
Cell type specific genetic regulation of gene expression across human tissues  
 
Authors: Sarah Kim-Hellmuth1,2,3†*, François Aguet4*, Meritxell Oliva5,6*, Manuel Muñoz-
Aguirre7,8, Valentin Wucher7, Silva Kasela2,3, Stephane E. Castel2,3, Andrew R. Hamel4,9, Ana 
Viñuela10,11,12,13, Amy L. Roberts10, Serghei Mangul14,15, Xiaoquan Wen16, Gao Wang17, 5 
Alvaro N. Barbeira5, Diego Garrido-Martín7, Brian Nadel18, Yuxin Zou19, Rodrigo Bonazzola5, 
Jie Quan20, Andrew Brown11,21, Angel Martinez-Perez22, José Manuel Soria22, GTEx 
Consortium, Gad Getz4,23, Emmanouil T. Dermitzakis11,12,13, Kerrin S. Small10, Matthew 
Stephens17, Hualin S. Xi24, Hae Kyung Im5, Roderic Guigó7,25, Ayellet V. Segrè4,9, Barbara E. 
Stranger5,26, Kristin G. Ardlie4, Tuuli Lappalainen2,3† 10 
Affiliations: 
1 Statistical Genetics, Max Planck Institute of Psychiatry, Munich, Germany 
2 New York Genome Center, New York, NY, USA 
3 Department of Systems Biology, Columbia University, New York, NY, USA 
4 The Broad Institute of MIT and Harvard, Cambridge, MA, USA 15 
5 Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, 
IL, USA 
6 Department of Public Health Sciences, The University of Chicago, Chicago, IL, USA 
7 Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and 
Technology, Barcelona, Catalonia, Spain 20 
8 Department of Statistics and Operations Research, Universitat Politècnica de Catalunya 
(UPC), Barcelona, Catalonia, Spain 
9 Ocular Genomics Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, 
MA, USA 
10 Department of Twin Research and Genetic Epidemiology, King’s College London, London, 25 
UK 
11 Department of Genetic Medicine and Development, University of Geneva Medical School, 
Geneva, Switzerland 
12 Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, 
Switzerland 30 
13 Swiss Institute of Bioinformatics, Geneva, Switzerland 
14 Department of Computer Science, University of California, Los Angeles, Los Angeles, CA, 
USA 
15 Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 
Los Angeles, CA, USA 35 
16 Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA 
17 Department of Human Genetics, University of Chicago, Chicago, IL, USA 
18 Department of Molecular, Cellular, and Developmental Biology, University of California, 
Los Angeles, Los Angeles, CA, USA 
19 Department of Statistics, University of Chicago, Chicago, IL, USA 40 
20 Inflammation & Immunology, Pfizer, Cambridge, MA, USA. 
21 Population Health and Genomics, University of Dundee, Dundee, Scotland, UK 
22 Unit of Genomic of Complex Diseases, Institut d’Investigació Biomèdica Sant Pau (IIB-
Sant Pau), Barcelona. Spain 
23 Cancer Center and Department of Pathology, Massachusetts General Hospital, Boston, 45 
MA, USA 
24 Foundational Neuroscience Center, AbbVie, Cambridge, MA, USA 
25 Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain 
26 Center for Genetic Medicine, Department of Pharmacology, Northwestern University, 
Feinberg School of Medicine, Chicago, IL, USA 50 
*These authors contributed equally to this work. 
†Correspondence to: skimhellmuth@gmail.com, tlappalainen@nygenome.org 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 16, 2019. ; https://doi.org/10.1101/806117doi: bioRxiv preprint 

https://doi.org/10.1101/806117
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract: 
The Genotype-Tissue Expression (GTEx) project has identified expression and splicing 
quantitative trait loci (cis-QTLs) for the majority of genes across a wide range of human 
tissues. However, the interpretation of these QTLs has been limited by the heterogeneous 
cellular composition of GTEx tissue samples. Here, we map interactions between 5 
computational estimates of cell type abundance and genotype to identify cell type interaction 
QTLs for seven cell types and show that cell type interaction eQTLs provide finer resolution 
to tissue specificity than bulk tissue cis-eQTLs. Analyses of genetic associations to 87 
complex traits show a contribution from cell type interaction QTLs and enables the discovery 
of hundreds of previously unidentified colocalized loci that are masked in bulk tissue.  10 
 
