static force-platform data across four conditions only. 
 
Method: 528 features were generated from a publicly available dataset of force-plate signals from 45 low-risk and 28 high-risk subjects. Subjects 
were classified as high- or low-risk if they recorded ≥1 falls in the prior 12 months and/or were rated as high-risk on the FES.  The feature selection 
protocol included SVM-RFE, GA and ReliefF and finally SAFE. Several machine-learning models were then used to evaluate classification 
performance. 
 
Results: 67 features were identified after the three-fold process which was further reduced to 18 features after SAFE. The MLP achieved the highest 
average classification accuracy of 80%. All classification models evaluating this final subset displayed high variance across all performance metrics, 
especially in terms of sensitivity to high-risk subjects. 
 
Interpretation: An optimal feature set of static force-plate measures was insufficient in creating a reliable classifier of fall-risk. This was due 
potentially to the limited information about fall-risk that could be provided by such measures leading to under-fitting/over-fitting being 
unavoidable and appeared to be centered around an insensitivity to high-risk subjects. 
 
Conclusion: Static stability measures have shown some usability in fall-risk classification however feature sets limited to such measures are 
inadequately sensitive to high-risk subjects. The utilized feature selection methods demonstrated their ability to identify relevant stability 
measures and could be used successfully on dynamic measures.  
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Abbreviations 

 
COP: Centre-of-pressure 
 
COPX: Centre-of-pressure in Anterior-posterior direction 
 
COPY: Centre-of-pressure in Medio-lateral direction 
 
FX: Anterior-posterior ground reaction force 
 
FY: Medio-Lateral ground reaction force 
 
FZ: Vertical ground reaction force 
 
GRFs: Ground reaction forces 
 
FES: Falls efficacy scale (Short international version) 
 
RMS: Root-Mean Square 
 
SVM-RFE: Support vector machines-Recursive feature elimination 
 
SVM: Support vector machines 
 
NB: Naïve Bayes classifier 
 
K-NN: K-Nearest neighbors’ classifier 
 
SAFE: Self-adapting feature evaluation 
 
GA: Genetic algorithm 
 
MLP: Multi-layer perceptron 
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Introduction 

 
Feature selection as a method for identifying optimal variable subsets has come into the spotlight in the age of ‘big data’. 

This is due to the numerous advantages provided by selecting an optimal set of features rather than using huge datasets including 
higher accuracies, lower computational loads and the prevention of over-fitting (1). Feature selection methods can be categorized 
into filter, wrapper and embedded methods. Filter methods incorporate ranking techniques that order features in terms of 
discriminative power, wrapper methods rate features based on their predictive performance and embedded methods make use of 
classification models and can be carried out simultaneously during the training process (1–3). Traditionally an optimal set of features 
was said to be one that contained the most relevant features available (i.e. provided the most information about the target) (2). 
What is considered an optimal feature set has evolved from this and thus the coinciding measures of feature suitability have also. Yu 
(4) discusses in detail how relevancy of features can be broken down into levels (Strongly relevant, Weakly relevant but non-
redundant, Weakly relevant and redundant and irrelevant). This perspective also states that relevancy analysis alone can be 
regarded as inadequate without redundancy analysis also. Two features are considered completely redundant to each other when 
one does not contribute any unique information to a target variable when compared to the other (4). The presence of feature 
redundancy should be minimised as losses in information can occur leading to sub-optimal model performance. Redundancy occurs 
when features are highly correlated but can still have an effect at lower correlations. Having all features completely orthogonal is an 
unlikely scenario in most cases and therefore some redundancy is unavoidable. Complementarity is a third element in feature 
selection that focuses on the information gained via synergies between features (5,6). Some features taken alone may not be highly 
relevant but together with other features can provide substantially greater information overall..  

