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Abstract 
Summary: Molecular heterogeneities bring great challenges for cancer diagnosis and treatment. Re-

cent advance in single cell RNA-sequencing (scRNA-seq) technology make it possible to study cancer 

transcriptomic heterogeneities at single cell level. Here, we develop an R package named scCancer 

which focuses on processing and analyzing scRNA-seq data for cancer research. Except basic data 

processing steps, this package takes several special considerations for cancer-specific features. 

Firstly, the package introduced comprehensive quality control metrics. Secondly, it used a data-driven 

machine learning algorithm to accurately identify major cancer microenvironment cell populations. 

Thirdly, it estimated a malignancy score to classify malignant (cancerous) and non-malignant cells. 

Then, it analyzed intra-tumor heterogeneities by key cellular phenotypes (such as cell cycle and stem-

ness) and gene signatures. Finally, a user-friendly graphic report was generated for all the analyses. 

Availability: http://lifeome.net/software/sccancer/. 

Contact: jgu@tsinghua.edu.cn 

 

 

1 Introduction  

Cancer is a kind of highly heterogeneous diseases. Cells from the same 

patient’s tumor may have different expression profiles. Recently, various 

single cell RNA-sequencing (scRNA-seq) techniques have been widely 

applied to study cancer heterogeneities at single cell level. Among these 

techniques, droplet-based platforms can profile thousands of cells at a time 

and are more appropriate for highly heterogeneous application scenarios 

(Zheng et al., 2017). 

Currently, many tools and algorithms have been developed to analyze 

scRNA-seq expression data. For example, Seurat is one of the most pop-

ular R packages and contains some basic analyses (Butler et al., 2018). 

However, cancer samples have their own features, such as complex mi-

croenvironment and high intra-tumor heterogeneity. So, it is very useful 

to develop cancer-specific tools beyond the basic analyses. 

Here, we developed a user-friendly and automated R package scCancer 

for cancer scRNA-seq data analysis. In the package, we encapsulated basic 

analyses and included more comprehensive quality control (QC) metrics. 

Besides, it integrated several specific computational analyses for cancer 

data: major cell type classifications of cancer microenvironment; cell ma-

lignancy estimation; intra-tumor heterogeneities for important cellular 

phenotypes (cell cycle and stemness); and gene signatures based hetero-

geneity analyses. 

2 Methods 

2.1   Workflow overview 

The workflow of scCancer mainly consists of two parts. The first, named 

scStatistics, performed basic statistical analysis of raw data and quality 

control. The second, named scAnnotation, performed functional data anal-

yses and visualizations, such as low dimensional representation, clustering, 

cell type classification, malignancy estimation, cellular phenotype scoring, 

gene signature analysis, etc. (Fig. 1). 

2.2   Quality control 

After cell calling, the droplets containing cells have been identified. How-

ever, droplets with low quality cells and more than one cell are still need 
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to be exclude. Except some commonly used metrics, we introduced an-

other metric to remove cells affected by solid tissue dissociation process 

(van den Brink et al., 2017). Besides, considering that different sample 

sources and experimental conditions may lead to different distribution of 

the QC metrics, we adaptively determined the filtering thresholds by de-

tecting outliers from the distribution of metrics, instead of routine fixed 

cutoffs (Supplementary Section S2). 

For QC of genes, we found mitochondrial genes, ribosomal genes, and 

some other gene (such as MALAT1, FTH1, B2M) expressed high propor-

tion in both cells and background in nearly all samples. These genes may 

significantly contribute to ambient RNAs. Here, we proposed to remove 

them before normalization (Supplementary Section S3). 

2.3   Basic downstream analyses 

After filtering, we performed downstream analyses based on the R pack-

age Seurat and redesigned the generated graphics. These analyses mainly 

include normalization, log-transformation, highly variable genes identifi-

cation, removing unwanted variance, scaling, centering, dimension reduc-

tion, clustering, and differential expression analysis (Stuart et al., 2019) 

(Supplementary Section S4). 

2.4   Microenvironment cell type classification 

Cancer microenvironment plays an important role in the tumor progres-

sion. Here, we developed a data-driven method to annotate major micro-

environment cell types, including endothelial cells, fibroblast, and im-

mune cells (CD4+ T cells, CD8+ T cells, B cells, nature killer cells, and 

myeloid cells). We curated a high-quality dataset by combining multiple 

cancer scRNA-seq data and trained one-class logistic regression (OCLR) 

machine learning models for different cell types (Sokolov et al., 2016). 

Based on the trained cell type templates, spearman correlations were used 

to classify different cell types (Supplementary Section S5). 

2.5   Cell malignancy estimation 

Estimating cell malignancy and distinguishing malignant and non-malig-

nant cells is also a critical issue. Generally, copy number alterations (CNV) 

inferred from scRNA-seq data are potential to identify malignant tumor 

cells. Here, we first used the algorithm of R package infercnv (Patel et al., 

2014) to get an initial estimation of CNVs. Then, we took advantage of 

cells’ neighborhoods information to smooth CNV values and defined the 

malignancy score as the mean of the squares of them. By comparing the 

distribution of malignancy scores with reference and its bimodality, the 

malignant cells were identified (Supplementary Section S6). 

2.6   Intra-tumor cell phenotype heterogeneity analyses 

scCancer focused on two cellular phenotypes, cell cycle and stemness, to 

analyze intra-tumor heterogeneity. For cell cycle, the relative average ex-

pression of a list of G2/M and S phase markers was defined as cell cycle 

score (Stuart et al., 2019). For cell stemness, a stemness signature was 

identified based on a stem/progenitor cells dataset using OCLR model. 

The stemness score was defined as the Spearman correlation coefficient 

between the signature and cells’ expression (Malta et al., 2018) (Supple-

mentary Section S8, S9). 

2.7   Intra-tumor cell signature heterogeneity analyses 

Gene signature analysis is commonly used to analyze tumor heterogenei-

ties. scCancer used gene set variation analysis (GSVA) (Hänzelmann et al, 

2013) for known gene set based signature analysis. An alternative method 

based on the relative average expression level across gene set was also 

provided. By default, scCancer used 50 hallmark gene sets from MSigDB 

and users can also input their own sets (Supplementary Section S10). 

Besides, scCancer can also unsupervised identify potential expression 

program signatures. It applied non-negative matrix factorization (NMF) to 

the centralized and non-negative changed expression matrix. According to 

the decomposed matrixes, it can find potential expression programs and 

the cell sub-populations (Supplementary Section S11). 

3 Discussion 

Our R package scCancer allowed users to automatically analyze droplet-

based cancer scRNA-seq data. It integrated basic single cell processes and 

cancer-specific analyses. In the future, we will provide more optional 

methods for each step and try to integrate more cancer-related functions. 
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