One Sentence Summary: 
Estimated cell type abundances from bulk RNA-seq across tissues reveal the cellular 
specificity of quantitative trait loci.  
 15 
Main Text: 
The Genotype-Tissue Expression (GTEx) project (1) and other studies (2-5) have shown that 
genetic regulation of the transcriptome is widespread. GTEx in particular has built an extensive 
catalog of expression and splicing quantitative trait loci in cis (cis-eQTLs and cis-sQTLs) 
across an unprecedented range of tissues, showing that QTLs are generally either highly 20 
tissue-specific or widely shared, even across dissimilar tissues and organs (1, 6). However, 
the vast majority of these studies have been performed using heterogeneous bulk tissue 
samples comprising diverse cell types. This limits the power, interpretation, and downstream 
applications of QTL studies. Genetic effects that are active only in rare cell types may be left 
undetected, mechanistic interpretation of QTL sharing across tissues and other contexts is 25 
complicated without understanding differences in cell type composition, and inference of 
downstream molecular effects of regulatory variants without the specific cell type context is 
challenging. Efforts to map eQTLs in individual cell types have been largely restricted to blood, 
using purified cell types (7-10) or single cell sequencing (11). Cell type specific eQTLs can 
also be computationally inferred from bulk tissue measurements, using the estimated 30 
proportion or enrichment of relevant cell types to test for an interaction with genotype, but such 
approaches to date have been applied to only a limited range of cell types, including blood 
cell types (12, 13) and adipocytes (14). These studies identified thousands of cell type 
interactions in eQTLs discovered in whole blood samples from large cohorts [5,683 samples 
(12); 2,116 samples, (13)], indicating that large numbers of interactions are likely to be 35 
identified by expanding this type of analysis to other tissues and cell types.  
 
In this study, we applied cell type deconvolution to characterize the cell type specificity of cis-
eQTLs and cis-sQTLs for 43 cell type-tissue combinations, using seven cell types across 35 
tissues (Fig. 1A). Estimating the cell type composition of a tissue biospecimen from RNA-seq 40 
remains a challenging problem (15) and multiple approaches for inferring cell type proportions 
have been proposed (16). We performed extensive benchmarking for multiple cell types 
across several expression datasets (fig. S1). The xCell method (17), which estimates the 
enrichment of 64 cell types using reference profiles, was most robust based on correlation 
with cell counts in blood (fig. S1A), in silico simulations (fig. S1B), and correlation with 45 
expression of marker genes for each cell type (fig. S1C). Furthermore, the inferred 
abundances reflected differences in histology and tissue pathologies (fig. S1D, E). For each 
cell type, we selected tissues where the cell type was highly enriched to map cell type 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 16, 2019. ; https://doi.org/10.1101/806117doi: bioRxiv preprint 