In motion analysis research, as is the case in many biomedical fields, a significant number of features can be gathered from a single 
individual while samples are often difficult to come by (7). This creates a situation where the number of features is far greater than 
the number of sample participants, an unfavourable situation when constructing models as over-fitting is likely. A current societal 
issue being tackled by motion analysis research is that of falls in at risk populations such as the elderly and neurologically impaired 
(8–10). In the healthy older population, falls can occur in individuals with no obvious balance impairments and can be relatively 
independent of age in this population (11). This makes the early identification of at-risk individuals a crucial avenue of research. 
Stabilometry is the study of the postural control system and assessments take place during dynamic movements such as gait or in a 
static, quiet stance position (12,13). Functional balance measures such as the “Berg balance scale” and “Timed-Up & Go” test 
possess a ceiling-effects when assessing active older subjects and are not sensitive to early, subtle deteriorations in balance 
mechanisms (14,15).  

The use of a force-plate has become common place in stabilometry as highly informative and reliable signals can be generated (16). 
Measures of COP derived from a force-plate for example are capable of differentiating subjects in terms of age-group and between 
fallers & non-fallers (17,18). Stimulating the postural control system by creating challenging conditions while on a force-platform 
such as with compliant surfaces, narrowing-stance, closing eyes etc. have also been effective in differentiating fallers from non-
fallers (17,19,20).An extensive range of static force-plate measures have been found to be relevant to fall-risk assessment including 
COP velocities, RMS of COP displacement across various conditions among others (21). However no one measure can be deemed a 
blanket predictor of fall-risk (21,22). Many of these studies also have conflicting evidence for the predictability of these measures in 
terms of fall-risk (21). There are a number of potential reasons for this conflict including the heterogenous nature of and causes for 
balance deficits in old age and disorders common in older populations creating additional variability in samples (23,24). It is 
potentially the case that an optimally selected set of these measures may classify individuals in this population with a more reliable 
accuracy. 

Recent studies on fall-risk predictors have recognised the necessity for multiple features and non-linear algorithms in 
classifying fall-risk by exploring the potential of machine-learning to create effective classification models (25–29). The majority of 
these studies have focused on dynamic movement analysis to predict elderly fall-risk (25,26), while the presence of a thorough 
feature selection process has been lacking with one study of note using principal component analysis (30). The aim of this study is to 
demonstrate an effective feature selection procedure that can allow for more accurate and reliable classification of fall-risk among 
older subjects using static force-platform measures only. This study will avail of an opensource dataset 
(https://peerj.com/articles/2648) which has been published specifically for use in such studies (31). A combination of  Support 
vector machines-Recursive feature elimination (SVM-RFE), a Genetic algorithm (GA) and ReliefF feature selection methods will be 
utilized to find the most relevant, least redundant subset and Singha & Shenoy’s (6) self-evaluating feature evaluation (SAFE) 
heuristic will optimize complementarity downstream from this. A combinational approach to feature selection has demonstrated 
notable advantages over single feature selection methods (4,32). The performance of the final feature subset will then be tested 
using a Multi-layer perceptron (MLP), Support vector machines (SVM), Naïve Bayes (NB) and K-Nearest neighbours (K-NN). 
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Methods 

Force-platform dataset 
Force-platform data including COP coordinates, GRFs and Torsional forces (Moments) in all directions was acquired via an 

open source repository published by Santos & Duarte (31) who analysed the postural stablity of older subjects during quiet stance 
throughout four conditions (Eyes open/closed on firm surface & Eyes open/closed on a compliant surface). A full description of the 
data acquisition protocol can be found at (31). Only the most relevant aspects to this study will be covered here. Subjects met 
inclusion for this study if they did not have a serious physical disability (e.g. neurological impairment). To maintain 
representativeness, subjects met inclusion if they had common musculoskeletal disorders such as Osteoporosis for example. Table 1 
below illustrates the characteristics of this sample group. 
Falls history in the past 12-months and risk-rating in terms of the FES were used to categorise the fall-risk groups in this study. If a 
subject had at least one fall recorded and/or a high-risk rating as per the FES at the time of analysis, they were considered high-risk 
with the remaining subjects allocated to the low-risk group. 45 low-risk subjects (Age:72±6.5, FES score: 9.2±1.7) and 28 high-risk 
subjects (Age: 71±6.3, Falls history: 2.5±9.4, FES score: 12±4.2) will be analysed in this study. No significant differences were found 
between groups in terms of the Trail Making test (TMT A & B) or the BesTest. Significant differences between the groups were 
present for FES scores (p<0.01) and foot-lengths (p<0.05) only. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

