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Abstract

Integrated modeling of metabolism and gene regulation continues to be a major challenge
in computational biology. While there exist approaches like regulatory flux balance analysis
(rFBA), dynamic flux balance analysis (dFBA), resource balance analysis (RBA) or dynamic
enzyme-cost flux balance analysis (deFBA) extending classical flux balance analysis (FBA) in
various directions, there have been no constraint-based methods so far that allow predicting
the dynamics of metabolism taking into account both macromolecule production costs and
regulatory events. In this paper, we introduce a new constraint-based modeling framework
named regulatory dynamic enzyme-cost flux balance analysis (r-deFBA), which unifies dy-
namic modeling of metabolism, cellular resource allocation and transcriptional regulation in
a hybrid discrete-continuous setting. With r-deFBA, we can predict discrete regulatory states
together with the continuous dynamics of reaction fluxes, external substrates, enzymes, and
regulatory proteins needed to achieve a cellular objective such as maximizing biomass over a
time interval. The dynamic optimization problem underlying r-deFBA can be reformulated
as a mixed-integer linear optimization problem, for which there exist efficient solvers.

1 Introduction

Constraint-based modeling approaches have become a powerful tool to analyze genome-scale
metabolic network reconstructions [1, 2]. Based on the steady-state assumption for internal
metabolites, constraint-based methods like flux balance analysis (FBA) [3] use the stoichiometry
of the metabolic network to define a feasible solution space of possible steady-state flux distribu-
tions. By choosing an objective function such as maximizing biomass, an optimal flux distribution
can be predicted by solving a linear optimization problem (LP).

While standard FBA requires very few data, it is not able to capture more complex phenom-
ena such as dynamics, resource allocation, or gene regulation. Extending work by Palsson et
al. [4], Mahadevan et al. in 2002 introduced dynamic flux balance analysis (dFBA) [5] to maxi-
mize biomass production over a time interval, taking into account the dynamics of extracellular
metabolites and biomass. To incorporate the synthesis costs of macromolecules, Goelzer et al.
developed resource balance analysis (RBA) [6, 7], which allows predicting an optimal resource
allocation for maximizing the steady-state growth rate. Independently, Lerman et al. introduced
ME-models [8, 9], a related approach for integrating metabolism and gene expression at steady-
state. To combine these two ways of extending FBA, dynamics and resource allocation, several
frameworks have been developed during the last years, which include dynamic enzyme-cost FBA
(deFBA) [10], conditional FBA (cFBA) [11, 12], dynamic resource balance analysis (dRBA) [13]
and dynamicME [14].

∗linliu@zedat.fu-berlin.de
†Alexander.Bockmayr@fu-berlin.de

1

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 13, 2019. ; https://doi.org/10.1101/802249doi: bioRxiv preprint 

https://doi.org/10.1101/802249


Approaches
No regulation Regulation included

No enzyme costs With enzyme costs No enzyme costs With enzyme costs

Static FBA (1992) [21]
RBA (2011) [6] SR-FBA (2007) [19]

ME models (2012) [8] PROM (2010) [20]

Iterative
dFBA (SOA)

dynamicME (2019) [14]
rFBA (2001) [15]

idFBA (2008) [18]
(1994) [4, 5] iFBA (2008) [17]

Dynamic
dFBA (DOA) deFBA (2015) [10]
(2002) [5] cFBA (2015) [11] r-deFBA (this paper)

dRBA (2018) [13]

Table 1: Constraint-based flux balance approaches

Concerning integrated modeling of metabolism and regulation, there exist approaches such
as regulatory flux balance analysis (rFBA) [15] and Flexflux [16], which combine Boolean or
multi-valued logical rules for transcriptional regulation with a steady-state stoichiometric model
of metabolism. Like the SOA variant of dynamic flux balance analysis [4, 5], these techniques
iterate flux balance analysis by splitting the growth phase into discrete time steps. At each time
step, the updated regulatory states are imposed as bounds on the reaction fluxes, while ignoring
the costs for enzyme production. Integrated FBA (iFBA) [17] allows combining rFBA with a
differential equation model for a specific subnetwork, while integrated dynamic FBA (idFBA) [18]
brings together metabolism, regulation, and also signal transduction.

In addition to these iterative methods, there exist also static approaches for combining
metabolism and gene regulation. Steady-state regulatory flux balance analysis (SR-FBA) [19]
aims at studying the steady-state behaviors of a metabolic-regulatory network by adding Boolean
rules to the linear constraints of FBA, resulting in a mixed-integer linear program [19]. Proba-
bilistic regulation of metabolism (PROM) [20] makes use of microarray data sets to constrain the
reaction upper bounds with a certain percentage of the maximal upper bound.

To summarize, we classify in Tab. 1 existing flux balance approaches according to whether or
not they include dynamics, macromolecule production costs, and gene regulation. As can be seen
from Tab. 1, there is currently no approach integrating all those features in a unifying framework.

In previous work [22], we introduced metabolic-regulatory networks (MRNs) to formalize the
interplay of metabolism, macromolecule synthesis and gene regulation. To specify the dynamics
of MRNs, we used a hybrid automata framework, combining continuous dynamics of metabolism
with discrete control by regulatory events. In this formalization, the amounts of molecular species
are represented by continuous variables. The discrete states of the system correspond to gene
expression states of regulated proteins, which include regulatory proteins and regulated enzymes.
In each discrete state, the continuous variables evolve according to a system of differential equations
that is specific for this state. The guard conditions for the discrete state transitions depend on
the amounts of the molecular species and associated thresholds.

In the present paper, we look at dynamic optimization or optimal control of the hybrid au-
tomata representing MRNs, which leads us to a new constraint-based modeling framework called
regulatory dynamic enzyme-cost flux balance analysis (r-deFBA). Like in other flux balance ap-
proaches, we apply a quasi steady-state assumption for the internal metabolites. The resulting
dynamic optimization problem can be transformed into a mixed-integer linear optimization prob-
lem (MILP), for which there exist efficient solvers.