https://doi.org/10.1101/806117
http://creativecommons.org/licenses/by-nc-nd/4.0/


interacting eQTLs in cis (fig. S2A, B). The xCell scores for these tissue-cell type pairs were 
also highly correlated with the PEER factors used to correct for unobserved confounders in 
the expression data for QTL mapping (1) (fig. S2C), suggesting that cell type composition 
likely explains a large part of inter-sample variation in gene expression.  
 5 
We used a linear regression model for gene expression that included an interaction between 
cell type enrichment and genotype, thus using variability in cell type composition between 
individuals to identify eQTLs whose effect varies depending on the enrichment of the cell type 
(Fig. 1B). Since QTLs identified this way are not necessarily specific to the estimated cell type 
but may reflect another (anti)correlated cell type, we refer to these eQTLs as cell type 10 
interacting eQTLs, or cell type ieQTLs. We applied an analogous approach to map cell type 
interacting splicing QTLs (isQTLs), using intron excision ratios that reflect alternative isoform 
usage, quantified by LeafCutter (18) (Fig. 1B). Across cell types and tissues, we detected 
3,347 protein coding and lincRNA genes with an ieQTL (ieGenes) and 987 genes with an 
isQTL (isGenes) at 5% FDR per cell type-tissue combination (Fig. 2A, fig. S3A+B and table 15 
S1). In the following analyses, ieQTLs and isQTLs with 5% FDR are used unless indicated 
otherwise. The QTL effect of ieQTLs and isQTLs can increase or decrease as a function of 
cell type enrichment (Fig. 1C, fig. S3C+D). This correlation is usually positive (56%; median 
across cell type-tissue combinations); for example, a keratinocyte ieQTL for CNTN1 in skin 
had a particularly strong effect in samples with high enrichment of keratinocytes. However, for 20 
a significant number of ieQTLs the effect was negatively correlated (18%) or ambiguous (24%) 
(fig. S4A,B), with the interaction likely capturing a QTL that is active in another cell type. 
Notably, while 85% of ieQTLs corresponded to genes with at least one standard eQTL, 21% 
of these ieQTLs were not in LD (R2 < 0.2) with any of the corresponding eGene’s conditionally 
independent eQTLs (fig. S4C), indicating that ieQTL analysis often reveals genetic regulatory 25 
effects that are not detected by standard eQTL analysis of heterogeneous tissue. Unlike for 
bulk tissue cis-QTLs, iQTL discovery was only modestly correlated with sample size 
(Spearman’s ρ = 0.53 and 0.35, respectively; fig. S3E+F). The tissues with most iQTLs 
included blood, as well as breast and transverse colon that both stratified into at least two 
distinct groups based on histology (19): epithelial vs. adipose tissue (breast) and mucosal vs. 30 
muscular tissue (colon) (fig. S1B). This suggests that high inter-individual variance in cell type 
enrichments driven by tissue heterogeneity is a major determinant in discovery power and 
benefits iQTL mapping despite being a complicating factor for many other types of tissue gene 
expression analyses. Downsampling analyses in whole blood and transverse colon revealed 
linear relationships between sample size and ieQTL discovery in these tissues, suggesting 35 
that significantly larger numbers of ieQTLs may be discovered with larger sample sizes (fig. 
S3G). 
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Fig. 1. Study design of mapping cell type ieQTLs and isQTLs in GTEx v8 project. (A) Illustration of 43 cell 
type-tissue pairs included in the GTEx v8 project. Cell types with median xCell enrichment score > 0.1 within a 
tissue were used (fig. S2). (B) Schematic representation of a cell type interacting eQTL and sQTL. (C) Example 
cell type ieQTL and isQTL. The CNTN1 eQTL effect in not sun-exposed skin is associated with keratinocyte 5 
abundance (left panel). The TNFRSF1A sQTL effect in whole blood is associated with neutrophil abundance, but 
is only detected in samples with lower neutrophil abundances (right panel). Each data point represents an RNA-
seq sample and is colored by the ieQTL and isQTL genotypes, respectively. The regression lines correspond to 
the coefficients of the interaction model. 
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Since external replication data sets are sparse, we used allele-specific expression (ASE) data 
of eQTL heterozygotes (20, 21) to correlate individual-level quantifications of the eQTL effect 
size (measured as allelic fold-change, aFC) with individual-level cell type enrichments. If the 
eQTL is active in the cell type of interest, we expect to see low aFC in individuals with low cell 
type abundance, and higher aFC in individuals with high cell type abundance (fig. S5A). 5 
Spearman correlation p-values can then be used to assess how many cell type ieQTLs show 
evidence of validation using this approach. The median proportion of ieQTLs with a significant 
aFC-cell type correlation (P < 0.05) was 0.63 (Fig. 2B). For 13 cell type-tissue combinations 
with > 20 significant ieQTLs, the π1 statistic corresponding to the correlation p-values (22) 
confirmed the high validation rate (mean π1 = 0.76, fig. S5B). While this approach does not 10 
constitute formal replication in an independent cohort, it is applicable to all tested cell type-
tissue combinations, and corroborates that ieQTLs are not statistical artefacts of the 
interaction model. Next, we performed replication analyses in external cohorts, including 
whole blood from the GAIT2 study (23), purified neutrophils (8), adipose and skin tissues from 
the TwinsUK study for ieQTLs (5) and temporal cortex from the Mayo RNA-sequencing study 15 
for both ieQTLs and isQTLs (24). Overall replication was moderate to high (π1 = 0.32 - 0.67) 
with the highest replication rates observed in purified neutrophils for whole blood (fig. S6A+E). 
The differences in replication rates likely reflect a combination of lower power to detect cell 
type ieQTLs/isQTLs compared to standard eQTLs/sQTLs, as well as differences in tissue 
heterogeneity across studies. Taken together, these results show that ieQTLs and isQTLs can 20 
be detected with reasonable robustness for diverse cell types and tissues. 