        
 

           

 

 

 

 

Table 1: *Significant features (p<0.05) 
 
Data acquisition and processing  

Subjects balance was analysed barefoot for 60 seconds per trial with three trials recorded per condition. Feet were placed 
at 20 degrees with the heels separated by 10cm in each trial. This stance was standardized across trials by marked lines on the force-
platform (See figure 1). The order of the four different conditions was randomized to offset the effect of practice. Conditions 
included a combination of visual & surface manipulation. For ‘Eyes-open’ conditions, subjects were asked to focus on a 5cm round 
black target at eye-level on a wall 3 metres ahead of them. During ‘Eyes-closed’ conditions, subjects were asked to look at this target 
initially and then close their eyes once a comfortable position was found. A rigid surface was utilised for the ‘Firm surface’ condition 
while the ‘Compliant surface’ condition was conducted using a 6cm high foam block (Balance Pad; Airex AG, Sins, Switzerland). 

 
 

Fall-risk Groups (n=73)      Low Fall-risk 
                                     

      High Fall-risk 
 

Mann Whitney-U test 
 

Gender        M=12/F=33          M=2/F=26     - 

 Mean (SD)           Mean (SD)  

Age (years) 72 (6.5) 
 

            71(6.3)  (p=0.5) 

Height (m) 1.58 (9.1)            1.55 (5.9)  (p=0.5) 

Weight (kg) 64 (8.3)             62 (8.5)  (p=0.5) 

BMI (kg /m2) 25.5 (2.9)             26 (2.9)  (p>0.5) 

Foot length (cm) 23 (1.3)              22 (1.3)  (p<0.05)* 

No. of medications 2.4 (1.5)             2.3 (1.8)  (p>0.5) 

No. of disorders  1.02 (0.97)             1.24 (1.1)  (p>0.4) 

Falls (Past 12 months)   0 (0)             2.5 (9.4)       - 

FES (Short version)           9.2 (1.7)                              12 (4.2)                    (p<0.01)* 

TMT time A         62.5 (54.2)                            53 (22)    (p>0.5) 

TMT time B         167.2 (95)                            174.1 (84)   (p>0.5) 

BesTest           18 (5)                                   19 (3.4)   (p>0.4) 
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Figure 1: Santos & Duarte (31) 

 

Feature generation 
For the purpose of this study, an extensive range of time- and frequency- domain measures were derived from the dataset 

and summary statistics of these measures including Mean, SD, minimum, maximum, range and RMS were taken for analysis also. 
Many of these measures can be found in more detail in Prieto et al (13). The same measures from different conditions were 
considered as a unique feature. This process culminated into a total of 528 features altogether, creating a necessary situation where 
the sample size n<<p the number of features.  

Time-domain measures 
The COP position, displacement and velocity in AP and ML directions was obtained. All GRFs were normalized by subject 