The organization of this paper is as follows: We start in Sect. 2 by recalling the definition of
MRNs and the hybrid modeling framework from [22]. In Sect. 3, we formally introduce r-deFBA
by formulating the metabolic constraints, the regulatory constraints, and the resulting dynamic
optimization problem. To illustrate our approach, we consider two biological applications. In
Sect. 4 we analyze the self-replicator model already considered in [22]. Finally, in Sect. 5, we
apply our approach to a model of core carbon metabolism, inspired from [15] and [10].
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Fig. 1: Schematic model of a metabolic-regulatory network (MRN). We distinguish three types of
molecular species: extracellular species Y, intermediate metabolites X, and macromolecules P.
The macromolecules P = Q ∪ RE ∪ NRE ∪ RP are classified into quota compounds Q, non-
regulated enzymes NRE, regulated enzymes RE, and regulatory proteins RP. The reaction
fluxes v includes exchange fluxes vY, intracellular fluxes vX and macromolecule production fluxes
vP = vQ ∪ vNRE ∪ vRE ∪ vRP.

2 Hybrid dynamics of metabolic-regulatory networks

Metabolic-regulatory networks (MRNs) were introduced in [22] to model in an integrated way
metabolic reactions, transcriptional regulation, macromolecule production and structural compo-
nents. In Fig. 1, we illustrate the schematic structure of a MRN model. By Y we denote the set
of extracellular species with corresponding exchange fluxes vY. The intermediate metabolites X
are transformed by intracellular fluxes vX and utilized to build macromolecules P = Q∪E∪RP.
For simplicity, we consider here only three types of macromolecules: non-catalytic compounds Q
such as DNA and lipids, catalytic molecules E including enzymes and ribosomes, and regulatory
proteins RP. The corresponding production fluxes are denoted by vE,vQ and vRP. Within
E = RE ∪ NRE, we distinguish between regulated enzymes RE, and non-regulated enzymes
NRE. Overall, the set of molecular species is defined as:

M = Y ∪X ∪P = Y ∪X ∪ (Q ∪E ∪RP) = Y ∪X ∪ (Q ∪RE ∪NRE ∪RP) (1)

Continuous dynamics

In a purely continuous modeling approach, the dynamics of the network would be described by a
system of ordinary differential equations

Ṁ(t) =
dM(t)

dt
= F (M,K,S, t). (2)

Following [10, 23, 22], we assume that M(t) denotes the molar amounts of the molecular species
in M at time t. Furthermore, K is the set of kinetic parameters, S is the stoichiometric matrix,
and t denotes time. The function F represents the kinetic laws that govern the dynamics, which
could be mass action, Michaelis-Menten, Hill kinetics etc.

Discrete control

Continuous modeling of gene regulatory networks is known to be very difficult due to the lack of
the necessary kinetic data. Therefore, we adopt a more qualitative approach to include regulation
in our model. In this context, regulatory interactions, as illustrated by the red arrows in Fig. 1,
refer to transcriptional regulation, i.e., we do not consider post-translational modifications. We
assume that for each regulated protein p ∈ RP ∪RE there are two possible states on and off,
describing whether at a particular time t the gene encoding p is expressed or not.
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Formally, we introduce a Boolean variable p = p(t) ∈ {0, 1} and a logical function fp : Rn →
{0, 1}. Here, the Boolean value 0 corresponds to off and the value 1 to on. Each function fp
is defined as a Boolean combination (using the Boolean operations ¬ (not), ∧ (and), ∨ (or)) of
atomic formulas of the form x ≥ θ, where x is a real variable and θ a threshold value. Overall,
the regulation of our MRN is then formalized by a system of Boolean equations of the form

p(t) = fp(RP(t),Y(t),vX(t),vY(t)), for all p ∈ RP ∪RE. (3)

The logical function fp indicates how the expression state of the regulated protein p depends on
the current amounts of regulatory proteins, extracellular metabolites, and the reaction fluxes.

As an example, consider a regulatory rule stating that an enzyme e is activated by a regulatory
protein rp above a certain threshold θ > 0. In this case, the expression state e of e is given by
the rule e(t) = fe(rp(t)) = 1 if and only if rp(t) ≥ θ. Thus, whenever rp(t) ≥ θ holds, we have
e(t) = 1 (= on), while e(t) = 0 (= off) whenever rp(t) < θ.

Note that in contrast to the metabolic-regulatory networks described in [22], the amounts of
intermediate metabolites X(t) have been replaced with the flux values vX(t) and vY(t). This is
due to the quasi steady-state assumption for internal metabolites, which is typical for constraint-
based modeling approaches, see also [15].

Hybrid system

Combining the continuous dynamics of metabolism in Eq. (2) with the discrete logical control in
Eq. (3) leads to a hybrid discrete-continuous system, which we further explore in Sect. 3.

3 Formalization of r-deFBA

The r-deFBA framework that we propose in this paper aims at predicting from some initial
conditions the continuous dynamics of metabolism and resource allocation together with discrete
state transitions coming from genetic regulation. Compared with our earlier approach deFBA [10],
regulatory logical constraints are included in addition to the metabolic constraints. Based on
the schematic MRN model in Fig. 1 and the notation in Sect. 2, the metabolic and regulatory
constraints of r-deFBA will now be described in detail.

3.1 Metabolic constraints

We start by recalling the constraints on metabolism, which are derived from dynamic enzyme-cost
flux balance analysis (deFBA) [10, 23].

3.1.1 Dynamics of external substrates

The dynamics of the extracellular metabolites Y (nutrients and by-products) is modeled by a
system of ordinary differential equations

Ẏ(t) = −SY,VY
· vY(t), (4)

where SY,VY
is a stoichiometric matrix in which the rows correspond to the extracellular metabo-

lites Y and the columns to the exchange reactions vY. By vY(t) we denote the vector of exchange
fluxes at time t.

3.1.2 Dynamic production of macromolecules

The macromolecules P = Q ∪ E ∪ RP are assembled from metabolic precursors X to ensure
cellular survival and growth. The synthesis and the degradation of macromolecules is described
by a system of differential equations

Ṗ(t) = SP,VP
· vP(t)− kdP ◦P(t), (5)

where SP,VP
is a stoichiometric matrix in which the rows represent macromolecules and the

columns macromolecule synthesis reactions. The vector kdP contains the degradation rates and ◦
denotes the component-wise product of vectors.
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3.1.3 Steady-state of intermediate metabolites

For the intermediate metabolites X we assume that they are in quasi steady-state, i.e., the rate
of production is equal to the rate of consumption. This leads to a system of algebraic equations

SX,VY
· vY(t) + SX,VX

· vX(t)− SX,VP
· vP(t) = 0, (6)

with stoichiometric matrices SX,VY
, SX,VX

, SX,VP
and fluxes vY,vX,vP.