 
Fig. 2. Cell type ieQTL and isQTL discovery. (A) Number of cell type ieQTLs (left panel) and isQTLs (right panel) 
discovered in each cell type-tissue combination at FDR < 5%. Bar labels show the number of ieQTLs and isQTLs, 
respectively. See Fig. 1A for the legend of tissue colors. (B) Proportion of cell type ieQTLs that validated in ASE 25 
data. Validation was defined as ieQTLs for which the Spearman correlation between allelic fold-change (aFC) 
estimates from ASE and cell type estimates was nominally significant (P < 0.05). Tissue abbreviations are provided 
in table S2. Bar labels indicate the number of ieQTLs with validation/number of ieQTLs tested.  
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Next, we sought to determine to what extent cell type ieQTLs contribute to the tissue specificity 
of cis-eQTLs. First, we analyzed ieQTL sharing across cell types, observing that ieQTLs for 
one cell type were generally not ieQTLs for other cell types (e.g., myocyte ieQTLs in muscle 
tissues were not hepatocyte ieQTLs in liver, etc.; fig. S7B). To determine if a significant cell 
type interaction effect is associated with the tissue-specificity of an eQTL, we tested whether 5 
cell type ieQTLs are predictors of tissue sharing. We annotated the top cis-eQTLs per gene 
across tissues with their cell type ieQTL status for the five cell types with at least 20 ieQTLs 
(adipocytes, epithelial cells, keratinocytes, myocytes, and neutrophils). This annotation was 
included as a predictor in a logistic regression model of eQTL tissue sharing based on eQTL 
properties including effect size, minor allele frequency, eGene expression correlation, 10 
genomic annotations, and chromatin state (1). In all five cell types, ieQTL status was a strong 
negative predictor of tissue-sharing, with the magnitude of the effect similar to that of 
enhancers, indicating that ieQTLs are an important mechanism for tissue-specific regulation 
of gene expression (Fig. 3A, fig. S7A). We corroborated this finding using multi-tissue eQTL 
mapping with MASH (1), testing whether eGenes that are tissue-specific (eQTLs discovered 15 
at LSFR < 0.05 only in the tissue/tissue type of interest) have a higher proportion of cell type 
ieQTLs compared to eGenes that are shared across tissues (LSFR < 0.05 in multiple tissues). 
Indeed, the proportion of cell type ieQTLs across all 43 cell type-tissue combinations was 
significantly higher in tissue-specific eGenes compared to tissue-shared eGenes (P = 1.9e-
05, one-sided Wilcoxon rank sum test, Fig. 3B) further highlighting the contribution of cell type-20 
specific genetic gene regulation to tissue specificity of eQTLs.  
 
To examine the sharing patterns of cell type ieQTLs across tissues we used two cell types 
with ieQTLs mapped in >10 tissues (16 tissues for epithelial cells and 13 for neurons). We 
observed that while standard eQTLs were highly shared across the subsets of 16 and 13 25 
tissues, cell type ieQTLs tended to be highly tissue specific, reflected by an average of four 
and five tissues with shared ieQTL effects compared to 11 and 12 for eQTLs in epithelial and 
brain tissues respectively (Fig. 3C+D, left panels). 25.3% of neuron ieQTLs were shared 
between nine brain tissues, highlighting that tissues of the cerebrum (e.g., cortex, basal 
ganglia, limbic system) show particularly high levels of sharing compared to cerebellar tissues, 30 
the hypothalamus, and the spinal cord (Fig. 3D, left panel). This pattern was absent when 
analyzing standard eQTLs. Pairwise tissue sharing comparisons further confirmed that cell 
type ieQTLs showed greater tissue specificity and more diverse tissue sharing patterns than 
standard eQTLs, which were broadly shared across all tissues (Fig. 3C+D, middle and right 
panels). These results show that incorporating cell type composition is essential for 35 
characterizing the sharing of genetic regulatory effects across tissues.   
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Fig. 3. Cell type ieQTLs contribute to cis-eQTL tissue specificity. (A) Coefficients from logistic regression 
models of cis-eQTL tissue sharing, where epithelial cell ieQTL status is one of the predictors: All significant top cis-
eQTLs per tissue were annotated based on if they were also a significant ieQTL for a given cell type. The 5 
coefficients represent the log(odds ratio) that an eQTL is active in a replication tissue given a predictor. Chromatin 
states were defined using matched Epigenomics Roadmap tissues and the 15-state ChromHMM (25). Genomic 
annotations, conservation, and overlaps with Ensembl regulatory build TF, CTCF, and DHS peaks are also 
included. Bars represent the 95% confidence interval. (B) Proportion of cell type ieQTL-genes (ieGenes) among 
tissue-specific and tissue-shared eGenes. An eGene is considered tissue-specific if its eQTL had a MASH local 10 
false sign rate (LFSR, equivalent to FDR) < 0.05 only in the cell type ieQTL tissue (or tissue type) otherwise it is 
considered tissue-shared. Results of all 43 cell type-tissue combinations are shown. See Fig. 1A for the legend of 
tissue colors. (C+D) Tissue activity of cell type ieQTLs and eQTLs, where a cell type ieQTL and eQTL was 
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considered active in a tissue if it had an LFSR < 0.05 (left panel). Pairwise tissue-sharing of ieQTLs (middle panel) 
or lead standard cis-eQTLs (right panel) respectively. The color-coded sharing signal is the proportion of significant 
QTLs (LFSR < 0.05) that are shared in magnitude (within a factor of 2) and sign between two tissues.  
 