weight (kg) while the vertical torque or Free moment (TZ) was normalized by weight and height squared as seen in (33). This 
measure is sensitive to asymmetries in postural control about the vertical axis. The variance signal of TZ can capture specific types of 
postural adjustment (i.e. slow-leaning motions versus fast corrective changes in posture) when low- and high-pass filtered 
respectively (36,37). A 5th-order digital finite duration impulse response (FIR) filter with a cut-off frequency of 0.1 Hz for both the 
low-pass (<0.10Hz) and high-pass (>0.1Hz) signals was applied in this case. Phase-plane plots combining COP displacements and 
velocities vectors were computed in both the AP (APr) and ML (LATr) directions with a global phase-plane (R) also computed from 
the resulting variables (35). The COP Path length (PL), Resultant distance (RD), Mean distance (MDIST), RMS distance (RDIST), Total 
excursion (TOTEX), mean velocity (MVELO), 95% confidence-circle area (AREA-CC), mean rotational frequency of the COP (MFREQ), 
Fractal dimension (FD) and 95% confidence-circle of the Fractal dimension (FD-CC) were also calculated (13). 

Frequency-domain measures 
 Frequency-domain features were generated via a customized python script (36). Total power of the frequency spectrum 
(Ptotal), mean frequency (MFreq), median frequency (Freq50%), 95% Power frequency (Freq95%) and Peak frequency (Freqpeak) were 
extracted (13). Frequency spectrums were derived from both COP displacement and shearing forces in both anterior-posterior and 
medio-lateral directions. Prior to transforming the COP displacement signal, the COP position was detrended so sub-trends could be 
properly analyzed. Along with the entire frequency band of the displacement and shearing force signals being investigated, the 
signals were also filtered to specific bandwidths sensitive to certain postural control systems using a 1st-order Butterworth band-pass 
filter. The frequency band 0.01-0.1Hz is sensitive to the visual control system while 0.1-0.5Hz and 0.5-1Hz are sensitive to vestibular 
and somatosensory control systems respectively (37).  
 

 
 
 
 

Signals were collected via a 40cmx60cm 
commercial force platform (OPT400600-1000; 
AMTI, Watertown, MA, USA) and amplifier 
(Optima Signal Conditioner; AMTI, Watertown, 
MA, USA) at a sampling frequency of 100 Hz. The 
mean COP accuracy of this force-plate was 
approximately 0.02cm. Data acquisition was 
performed using NetForce software (Version 
3.5.3; AMTI, Watertown, MA, USA). All data was 
smoothed with a 10Hz 4th order zero lag low-
pass Butterworth filter.  
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Feature selection 
As mentioned, a combinational approach to feature selection will be carried out. SVM-RFE is a well-known wrapper feature 

method that has found wide use in various fields (38,39). Backward feature elimination has been noted as an effective way of 
removing irrelevant and redundant measures and can achieve good generalization (1,39). Starting with the entire feature set, SVM-
RFE will take out one feature at a time that is ranked lowest while the accuracy of the remaining feature set will be 10-fold cross 
validated. This method will begin the feature selection process by reducing the original feature set into a smaller, more manageable 
subset of features and reduce the effect of redundant and irrelevant features further downstream in the Genetic algorithm. 
Genetic algorithms come from a family of algorithms known as ‘Evolutionary algorithms’ that are inspired by processes in nature and 
generally incorporate the idea of a population of potential optimization solutions with each individual with the population 
corresponding to a feature subset for example (40). A fitness score is then calculated on the individuals in the population and the 
next generation of individuals adapts and higher fitness scores are propagated until a specified number of generations have been 
run and the fittest individual is selected. A genetic algorithm based on the Distributed Evolutionary algorithms in Python (DEAP) 
framework will be embedded in an SVM classification model (41). The feature subset to come out of SVM-RFE will be input into this 
embedded feature selection method. A combination of SVM-RFE and GA has successfully been used previously on highly complex 
biomedical data (38).   
Parallel to the above-mentioned process, a filter-based feature selection algorithm called ReliefF will be applied to the original 
feature set also. This filter-based method is classifier-independent but uses K-Nearest neighbors distance metrics to determine the 
most discriminative features (3). This method is sensitive to interactions and local dependencies between features and the 
discriminative power of the feature as a result of this.  
Finally the features identified by GA and ReliefF selection will be combined and an optimal subset will be obtained via SAFE, a 
complementarity-based feature selection procedure proposed by (6). This procedure allows for trade-offs to occur between 
information lost through redundancy (Rs), information gained through relevancy (As), Dependency between features (Ds) and 
information gain via complementarity (Cs) to be adaptively assessed as the feature set is iteratively searched through. For further 
details on the formulation of As, Rs, Cs and Ds please see (6). Equation (1) and (2) below illustrate the SAFE procedure where |S| is 
the subset size,  β is derived from the hyperparameter α that controls the trade-off between redundancy and complementarity 
while γ is derived from ξ which controls the complementarity-relevancy trade-off in the feature subset allowing smaller subsets to 
be favored. This method does not suffer from initial feature selection bias as each feature is assessed continuously throughout the 
process meaning the feature subset is less likely to be skewed towards a dominant sub-group in the sample. The number of features 
to keep in the final subset is often arbitrary or based on expert decisions in feature selection. This is not necessary in the case of 
SAFE as the search continues until an optimal subset score (S) is reached. 