3.1.4 Biomass composition constraint

In order to guarantee a sufficient production of non-catalytic macromolecules Q such as lipids and
DNA, which are indispensable for cell growth and proliferation, we require that the mass of these
quota compounds has to be at least a given fraction of the total biomass. Mathematically,

bTQ ·Q(t) ≥ ΦQ · bTP ·P(t). (7)

Here, bP is a vector with the molecular weights of all the macromolecules P, bQ is the subvector
of the molecular weights of the quota compounds Q, the operation ·T denotes transposition, and
0 < ΦQ < 1 is a constant.

3.1.5 Enzymatic and translational capacity constraints

Fluxes through enzyme-catalyzed reactions are bound by the amount of the corresponding en-
zymes. If an enzyme catalyzes more than one reaction, the sum of all the reaction fluxes is limited
by the enzyme amount. Formally, we get∑

i∈cat(E)

|vi(t)|
ki,Ecat

≤ E(t), for all E ∈ E, (8)

where cat(E) is the set of all reactions i catalyzed by enzyme E and ki,Ecat is the corresponding
turnover rate. Note that this constraint also holds for protein translation and the ribosome, which
is considered to be a special enzyme in our framework (cf. Sect. 2).

3.2 Regulatory logical control constraints

Extending the existing approaches for dynamic metabolic resource allocation such as deFBA, we
now add two types of regulatory constraints. The first one describes the control of the discrete state
transitions by the continuous variables, which corresponds to the triggering of the discrete jumps
in the hybrid system. The second one is the control of the evolution of the continuous variables
depending on the discrete state. Taken together, these two types of regulatory constraints specify
the interplay between cellular regulation and metabolism.

3.2.1 Control of discrete jumps

The key to the discrete dynamics of a hybrid system is how discrete state transitions are triggered
by the continuous variables. According to Sect. 2, the expression state p(t) of all regulated proteins
p is determined by a logical function fp : Rn → {0, 1} depending on the amounts of regulatory
proteins, extracellular metabolites and reaction fluxes, i.e.,

p(t) = fp(RP(t),Y(t),vX(t),vY(t)), (9)

for all p ∈ RP ∪RE.
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3.2.2 Control of the continuous dynamics by the discrete states

While the regulatory constraints (3) describe how the discrete states depend on the continuous
variables, we also have to specify how the continuous dynamics depends on the discrete state.

For a regulated protein p, the value of p determines whether protein p is expressed or not.
Therefore, if p(t) = 1, we impose as constraint that the production flux vp(t) should be at least
εp, while we require vp(t) to be zero in the case p(t) = 0. More formally, we get for all p ∈ RP∪RE
the implications

p(t) = 1 ⇒ vp(t) ≥ εp, (10)

p(t) = 0 ⇒ vp(t) = 0, (11)

where εp > 0 is a lower bound for the production rate vp(t) of p in state on. We could also allow
εp = 0 if we want to relax the model and determine the values of vp(t) by optimization like in
deFBA.

Note that the values of the parameters εp significantly influence the dynamics of the system.
Since the lower bounds constrain the production rates, they directly affect the abundances of
the regulatory proteins and the regulated enzymes. Conversely, p is strictly constrained to be
degraded whenever p(t) = off.

3.3 Formulating r-deFBA as a dynamic optimization problem

Up to now, we have specified the metabolic constraints defining a dynamic solution space for
cellular metabolism. In addition, we introduced the regulatory constraints to incorporate the
dynamic interplay between gene regulation and metabolism. In order to predict how the cell can
achieve optimal growth under these constraints, we formulate r-deFBA as a dynamic optimization
problem, see Eq. 12. The objective is to compute time courses v(t),P(t),Y(t), p(t) that maximize
the total biomass production in a given time interval [t0, tf ].

max
v(t),P(t),Y(t),p(t)

∫ tf

t0

bTP P(t)dt

s.t. Ẏ(t) = −SY,VY
· vY(t),

Ṗ(t) = SP,VP
· vP(t)− kdP ◦P(t),

SX,VY
· vY(t) + SX,VX

· vX(t)− SX,VP
· vP(t) = 0,

bTQ ·Q(t) ≥ ΦQ · bTP ·P(t),∑
i∈cat(E)

|vi(t)|
ki,Ecat

≤ E(t), for all E ∈ E

p(t) = fp(RP(t),Y(t),vX(t),vY(t)), for all p ∈ RP ∪RE

p(t) = 1⇒ vp(t) ≥ εp, for all p ∈ RP ∪RE

p(t) = 0⇒ vp(t) = 0, for all p ∈ RP ∪RE

Y(t0) = Y0, p(t0) = p0, for all p ∈ RP ∪RE

P(t),Y(t),vP(t) ≥ 0, vmin ≤ v(t) ≤ vmax,

p(t) ∈ {0, 1}, for all p ∈ RP ∪RE.

(12)

By Y0 and p0 we denote the initial values of Y(t) and p(t) at time t = t0. In Eq. (12), the
initial amounts P(t0) are variables whose values are determined by the dynamic optimization.
Alternatively, initial values for P(t0) could also be precomputed using RBA.

Involving discrete and continuous variables, the r-deFBA problem in Eq. (12) can be reformu-
lated as a mixed-integer linear optimization problem (MILP), for which there exist efficient solvers.
To solve r-deFBA numerically, the dynamic real and Boolean variables are discretized in time like
in [12]. The Boolean equations (9) and the logical implications (10)-(11) can be transformed into
a system of linear 0-1 inequalities using a standard recursive substitution procedure [19, 24].
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∑
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Fig. 2: Workflow to build an r-deFBA model for the regulatory self-replicator with two regulatory
rules. The Boolean variables RP, T 2 describe the expression state of the genes gRP , gT2

, which
determines the activity of the production reactions vRP , vT2. The thresholds εRP , εT2

define the
minimal expression levels for the regulated proteins RP, T2 to be in state on.

4 Case study 1: Regulatory self-replicator model

Carbon catabolite repression is a common phenomenon in bacteria, especially in Escherichia
coli [25]. While these bacteria are able to grow on different carbon sources, they do not consume
these in parallel, but one after the other. This is called diauxic growth and was described by Monod
already in 1942. Mathematical modeling of diauxie has played an important role in understanding
these phenomena [26].