To study the contribution of cell type interacting QTLs to GWAS associations of 87 complex 5 
traits, we first examined the enrichment of iQTLs of each cell type/tissue combination for trait 
associations (GWAS P ≤ 0.05) using QTLEnrich (v2) (26). We used 23 and 7 cell type/tissue 
pairs (19 and 7 unique tissues) with >100 ieQTLs or isQTLs at a relaxed FDR (40% FDR) to 
generate robust enrichment estimates of 87 GWAS traits. Across all tested cell type/tissue-
trait pairs, the GWAS signal was clearly enriched among ieQTLs and isQTLs (1.3 and 1.4 10 
median fold-enrichments, respectively), similarly to standard eQTLs and sQTLs (Fig. 4A, table 
S4). The GWAS enrichments were robust to the iQTL FDR cutoffs (Fig. S8A+B). We next 
analyzed the enrichments of the individual traits for iQTLs of two cell types with best power: 
neutrophil iQTLs in blood and epithelial cell iQTLs in transverse colon. We compared them to 
the corresponding standard QTLs (Fig. 4B, Fig S8C+D), focusing on traits that had a 15 
significant enrichment for either QTL type (Bonferroni-adjusted P < 0.05). Interestingly, in 
blood we observed a significant shift towards higher enrichment for ieQTLs (one-sided, paired 
Wilcoxon rank sum test; P = 0.0026) and especially isQTLs (P = 2.8e-05), which appears to 
be driven by GWAS for blood cell traits, and also immune traits having a higher enrichment 
for iQTLs. The higher iQTL signal is absent in colon (ieQTL P = 1 and isQTL P = 0.13), even 20 
though the standard QTL enrichment for blood cell traits appear similar for blood and colon. 
This pattern suggests that cell type interacting QTLs may have better resolution for indicating 
relevant tissues and cell types for complex traits, compared to tissue QTLs, but future studies 
are needed to fully test this hypothesis. 
 25 