 

Score(S)  =
𝐴𝑠+γ𝐶𝑠

β /|S|

√|S|+β 𝐷𝑆
  Equation (1) 

 

α =  
𝑅𝑠

𝑅𝑠+𝐶𝑠
 𝛽 =  (1 + 𝛼) ξ =

𝐶𝑠

𝐶𝑠+𝐴𝑠
 𝛾 =  (1 − 𝜉 )  Equation (2) 

 
As entropy estimations are necessary for the SAFE procedure, the feature subset to be assessed in this case will be discretized using 
the Class attribute interdependency maximization (CAIM) method (42). This discretization method was chosen due its ability to 
preserve target attribute interdependency while minimizing the number of intervals required to describe the data. 
After the final SAFE procedure has been carried out, the feature subset with the highest (S) score will input in its discretized form 
into an MLP, NB, K-NN and SVM classifiers to assess performance with the mean, SD and range of score values from 25 rounds 
presented. These classifiers were chosen based on the contrasting ways they learn the training data. This evaluation and feature 
selection process described will be carried out using Python and Python’s inbuilt Sci-Kit learn module (43). Classification accuracies, 
area under the ROC-curve (ROC-AUC) ,F1 score, precision and recall for the specific risk classes will be presented to illustrate the 
performance of the classifiers. The code for the SVM-RFE - Genetic algorithm - ReliefF feature selection process described above 
including all parameter used can be found at the following Github repository: 

https://github.com/Davidoreilly12/Feature-selection-study.git.  
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Results 
 

Combinational feature selection 
SVM-RFE concluded with 87 features from the 
original set of 528 identified as useful for the 
classification of fall-risk in this elderly cohort. 
Figure 2 shows how variable the accuracy of a 
model can behave due to irrelevant/redundant 
features. The feature set was further reduced to 
67 features by ReliefF and the Genetic algorithm. 
ReliefF identified features from the ‘Eyes-
Open/Firm-surface’ condition only, many of 
which are sensitive to COP migration. FD-CC and 
PTotal[0.01-0.1Hz]-COPX were the only features 
selected in the SAFE feature set to come from 
ReliefF with the remainder being identified by 
the Genetic algorithm. The GA was able to identify 
the fittest individual within 10 generations and achieve a fitness score of 100% with this individual.  
From the subset of 67 features remaining, a search strategy where the feature with the lowest individual (S) score was iteratively 
removed until the highest subset (S) score was found. Figure 3 demonstrates the value of feature subset relevancy (As), redundancy 

(Rs), complementarity (Cs) and dependency (Ds) and how they 
changed over the course of this process represented in 
information bits.  
An optimal (S) score of 2.705 was found with 18 features. A high 
feature dependency was present at the commencement of this 
process and experienced the largest reduction from 161 bits to 
8.83 bits in the final subset. Feature subset relevancy (As) was 
reduced conservatively during the search from 33 bits to 14.2 bits 
also. The subset was found to have an even amount of redundancy 
and complementarity present with both Rs and Cs values equal to 
-/+ 3.55 bits respectively. This was the case throughout the search, 
effectively cancelling out the information lost by redundancy with 
the information gained through interactions. 
 