As a possible model for diauxie, we built in [22] a small regulatory self-replicator network,
extending earlier work in [15, 27]. To illustrate r-deFBA, we construct in Sect. 4.1 an r-deFBA
model for this network. In Sect. 4.2 we compare the resulting dynamics for r-deFBA to standard
deFBA and to the hybrid automata framework considered in [22].

4.1 Regulatory self-replicator network

The general workflow for building an r-deFBA model is illustrated in Fig. 2. Starting from a
metabolic and a transcriptional regulatory network, we first construct a metabolic-regulatory
network (MRN), as presented in Sect. 2.

In the metabolic network of Fig. 2, we have two carbon sources Y = {C1, C2}, which are
converted into precursor molecules X = {M}. For simplicity, we assume only two uptake reactions
C1 → M,C2 → M , catalyzed by enzymes T1 resp. T2. The precursor molecules M are used to
synthesize five types of macromolecules P = {Q,R, T1, T2, RP}, which are the enzymes T1, T2,
regulatory proteins RP , housekeeping proteins Q, and ribosomes R. The stoichiometry of the
synthesis reactions and corresponding parameter values are given in Tab. 2. The total biomass
Biomass(t) is defined as the sum of the molecular masses

Biomass(t) = w ·M(t) +
∑
p∈P

w · np · Mp(t), (13)

where w corresponds to the molar weight of one precursor molecule M and np is the number of
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precursor molecules needed to build one macromolecule p. By M(t) and Mp(t) we denote again
the molar amounts [mmol] of M resp. p ∈ P at time t.

In the regulatory network of Fig. 2, gRP and gT2
denote two genes encoding the regulated

proteins RP and T2. We assume that gRP is activated by the presence of C1 and that gT2
is

inhibited by gRP . This leads to two regulatory rules

RP (t) = 1 ⇔ C1(t) ≥ γ and T 2(t) = 0 ⇔ RP (t) ≥ α, (14)

with thresholds α, γ > 0. The expression states RP, T 2 are linked to the flux variables vRP , vT2

by the implications

RP (t) = 1 ⇒ vRP (t) ≥ εRP , T 2(t) = 1 ⇒ vT2(t) ≥ εT2,
RP (t) = 0 ⇒ vRP (t) = 0, T 2(t) = 0 ⇒ vT2(t) = 0,

(15)

using thresholds εRP , εT2 > 0.

r-deFBA and deFBA model

The full r-deFBA model of the regulatory self-replicator in Fig. 2 reads

max
v(t),C1(t),C2(t),M(t)

∫ tf

t0

(
∑
p∈P

w · np · Mp(t) + w ·M(t0)) dt

s.t. Ċ1(t) = −vC1(t), Ċ2(t) = −vC2(t),

Mp(t) = vp(t)− kdp · Mp(t), for all p ∈ P

vC1(t) + vC2(t)−
∑
p∈P

np · vp(t) = 0,

nQ ·Q(t) ≥ ΦQ ·
∑
p∈P

np · Mp(t),

vC1(t) ≤ kcat1 · T1(t), vC2(t) ≤ kcat2 · T2(t),∑
p∈P

vp(t)

kp,Rcat

≤ R(t),

RP (t) = 1 ⇔ C1(t) ≥ γ, T 2(t) = 0 ⇔ RP (t) ≥ α,
RP (t) = 1 ⇒ vRP (t) ≥ εRP , T 2(t) = 1 ⇒ vT2(t) ≥ εT2,

RP (t) = 0 ⇒ vRP (t) = 0, T 2(t) = 0 ⇒ vT2(t) = 0,

(C1, C2, RP, T1, T2, R,Q)(t) ≥ 0, RP (t), T 2(t) ∈ {0, 1},
for all t ∈ [t0, tf ],

(C1, C2,M,RP, T1, T2, R,Q)(t0) =

(1000, 500, 20, 0, 0.001, 0.001, 0.01, 0.15),

(RP, T 2)(t0) = (1, 1).

(16)

For the computations, we used the parameter values given in Tab. 2 and Tab. 3.
The corresponding deFBA model is obtained by omitting the regulatory constraints.

Hybrid automaton

In [22], we also constructed a hybrid automaton for simulating the metabolic-regulatory network.
The discrete states or locations correspond to the different 0-1 states of the Boolean variables RP
and T 2, which means there are 2 × 2 = 4 discrete states. For the uptake of C1, C2 we assume a
Michaelis-Menten kinetics

vC1 =
kcat1 · C1 · T1
KT + C1

, vC2 =
kcat2 · C2 · T2
KT + C2

. (17)
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Metabolic reaction Flux Enzyme Turnover rate [1/min]
C1 →M vC1 T1 kcat1 = 3000
C2 →M vC2 T2 kcat2 = 2000

Biomass reaction Flux Enzyme Turnover rate Degradation rate

npM → p vp kp,Rcat = kr/np [1/min] kdp [1/min]
300M → Q vQ R 4.2 0.01
7459M → R vR R 0.1689 0.01
400M → T1 vT1 R 3.15 0.01
1500M → T2 vT2 R 0.84 0.01
300M → RP vRP R 4.2 0.2

Table 2: Metabolic and biomass reactions with corresponding parameters

t0 tf w ΦQ α γ εRP εT2 KT kr Kr

0 55 100 0.35 0.03 20 0.01 0.01 1000 1260 7
min min mg/mmol mmol mmol mmol/min mmol/min mmol 1/min

Table 3: Additional parameters. Here, kr denotes the elongation rate and Kr,KT are Michaelis
constants.

The parameter values can be found again in Tab. 2 and Tab. 3. Regarding the synthesis rate vp of
macromolecules p consisting of np precursors we assume a Michaelis-Menten type kinetics of the
form

vp =
βp
np
· vM , with vM =

kr ·M ·R
Kr +M

and p ∈ P. (18)

The weights βp ≥ 0 denote the fraction of cellular resources allocated to protein p, with
∑

p βp = 1.
For each location of the hybrid automaton, we assume for simplicity that the cellular resources are
shared equally between the proteins that are expressed at this location. In other words, βp = 1/3
in location (RP, T 2) = (0, 0), βp = 1/4 in location (1, 0) resp. (0, 1), and βp = 1/5 in location
(1, 1). For further details, we refer to [22].

4.2 Comparing r-deFBA, deFBA, and the hybrid automaton

Next we compare the dynamics of the regulatory self-replicator obtained by r-deFBA, deFBA and
the hybrid automaton, see Fig. 3. In all three simulations, we use the same parameter values,
given in Tables 2 and 3, and the initial conditions from Eq. (16).