 
Fig. 4. Cell type iQTLs are enriched for GWAS signals. (A) Distribution of adjusted GWAS fold-enrichment of 
23x87 (top panel) and 7x87 (bottom panel) tissue-trait combinations using the most significant iQTL or standard 
QTL per eGene/sGene. (B) Adjusted GWAS fold-enrichments of 87 GWAS traits among iQTLs on the x-axis and 
standard QTLs on the y-axis. Filled circles indicate significant GWAS enrichment among iQTLs at P < 0.05 30 
(Bonferroni-corrected). Colors represent GWAS categories of the 87 GWAS traits (see table S3). 
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We next asked whether cell type iQTLs can be linked to loci discovered in genome-wide 
association studies (GWAS) as well as pinpoint the cellular specificity of these associations. 
To this end, we tested 13,702 ieGenes and 2,938 isGenes (40% FDR) for colocalization with 
87 GWAS traits (1, 27), using both the cell type ieQTL/isQTL and corresponding standard bulk 5 
tissue QTL. 1,370 (10.3%) cell type ieQTLs and 89 (3.7%) isQTLs colocalized with at least 
one GWAS trait (Fig. 5A, table S5+S6). The larger number of colocalizations identified for 
neutrophil ieQTLs and isQTLs in whole blood relative to other cell type-tissue pairs likely 
reflects a combination of the larger number of ieQTLs and isQTLs and the abundance of 
significant GWAS loci for blood-related traits in our set of 87 GWASs. Our analysis revealed 10 
a substantial proportion of loci for which only the ieQTL/isQTL colocalizes with the trait 
(467/1370, 34%), or where the joint colocalization of the ieQTL/isQTL and corresponding 
standard eQTL indicates the cellular specificity of the trait as well as its potential cellular origin 
(401/1370, 29%). For example, a colocalization between the DHX58 gene in the left ventricle 
of the heart and an asthma GWAS was only identified through the corresponding myocyte 15 
ieQTL (PP4 = 0.64), but not the standard eQTL (PP4 = 0.00; Fig. 5B). Cardiac cells such as 
cardiomyocytes are not primarily viewed to have a causal role in asthma, but their presence 
along pulmonary veins and their potential contribution to allergic airway disease have been 
previously described (28). An example where both the standard eQTL and the cell type ieQTL 
colocalize with the trait is given in Fig. 5C for KREMEN1 in adipocytes in subcutaneous 20 
adipose tissue and a birth weight GWAS (PP4 ~0.8); KREMEN1 has been linked to 
adipogenesis in mice (29). We highlight two analogous examples for isQTLs: the epithelial cell 
isQTL for CDHR5 in small intestine colocalized with eosinophil counts whereas the standard 
sQTL did not (Fig. 5D), and conversely, both the standard sQTL and myocyte isQTL for 
ATP5SL in the left ventricle of the heart colocalized with standing height (Fig. 5E). While the 25 
iQTLs do not necessarily pinpoint the specific cell type where the regulatory effect is active, 
they indicate that cell type specificity plays a role in the GWAS locus. Together, the 
colocalization results show that cell type interaction QTLs yield new potential target genes for 
GWAS loci that are missed by tissue QTLs, and provide hypotheses of cellular specificity of 
regulatory effects underlying complex traits.  30 
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Fig. 5. Cell type iQTLs improve GWAS-QTL matching. (A) Proportion of cell type ieQTLs (left panel) or isQTLs 
(right panel) with evidence of colocalization using COLOC posterior probabilities (PP4 > 0.5), for ieQTLs and isQTL 
at FDR < 0.4. Color saturation indicates if a trait colocalized with the cell type iQTL only (dark), the cis-QTL only 
(light) or both QTLs (medium). Bar labels indicate the number of cell type iQTLs with evidence of colocalization 
(either as iQTL or cis-QTL)/number of iQTLs tested. (B) Association p-values in the DHX58 locus for an asthma 5 
GWAS (top panel), bulk heart left ventricle cis-eQTL (middle panel), and myocyte ieQTL (bottom panel). (C) 
Association p-values in the KREMEN1 locus for a birth weight GWAS (top panel), bulk subcutaneous adipose cis-
eQTL (middle panel), and adipocyte ieQTL (bottom panel). (D) Association p-values in the CDHR5 locus for an 
eosinophil count GWAS (top panel), bulk small intestine terminal ileum cis-sQTL (middle panel), and epithelial cell 
isQTL (bottom panel). (E) Association p-values in the ATP5SL locus for a standing height GWAS (top panel), bulk 10 
heart left ventricle cis-sQTL (middle panel), and myocyte isQTL (bottom panel). 
 
By mapping interaction effects between cell type enrichment and genotype on the 
transcriptome across GTEx tissues, we were able to identify thousands of eQTLs and sQTLs 
that are likely to be cell type specific. Notably, the ieQTLs and isQTLs we report here include 15 
immune and stromal cell types in tissues where cell type specific QTLs have not yet been 
characterized. Cell type ieQTLs are strongly enriched for tissue- and cellular specificity, and 
provide a finer resolution to tissue-specificity than bulk cis-eQTLs that are highly shared 
between tissues. It is likely that many more cell type ieQTLs remain to be discovered for cell 
types and tissues not considered in this study, and improving deconvolution approaches and 20 
sample sizes will be valuable in this effort. However, the substantial allelic heterogeneity 
observed in standard eQTLs (1) and limited power to deconvolve QTLs that are specific to 
rare cell types or with weak or opposing effects indicate that many more cell type specific 
eQTLs exist beyond those that can be computationally inferred from bulk tissue data. We 
therefore anticipate that single-cell QTL studies will be essential to complement the 25 
approaches presented here. Given the enrichment of GWAS signal in cell type iQTLs for cell 
types potentially relevant to the traits, and the large fraction of colocalizations with GWAS 
traits that are only found with cell type iQTLs, it will be essential to exhaustively characterize 
cell type specific QTLs to contribute towards a mechanistic understanding of these loci. 
 30 
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