Table 2 conveys the 18 features, their individual (S) score and the 
p-value derived from a Mann Whitney-U test for significant 
differences between the high- and low-risk groups for each 
feature. Only five of the eighteen features in the final subset were 
found to have a significant difference between the two groups 

including Maximum and Minimum FY, Freq95%-FX, Mean FZ and 
Freq95%-FY  all of which were sourced from the ‘Closed-eyes/Firm surface’ condition indicating the majority of features were non-
linearly related to fall-risk in this sample. The individual (S) scores ranged from 0.19 for Maximum TZ to 0.403 for Maximum FX. The 
higher the (S) score the more complimentary the feature can be considered towards other features in the subset. Features in this 
optimal subset with low (S) scores could be said to of a high relevancy for fall-risk classification in this sample but did not provide a 
significant amount of supplementary information through synergies with other features. 
 

.  

 
 
 
 
 

 

       Figure 2: SVM-RFE output (Vertical black line denotes optimal feature subset score) 

               Figure 3: SAFE (Vertical black line indicates optimal feature subset) 
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Classifier performance 
SVM, MLP, K-NN and NB classifiers were employed to evaluate the performance of the 18 selected features. The selected features 
were kept in their discretized form during this evaluation. Table 3 below illustrates the mean, SD and range in values from 25 runs of 
the classification model. The MLP performed best across all performacne metrics. The percentage of subjects correctly classified by 
the MLP was 80±7 followed by NB (77±8.5), SVM (75±7.6) and finally K-NN at 75±6.3. The ROC-AUC which indicates the model’s 
capacity to distinguish between risk groups was 77±8 for the MLP, 73±9.8 for NB, 71±8.2 for the SVM and 70±8 for K-NN. The 
precision of all models in classifying the high-risk group was quite high but varied widely from 61-96% in the case of MLP for 
example. This variability was also seen in the models recall of the high-risk group which was poor on average with 52±13.1. This 
resulted in the trade-off between sensitivity and specificity captured by the F1 score presenting with a high variability also. 
Performance metrics for the low-risk group were higher on average for all scores except precision but all experienced less variability 
than in the classification of the high-risk group. 

 
 

 

 
 

Feature Condition (S) Mann Whitney-U test 
For significant differences between groups 

Maximum TZ ‘Open-Eyes/Firm surface’ 0.19 p>0.5 
FZ (SD)  ‘Open-Eyes/Compliant surface’ 0.293 p>0.5 
R ‘Open-Eyes/Firm surface’ 0.314 p>0.5 
FZ (SD) ‘Open-Eyes/Firm surface’ 0.343 p>0.05 
PTotal[0.01-0.1Hz]-COPX ‘Open-Eyes/Firm surface’ 0.302 p>0.5 
Maximum FY ‘Closed-Eyes/Firm surface’ 0.321 p<0.05* 
Minimum FY ‘Closed-Eyes/Firm surface’ 0.32 p<0.005* 
MFreq[0.01-0.1HZ]-FX ‘Closed-Eyes/Compliant surface’ 0.333 p>0.1 
FreqPeak[0.01-0.1HZ]-COPX ‘Open-Eyes/Compliant surface’ 0.36 p>0.1 
Freq95%-FX ‘Closed-Eyes/Firm surface’ 0.364 p<0.05* 
FD-CC ‘Open-Eyes/Firm surface’ 0.33 p>0.5 
Mean FZ ‘Closed-Eyes/Firm surface’ 0.351 p<0.01* 
FreqPeak[0.5-1HZ]-FY ‘Open-Eyes/Compliant surface’ 0.3 p>0.4 
Freq95%-COPY ‘Closed-eyes/Firm surface’ 0.34 p>0.1 
Freq95%-FY ‘Closed-Eyes/Firm surface’ 0.34 p<0.05* 
Minimum RD ‘Closed-Eyes/Firm surface’ 0.37 p>0.05 
Mean COPY Displacement ‘Closed-Eyes/Compliant surface’ 0.381 p>0.1 
Maximum FX ‘Open-Eyes/Compliant surface’ 0.403 p>0.3 