The diauxic shift is predicted successfully by all three approaches. However, the underlying
principles are different. By maximizing the biomass production while taking into account only
the metabolic constraints, deFBA shows that the diauxic shift is an optimal metabolic behavior.
In contrast, r-deFBA computes an optimal trajectory for biomass production, taking into account
both the metabolic and the regulatory constraints. Due to the additional regulatory constraints,
r-deFBA produces less biomass than deFBA and needs more time to consume the available carbon
resources, see Fig. 3D. The continuous metabolic variables of the hybrid automaton evolve accord-
ing to the Michaelis-Menten kinetics of Eq. (17) and (18). These kinetics depend on the current
discrete state, which in turn is determined by the regulatory control, i.e., the jump conditions.
As an optimal control strategy for the hybrid system representing the MRN, r-deFBA clearly
gains more biomass than the hybrid automaton, but less than deFBA, which does not include
regulation.

Both r-deFBA and the hybrid automaton successfully predict the discrete state transitions
during diauxie. In Fig. 3A and 3B, the time profiles are divided into three growth phases, corre-
sponding to the discrete state transitions. The transitions of r-deFBA are consistent with those
obtained by the hybrid automaton. In the first growth phase (a), expression of RP is activated
and RP = on because initially C1 ≥ γ. We also have T 2 = on because RP is initialized by 0.
Thus, the initial state of the network is (RP, T 2) = (on, on). With time going on, C1 is consumed
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Hybrid automaton
deFBA
r-deFBA

A B

DC

(on,on)(on,off)(off,off)(off,on) (on,on)(on,off)(off,off)(off,on)

Fig. 3: Time courses of C1, C2 (left axis) and RP (right axis) predicted by r-deFBA (A), the hybrid
automaton (B), deFBA (C) and corresponding biomass production(D). In all three simulations,
the same parameter and initial values were used. For r-deFBA and the hybrid automaton, we also
indicate the discrete states (RP, T 2), with the transitions marked by vertical dashed lines. Due
to the quasi steady-state assumption, the molar amount of the precursor M remains constant in
deFBA and r-deFBA.

(on,on)(on,off)(off,off)(off,on) (on,on)(on,off)(off,off)(off,on)

r-deFBA deFBA Hybrid automaton

Fig. 4: Time courses of RP, T1, T2, R (left axis) and Q (right axis) for r-deFBA, deFBA, and the
hybrid automaton.
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Fig. 5: Metabolic network of core carbon metabolism (including macromolecule production) and
corresponding gene regulatory network.

while RP is synthesized and accumulated. When RP reaches the threshold α, the synthesis of T2
is inhibited and the model jumps to the state (on, off). Next, when C1 < γ, the discrete state
changes to (off, off), which represents the lag phase during diauxie. In this phase, enzyme T2
is still repressed until RP falls below its threshold α. Once this happens, the system switches to
the final state (off, on), where RP < α and T2 is produced to metabolize C2. Overall, the inter-
actions between discrete regulation and continuous metabolism are correctly incorporated in our
r-deFBA. In deFBA, the regulatory protein RP remains at the initial value 0, see Fig. 3C. From
the optimization perspective, there is no benefit in producing RP because it is a non-catalytic
protein and does not sufficiently contribute to biomass.

Another interesting point is the production of macromolecules, see Fig. 4. In deFBA and
r-deFBA, the dynamic optimization indicates that the production of T1 should be stopped once
C1 is exhausted, although there is no regulatory control for T1. Intuitively, T1 is not needed
anymore for uptake of C1. In order to increase biomass, it is better to produce T2 and R. When
specifying the dynamics of the hybrid automaton in Eq. (18), we equally share the available
resources between all synthesis reactions that are active in the current location. In real cells,
this is unlikely to happen and not optimal for biomass production, as can be seen from Fig. 3D.
Compared with the hybrid automaton, much more ribosome is produced in r-deFBA and deFBA,
leading to a much larger biomass production, see Fig. 4. Clearly, how the cell allocates its resources
to different enzymes will affect significantly the cellular growth.

Since r-deFBA is more constrained than deFBA, the maximum biomass predicted by r-deFBA
will always be less than or equal to the one for deFBA. However, the two maxima can get very close
if the regulatory constraints are consistent with the objective in the dynamic optimization. In our
simulation, deFBA successfully predicts the diauxic shift even without regulatory control, showing
that this is an optimal strategy for biomass production. However, deFBA fails to provide infor-
mation about how the cell should be regulated to achieve this result. In contrast, r-deFBA allows
predicting both the dynamic evolution of regulatory proteins and the discrete state transitions
which together enable the cell to implement an optimal growth strategy.

5 Case study 2: Core carbon metabolism

5.1 Core carbon metabolic network and related gene regulatory net-
work

As before, we first construct a metabolic-regulatory network (MRN), see Fig. 5. Here we com-
bine a metabolic and a regulatory network for core carbon metabolism based on [15, 10]. The
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Reaction Name Enzyme Turnover rate

i j ki,jcat [1/min]

Exchange reactions
Carbon1→ A Tc1 ETc1 3000
Carbon2→ A Tc2 ETc2 2000
Fext → F Tf ETf 3000
Hext → H Th ETh 3000
O2ext → O2 TO2 Q 1000
D → Dext Td Q 1000
E → Eext Te Q 1000

Metabolic reactions
A+ ATP → B R1 ER1 1800
B → C + 2ATP + 2NADH R2a ER2a 1800
C + 2ATP + 2NADH → B R2b ER2b 1800
C → 2ATP + 3D R6 ER6 1800
C + 4NADH → 3E R7 ER7 1800
B → F R3 ER3 1800
C → G R4 ER4 1800
G+ ATP + 2NADH → H R8a ER8a 1800
H → G+ ATP + 2NADH R8b ER8b 1800
G→ 0.8C + 2NADH R5a ER5a 1800
G→ 0.8C + 2NADH R5b ER5b 1800
O2 + NADH → ATP Rres ERres 1800

Table 4: Metabolic reactions with catalyzing enzymes and turnover rates

metabolic network in Fig. 5A covers the major carbon pathways including glycolysis, TCA cy-
cle, carbon storage, amino acid synthesis, pentose phosphate pathway, fermentation, and also the
macromolecule synthesis.