                     Table 2: * features with a significant difference between risk-groups 

Table 3   Table 4 

MLP Performance metric (%) Mean (SD) Range 
Classification accuracy 80±7 61-96 

ROC-AUC 77±8 58-94 

High-risk group   

F1 score 71±12 46-94 

Recall 64±15 33-89 

Precision 82±11.4 50-100 

Low-risk group   

F1 score 85±5.3 69-97 

Recall 90±7 71-100 

Precision 80±6.8 67-93 

SVM Performance metric (%) Mean (SD) Range 
Classification accuracy 75±7.6 57-87 

ROC-AUC 71±8.2 54-85 

High-risk group   

F1 score 63±12 31-82 

Recall 55±14 22-78 

Precision 75±15 44-100 

Low-risk group   

F1 score 81±6.3 64-90 

Recall 88±9.3 64-100 

Precision 75±6.3 63-87 
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Discussion 
 From the outset, variance in fall-risk predictability by force-plate measures of postural stability was recognized through 
conflicting results presented in numerous studies (21). Reasons proposed for this included the heterogeneity of the elderly 
population who may have various disorders and/or who may also have a stability deficit related to a specific component or 
combination of components of the postural control system (23,24). It was also stated how a significant number of static force-plate 
measures have been found to be capable of differentiating fallers vs. non-fallers, demonstrating the potential of some of these 
measures (17,18). Nonetheless studies combining stabilometry measures as part of a classification model have focused mostly on 
dynamic measures while thorough feature selection protocol have scarcely been investigated. This study aimed to use a thorough, 
evidence-based approach to feature selection which would lead to a more reliable classification accuracy of fall-risk in older subjects 
when using static force-plate measures. 18 features were selected based on a several-fold process of elimination which involved 
SVM-RFE, GA and ReliefF methods and finally analysed based on complementarity to ensure cohesion between features using SAFE.  

The final classification models on average performed moderately well with the MLP seeing the highest average classification 
accuracy of 80% and an average ROC-AUC of 77% while K-nearest neighbours was the least accurate on average at 75% for along 
with a ROC-AUC of 70%. However, all final classification models were lacking in reliability with high variability in performance 
experienced. This variance was mainly centred around the high-risk group with poor recall scores across all models. Recall measures 
the sensitivity of the model, an important parameter in this case as a high rate of true-positive classifications are necessary for early 
fall-risk identification. A high precision was found for this group but with a large variation also, possibly indicating the classifications 
model’s capability to guess to a high accuracy. Approximately 40% of the sample population were allocated to the high-risk group 
which is representative of the elderly population (8). The number of medications, disorders, TMT scores and BesTest scores were not 
significantly different across groups indicating an equal contribution in variability from these sources from both groups. Imbalanced 
datasets can cause sub-optimal classifier performance however the extent of the imbalance within this dataset was mild and 
parameters were set during feature selection and in classifiers to compensate for this slight imbalance (44).  
This issue of high bias/variance is common in machine-learning and is captured in what statistical-learning literature refers to as the 
‘bias-variance trade-off’ (45,46). This trade-off can be represented on a continuum where on one end the model makes over-
simplified assumptions (bias) about the training data and thus may not capture the underlying relationships sufficiently whereas on 
the other end the model is overly flexible and over-fitted to the datapoints in the training set, making generalization highly variable. 
High variability was seen across all classification indicating that high classification accuracies could not be achieved without 
under/over-fitting present. Optimization of the ‘bias-variance trade-off’ is mediated by the complexity of the concept being learnt, 
i.e. fall-risk in older subjects (45). It is likely that despite a thorough feature selection process, the limited information inherent in the 
static force-plate measures could not be compensated for and thus the model was insensitive to crucial components of fall-risk. This 
reveals a key limitation in static force-plate measures and may explain the conflicting conclusions made in previous studies on these 
measures’ predictability of fall-risk (21). The inclusion of dynamic measures of stability in such a protocol may improve sensitivity 
and overall reliability of classifications. 