Using the notation from Sect. 2, we have the following molecular species:

X = {A,B,C,D,E, F,G,H,NADH ,ATP , O2},
Y = {Carbon1, Carbon2, O2ext, Dext, Eext, Fext, Hext},
Q = {Q},

RE = {ETc2, ER2a, ER5a, ER5b, ER7, ER8a, ERres},
NRE = {ETc1, ETf , ETh, ER1, ER2b, ER3, ER4, ER6, ER8b, EQ, Q,R},
RP = {RPc1, RPO2, RPb, RPh},
E = RE ∪NRE, P = Q ∪E ∪RP.

(19)

The details on the different metabolic and biomass reactions are given in Tab. 4 and 5. To get
reasonable flux bounds on reactions describing diffusive exchange across the plasma membrane, we
define the structural component Q as the enzymatic macromolecule for these reactions, together
with an appropriate rate constant for diffusion [10].

Regarding the regulatory network of Fig. 5B, we identify again the state of a gene with the
activity of the reaction producing the corresponding protein. For example, the gene state gRPc1

is identified with the activity state RP c1 of the reaction producing RPc1. This means that the
reaction synthesizing RPc1 will be active whenever the amount of external Carbon1 exceeds a
given threshold. Conversely, the reaction will be blocked if not enough Carbon1 is available, see
the regulatory rule for RPc1 in Tab. 5.

Next we briefly describe the role of the four regulatory proteins RPc1, RPO2, RPh, RPb, for
additional details we refer to [15]. The regulatory protein RPc1 is used to operate the diauxic shift
between Carbon1 and Carbon2. Protein RPO2 is responsible for switching between the aerobic
and anaerobic pathways, which are catalyzed by the isozymes ER5a, ER5b respectively.

Protein RPh regulates the usage of two primary nutrients of the cell, carbon sources and amino
acid, via the reactions R8a and R8b. These two reactions correspond to one reversible reaction
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Macromolecule synthesis reaction Molar weight Turnover rate Regulatory rule

npH +mpATP → p bp [g/mmol] kp,Rcat [1/min]

Enzymes
400H + 1600ATP → ETc1 40 2.5
1500H + 6000ATP → ETc2 150 0.67 ETc2 = on⇔ RPc1 < ϑRP

400H + 1600ATP → ETf 40 2.5
400H + 1600ATP → ETh 40 2.5
500H + 2000ATP → ER1 50 2.0
500H + 2000ATP → ER2a 50 2.0 ER2a = on⇔ RPb < ϑRP

500H + 2000ATP → ER2b 50 2.0
1000H + 4000ATP → ER6 100 1.0
1000H + 4000ATP → ER7 100 1.0 ER7 = on⇔ RPb < ϑRP

2000H + 8000ATP → ER3 200 0.5
500H + 2000ATP → ER4 50 2.0
4000H + 16000ATP → ER8a 400 0.25 ER8a = on⇔ RPh < ϑRP

4000H + 16000ATP → ER8b 400 0.25
500H + 2000ATP → ER5a 50 2.0 ER5a = on⇔ RPO2 < ϑRP

500H + 2000ATP → ER5b 50 2.0 ER5b = on⇔ RPO2 ≥ ϑRP

500H + 2000ATP → ERres 50 2.0 ERres = on⇔ RPO2 < ϑRP

500H + 2000ATP → EQ 50 2.0
4500H + 21000ATP + 1500C → R 600 0.2

Regulatory proteins

300H + 1200ATP → RPO2 30 3.33 RPO2 = on⇔ O2ext < ϑY
300H + 1200ATP → RPc1 30 3.33 RP c1 = on⇔ Carbon1 ≥ ϑY
300H + 1200ATP → RPh 30 3.33 RPh = on⇔ vTh ≥ ϑv
300H + 1200ATP → RPb 30 3.33 RP b = on⇔ vR2b ≥ ϑv

Structural components
Synthesis reaction Molar weight Turnover rate

bQ [g/mmol] k
Q,EQ

cat [1/min]
250H + 1500ATP + 250C + 250F → Q 75 3.0

Table 5: Macromolecule synthesis reactions with corresponding molar weights, turnover rates and
regulatory rules

t0 t1f t2f kdE kdRP ϑRP ϑv ϑY εE εRP ΦQ

0 90 50 0.01 0.5 1.0e-3 0.1 1 1.0e-6 1.0e-3 0.35
min min min 1/min 1/min mmol mmol/min mmol mmol/min mmol/min

Table 6: Parameters values for E ∈ E, RP ∈ RP and end times t1f , t
2
f for Scenario 1 and 2.
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that connects the TCA cycle with the uptake of extracellular amino acid Hext. Based on RPh, the
cell will not produce amino acid from carbon sources by R8a if enough amino acid can be taken
up from the environment, i.e., if vTh ≥ ϑv.

The last regulatory protein RPb is used to balance the key intermediate metabolites denoted
by B and C. Since intracellular metabolite concentrations are not available due to the steady-state
assumption, the reaction flux vR2b is used as an internal signal. Production of RPb is activated if
vR2b ≥ ϑv, and RPb abundance then inhibits the expression of ER2a and ER7.

The complete r-deFBA model reads

max
v(t),P(t),Y(t),p(t)

∫ tf

t0

bTPP(t)dt

s.t. Ẏ(t) = −SY,VY
· vY(t),

Ṗ(t) = SP,VP
· vP(t)− kdP ◦P(t),

SX,VY
· vY(t) + SX,VX

· vX(t)− SX,VP
· vP(t) = 0,

bTQ ·Q(t) ≥ ΦQ · bTP ·P(t),

vi(t) ≤ k
i,Ej

cat · Ej(t), for all Ej ∈ E \ {Q,R},∑
i∈{TO2,Td,Te}

vi(t)

ki,Qcat

≤ Q(t),
∑

p∈P\{Q}

vp(t)

kp,Rcat

≤ R(t),

ETc2 = on⇔ RPc1 < ϑRP , ER2a = on⇔ RPb < ϑRP ,

ER7 = on⇔ RPb < ϑRP , ER8a = on⇔ RPh < ϑRP ,

ER5a = on⇔ RPO2 < ϑRP , ER5b = on⇔ RPO2 ≥ ϑRP ,

ERres = on⇔ RPO2 < ϑRP ,

RPO2 = on⇔ O2ext < ϑY , RP c1 = on⇔ Carbon1 ≥ ϑY ,
RPh = on⇔ vTh ≥ ϑv, RP b = on⇔ vR2b ≥ ϑv,
p(t) = 1⇒ vp(t) ≥ εRP , for all p ∈ RP

p(t) = 1⇒ vp(t) ≥ εE , for all p ∈ RE

p(t) = 0⇒ vp(t) = 0, for all p ∈ RP ∪RE

P(t),Y(t),v(t) ≥ 0, p(t) ∈ {0, 1}, for all p ∈ RP ∪RE,

for all t ∈ [t0, tf ].

(20)

The initial values depend on the specific scenario and will be specified in the next section.

5.2 Comparing r-deFBA and deFBA

In total, there are 11 regulated proteins, which include 4 regulatory proteins and 7 regulated
enzymes. The discrete state space thus contains 211 states, which are difficult to explore by the
hybrid automaton. In the following, we present two scenarios to show how r-deFBA can be used
to predict the integrated dynamics of metabolism and regulation even in a large state space. In
each case, we compare r-deFBA with deFBA, which also models metabolism, but does not take
into account the regulatory control.

5.2.1 Scenario 1: Diauxie on two carbon sources

Our first scenario focuses again on the diauxie phenomenon. Initially, we set Carbon1 and Carbon2
to 1000 resp. 500 mmol, oxygen is given in excess, all other extracellular metabolites are set to 0.
We do not specify the initial amounts of the macromolecules. Instead, these are computed by
the optimization algorithm under the constraint that the initial biomass should be 1g. Thus the
initial values for t = t0 are:

Carbon1 Carbon2 Dext Eext Fext Hext O2ext Biomass
1000 500 0 0 0 0 +∞ 1

(21)
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a b c a b c

A B

C D

r-deFBA r-deFBA

deFBAdeFBA

Fig. 6: Dynamics of external substrates (left axis), total biomass (right axis) predicted by r-deFBA
(A) and deFBA (C), and key regulated proteins (B and D) in Scenario 1.

The Boolean variables are initialized by the 0-1 values for growth phase (a) in Tab. 7.
Comparing the results of r-deFBA and deFBA in Fig. 6A resp. 6C, we note that in both

approaches Carbon1 is metabolized first. Yet, the biphasic increase of biomass is predicted only by
r-deFBA, and not by deFBA. Although most of the available Carbon1 is utilized at the beginning,
no lag phase is predicted by deFBA. The overall biomass production in the time interval [t0, tf ]
predicted by deFBA amounts to 111.3g, which is 8% more than the 103.0g obtained by r-deFBA.

At the level of individual proteins, RP c1 is produced in growth phase (a) of r-deFBA, for
which Carbon1 ≥ ϑY , see Fig. 6B. Here, the expression of ETc2 is inhibited since RP c1 ≥ ϑRP .
Thus, only Carbon1 supports growth during this period. Once it is exhausted, the growth shifts to
phase (b). The indicator variable RP c1 is triggered to be off, implying that RPc1 is degraded and
not produced anymore. The expression of the transporter ETc2 via ETc2 is only activated when
RPc1 < ϑRP . So, no carbon can be taken up during phase (b) and the total biomass production
shows a lag phase. Finally, in growth phase (c), the transporter ETc2 is produced and biomass
production resumes based on Carbon2.

Similarly in deFBA, ETc2 is not synthesized as long as Carbon1 supports a high growth rate.
The protein dynamics for r-deFBA and deFBA in Fig. 6B resp. 6D are also relatively close.
However, RPc1 is not produced at all in deFBA and there is no lag phase, see Fig. 6D. In deFBA,
the uptake of Carbon2 starts well before Carbon1 is exhausted, while in r-deFBA, Carbon1 and
Carbon2 are metabolized one after the other, due to the regulatory control by RPc1. The synthesis
of RPc1 generates extra costs in r-deFBA, such that the total biomass in r-deFBA is smaller than
in deFBA.

The discrete state transitions for all the regulated proteins as predicted by r-deFBA are given
in Tab. 7. Here we group together each of the four regulatory proteins with the corresponding
regulated enzymes. The expression of the enzymes regulated by RPO2 does not change, since
external oxygen is given in excess. Thus, RPO2 and ER5b are always inhibited, while ER5a and
ERres remain activated. In Scenario 1, with no extracellular Hext in the environment, reaction
R2a is constantly activated, consuming Carbon1, Carbon2, while Th is inactive. Thus, the regu-
latory proteins RP b, RPh are always off, and ER2a, ER7, ER8a are on. Note that the r-deFBA
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Growth phase RP c1 ETc2 RPO2 ER5a ER5b ERres RP b ER2a ER7 RPh ER8a

a 1 0 0 1 0 1 0 1 1 0 1
b 0 0 0 1 0 1 0 1 1 0 1
c 0 1 0 1 0 1 0 1 1 0 1

Table 7: Discrete state transitions in Scenario 1

r-deFBA deFBAA B

Q
R
E\{Q,R}

Q
R
E\{Q,R}

Fig. 7: Dynamics of biomass composition in Scenario 1 with structural components Q, ribosomes R
and enzymes E ∈ E \ {Q,R}

framework allows computing an optimal regulatory strategy for maximizing growth even though
the discrete state space is very large.

The resource allocation during the carbon switch can also be investigated. In Fig. 7, we
compare the dynamic biomass composition predicted by r-deFBA and deFBA for three kinds of
macromolecules: structural components, enzymes and ribosomes. At the beginning, both ap-
proaches exhibit a stable biomass composition. The fraction of structural components initially
stays around 35%, which corresponds to the lower bound imposed by the biomass constraint in
Eq. (7). As Carbon1 is depleted, the structural components reach a rather high level, while the
fractions of enzymes and ribosomes are decreasing in both predictions. Interestingly, in r-deFBA,
the fractions of ribosomes and enzymes are increasing again while the structural components are
going down at the outset of the second growth phase. This means that the cell has to allocate
more resources to the ribosomes to start the second growth phase. In the last step, r-deFBA
predicts a high fraction of structural components and a low fraction of enzymes and ribosomes,
which can also be validated by experiments [28]. Overall, we obtain a biphasic resource allocation
in r-deFBA, which is consistent with the two growth phases during diauxie. In deFBA, the quota
fraction directly increases to about 80% of the total biomass and then keeps constant.