In the face of unreliable classifications, it is important to note that the feature selection methods used in this study, as in 
other similar studies, have demonstrated an impressive ability to identify useful features relevant to the target concept (32,38,47). 
The implementation of several methodologies also clearly benefited the final feature subset, exemplifying the benefits of a 
combinational approach. SVM-RFE removed most features from the original dataset, making feature selection more manageable for 

K-NN Performance metric (%) Mean (SD) Range 
Classification accuracy 75±6.3 67-93 

ROC-AUC 70±8 58-92 

High-risk group   

F1 score 57±13 29-91 

Recall 44±15 17-83 

Precision 91±13.3 67-100 

Low-risk group   

F1 score 83±4.4 76-95 

Recall 96±5.2 89-100 

Precision 72.5±6 64-90 

NB Performance metric (%) Mean (SD) Range 
Classification accuracy 77±8.5 67-93 

ROC-AUC 73±9.8 58-92 

High-risk group   

F1 score 64±16 29-91 

Recall 55±19 17-83 

Precision 85±16 60-100 

Low-risk group   

F1 score 83±6.3 69-97 

Recall 92±9.3 67-100 

Precision 76±7.9 64-90 
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the GA and reducing the effect of redundancy further downstream. The optimal feature set included various notable measures that 
have been recognized in the research as relevant to balance performance e.g. FZ(SD), FD-CC and Mean COPY displacement while 
other measures warranting more investigation were also identified such as Maximum TZ and Freq95%-FY (21,48,49). A GA selects the 
most relevant features when all interactions in the subset are considered (50). Features identified by the GA in this study included all 
the features with a significant difference between risk-groups in the final subset. It is reasonable to regard many of the features 
chosen by GA as the most differential manifestations of postural instability in this sample. ReliefF identified features specifically 
sensitive to COP migration during the ‘Open-Eyes/Firm surface’ only. This method takes a different approach to feature selection to 
that of GA as it determines feature relevancy primarily based on interactions with other features while discriminative ability 
between classes is considered (3,51). Only two features were identified in both methods with ReliefF appearing to capture more 
intrinsic deteriorations in postural stability, i.e. Open/Closed-loop postural control during the condition where interactions between 
measures would be least perturbed. This is encouraging as the application of such methods to dynamic measures of stability may 
prove beneficial in revealing more relevant features for fall-risk classification. 
 

Limitations 
Discrepancies between falls efficacy and the true balance performance capacity of an individual have been reported and may have 
affected the accuracy of fall-risk group allocation as subjects may not have displayed physical signs of balance impairment at the 
time of assessment but were identified as at risk. This discrepancy has however been shown to result in actual higher rates of fall-
risk prospectively (52). The reasons for subject fall events were not recorded and as such it is possible that some falls may have been 
understandable given the conditions i.e. hazardous environment. The number of disorders and medications may not have been 
significantly different across groups however the severity and management of these factors may have been significantly different 
owing towards increased variability in the high-risk group. 

 

Conclusion 
A thorough, evidence-based feature selection procedure was insufficient in improving the reliability of fall-risk classification and 
preventing under/over-fitting when using static force-plate measures only. The variability in classification performance was 
attributed to poor sensitivity in high-risk subjects, a crucial component in the assessment of early fall-risk detection revealing a key 
limitation in the measures used. The prescribed feature selection methods showed promise in identifying various measures relevant 
to fall-risk making the inclusion of dynamic measures in such a protocol potentially beneficial. 
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