5.2.2 Scenario 2: growth on carbon and amino acid with amino acid in excess

Scenario 2 explores the dynamic growth on carbon and amino acid, with amino acid in excess.
For t = t0 we choose the initial values:

Carbon1 Carbon2 Dext Eext Fext Hext O2ext Biomass
100 0 0 0 0 250 +∞ 1

(22)

The Boolean variables are initialized by the 0-1 values for growth phase (a) in Tab. 8.
As can be seen from Fig. 8, both r-deFBA and deFBA first predict a co-utilization of Carbon1

and extracellular amino acid Hext, followed by the utilization of Hext once Carbon1 has been
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Fig. 8: Dynamics of external metabolites (left axis) and biomass (right axis) predicted by
r-deFBA(A) and deFBA (C), and key regulated proteins (B and D) in Scenario 2.

exhausted. In the co-utilization phase, R2a instead of R2b is active to metabolize Carbon1.
Consequently, enzyme ER2a is synthesized in this phase, but not ER2b. When Carbon1 gets almost
exhausted, enzyme ER2b starts being produced in order to activate reaction R2b, see Fig. 8B and
8D. Now B has to be generated from C, since B is needed for growth. The switch between R2a

and R2b is predicted by both approaches because it benefits growth. Although in deFBA the
expression of the regulatory protein RPb is not triggered to inhibit the synthesis of ER2a, the
production of ER2a stops in deFBA as well. Like ER2a, enzyme ER8b also has a similar dynamics
in both approaches.

An interesting observation in the comparison is that deFBA activates enzyme ER5b responsible
for the anaerobic pathway, which is not consistent with the regulation. In contrast, r-deFBA
produces enzyme ER5a to catalyze reaction R5a, in agreement with the regulation by RPO2.
Intuitively, R5a, R5b are two alternative reactions that play the same role in the network, one
in the aerobic, the other in the anaerobic case. Using only optimization without any regulatory
information, deFBA cannot guarantee to choose the right pathway. Since optimal solutions are
not unique, the solver can choose any of the two reactions or a combination thereof. Indeed, a
small amount of ER5b is produced by deFBA in the last phase of Scenario 1, even though this is
not significant (see Fig. 6D). Clearly, the consistency between metabolism and regulation cannot
be ensured by deFBA without additional regulatory information. In contrast, the dynamics of
metabolism in r-deFBA highly depends on the activity of the regulatory proteins, and also the
converse is true.

Switching between active reactions by r-deFBA is illustrated in Fig. 9. We can see in Fig. 9A
that in the beginning Carbon1 and Hext are co-utilized and H is obtained only from Hext. Since
the model starts with a small biomass, even the TCA cycle is first inactive. Only when enzyme
ER5a has been synthesized, the TCA cycle is activated after 18 min, see Fig. 9B. Next in Fig. 9C,
reaction R8b is activated to furnish the TCA cycle with amino acid H, while releasing ATP and
NADH. Now Carbon1 is not sufficient anymore to provide energy for growth. Finally, in Fig. 9D,
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Fig. 9: Patterns of active reactions predicted by r-deFBA in Scenario 2.

Growth section RP c1 ETc2 RPO2 ER5a ER5b ERres RP b ER2a ER7 RPh ER8a

a 1 0 0 1 0 1 0 1 1 1 0
b 0 0 0 1 0 1 1 0 0 1 0
c 0 1 0 1 0 1 0 0 0 0 0

Table 8: Discrete state transitions in Scenario 2

Carbon1 has been exhausted, enzyme ER2b is synthesized and R2b is used to generate B.
Regarding the discrete state transitions, we divide the simulation period of r-deFBA again into

three phases (a), (b), and (c), see Fig. 8A and 8B. During the last phase (c), there is no growth
since all the nutrients are exhausted. The key regulatory pathways analyzed in Scenario 2 are
operated by the regulatory proteins RPb and RPh. First, R2a is active rather than R2b for better
metabolizing the carbon source. Hence, RP b is off until Carbon1 is used up. Soon after growth
phase (a), R2b has to be activated to use H, so that RPb is triggered to be produced (see Fig. 8B).
The enzymes ER2a, ER7 then switch to off. Before Hext has been exhausted, the expression state
of RPh is on because Th has to be active for the uptake. Enzyme ER8a is inhibited by RPh. The
state transitions related with RPO2 are the same as in Scenario 1 because external oxygen is given
in excess during the whole period. Carbon1 is given initially and exhausted at the end of growth
phase (a). Although Carbon2 is set to 0 and the cell cannot use it, the expression state of ETc2

is activated when RPc1 is totally degraded, due to the regulatory constraints. In Scenario 2, this
happens by chance at the time when Hext is used up. So, ETc2 is on in phase (c). Meanwhile both
Carbon1 and Hext have been used up and the two reaction signals vTh > ϑv and vR2b > ϑv are
inactive. The indicator variables RP b, RPh are turned off and the associated proteins RPb, RPh

are degraded in the last phase, see Fig. 8B.
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6 Conclusion

Overall, r-deFBA computes optimal control strategies for hybrid automata representing metabolic-
regulatory networks. Compared to previous approaches, in particular rFBA [15] and deFBA [10],
r-deFBA allows for more realistic and accurate predictions by integrating the continuous dynamics
of metabolism, including cellular resource allocation, with discrete regulatory control.

In purely discrete modeling frameworks for regulatory networks like the asynchronous logi-
cal formalism of R. Thomas [29], it is not possible to quantify the time delay between discrete
state transitions. The hybrid automata approach proposed in [22] solves this problem by using
continuous variables for regulatory protein amounts together with thresholds that trigger the dis-
crete jumps. However, exploring the dynamics of these hybrid automata is difficult due to the
exponentially large discrete state space. By computing an optimal control strategy for the hybrid
automaton, r-deFBA is able to predict even in large state spaces the quantitative dynamics of
the regulatory proteins together with the sequence of discrete state transitions that are needed to
achieve optimal growth.

In summary, r-deFBA allows predicting optimal cellular resource allocation in a dynamic envi-
ronment by integrating metabolic reactions, enzyme-costs, quota compounds, and transcriptional
regulation. Thus, r-deFBA considerably extends the predictive capabilities of current constraint-
based modeling approaches as summarized in Tab. 1. Based on a hybrid discrete-continuous
dynamics, r-deFBA is able to predict not only the continuous evolution of macromolecules and
extracellular metabolites, but also the sequence of regulatory events needed to achieve an opti-
mal growth. Finally, r-deFBA provides a solution for how to share enzymes between different
reactions, which includes ribosome allocation in protein synthesis as a special case.
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