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Abstract  16 

Diagnostic tests for foot-and-mouth disease (FMD) include the detection of antibodies 17 

against either the viral non-structural proteins or the capsid. The detection of antibodies against 18 

the structural proteins (SP) of the capsid can be used to monitor seroconversion in both infected 19 

and vaccinated animals. However, SP tests need to be tailored to the individual FMD virus 20 

serotype and their sensitivity performances may be affected by antigenic variability within each 21 

serotype and mismatching between tests reagents. As a consequence, FMD Reference 22 

Laboratories need to maintain contingency to employ multiple type-specific assays for large-23 

scale serological surveillance and post-vaccination monitoring in the event of FMD outbreaks. 24 

In this study, a highly conserved region in the N terminus of FMDV capsid protein VP2 (VP2N) 25 

was characterised using a panel of intertypic-reactive monoclonal antibodies. This revealed a 26 

universal epitope in VP2N which could be used as a peptide antigen to detect FMDV-specific 27 

antibodies against all types of the virus. A VP2-peptide ELISA (VP2-ELISA) was optimised 28 

using experimental and reference antisera from immunized, convalescent and negative animals 29 

(n=172). The VP2-ELISA is universal, simple and provided sensitive (98.6 %) and specific 30 

(93%) detection of antibodies to all FMDV strains used in this study. We anticipate that this 31 

SP test could have utility for sero-surveillance during virus incursions in FMD-free countries 32 

and as an additional screening tool to assess FMD virus circulation in endemic countries.  33 

 34 
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Introduction 37 

Foot-and-mouth disease (FMD) is an economically devastating viral disease of cloven-38 

hoofed animals with a global distribution. It limits access to markets for developing countries 39 

and outbreaks in otherwise FMD-free countries are expensive to control (as in the UK in 2001, 40 

Japan in 2010 and the Republic of Korea in 2010 and 2011) [1, 2]. FMD virus (FMDV) is a 41 

single-stranded, positive-sense, RNA virus belonging to the genus Aphthovirus in the family 42 

Picornaviridae. The virus exists as seven serotypes (O, A, C, Asia 1, South African Territories 43 

(SAT)1, SAT2 and SAT3) as well as numerous and constantly evolving strains showing a 44 

spectrum of antigenic diversity.  45 

The non-enveloped picornavirus capsid has icosahedral symmetry, a diameter of 46 

approximately 30 nm and is composed of 60 copies of each of the capsid proteins VP1, VP2, 47 

VP3 and VP4. VP1, VP2 and VP3 are the major components of the capsid, while VP4 is a 48 

small (approximately (12 kDa) internal protein which lies on the inside surface of the capsid 49 

around the five-fold axes of symmetry, where it is thought to stabilise interactions between 50 

pentameric capsid subunits [3, 4]. During the replication cycle of FMDV, eight different viral 51 

non-structural proteins (NSPs; and additional precursors) are generated which are potential 52 

serological targets for diagnostic assays [5]. The presence of antibodies against NSPs can be 53 

used to differentiate infected and vaccinated animals (DIVA) because such antibodies are only 54 

produced by infection and are not elicited after administration with purified vaccines. In 55 

addition, the inter-serotypic conservation of the NSPs means this type of test is compatible with 56 

all serotypes of FMDV. Hence, NSP tests can be used as generic screening tools to support 57 

national programs to attain the OIE status of FMD-freedom with or without vaccination [6, 7, 58 

8]. However, the specificity of these tests is less than 100% [9] and testing algorithms that are 59 

designed to confirm absence of FMDV circulation in large populations usually adopt screening 60 

and confirmatory serological assays with covariant rates of false positivity [7, 8, 9]. In this 61 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted October 8, 2019. ; https://doi.org/10.1101/797332doi: bioRxiv preprint 

https://doi.org/10.1101/797332


4 
 

context, ELISAs that measure FMDV-specific antibodies directed at capsid structural proteins 62 

(SP) are widely used to augment NSP tests for sero-surveillance activities [10, 11, 12, 13]. One 63 

of the international standard tests for FMDV antibody detection is the virus neutralisation test 64 

(VNT) [14]. However, the VNT is laborious, rendering large scale serological testing difficult. 65 

In addition, the procedure requires live virus, thus confining the test to high containment 66 

laboratories in non-endemic countries. SP ELISAs with high diagnostic sensitivity are also 67 

available for certification of animals as free from FMD prior to import and export, for 68 

serological confirmation of FMDV infection, for post vaccination monitoring and for the 69 

demonstration of vaccine efficacy [14]. However, SP assays need to be tailored to individual 70 

serotypes and as a consequence FMD Reference Laboratories need to maintain parallel assay 71 

systems to accommodate the possibility of FMD outbreak due to different virus serotypes. 72 

A number of monoclonal antibodies (mAbs) have previously been reported with cross-73 

reactivity against multiple FMDV serotypes [15, 16, 17]. The recognition sites for some of 74 

these mAbs have been mapped to a highly conserved region at the N-terminus of VP2 [15, 16, 75 

17]. In this study, a highly conserved region in the N terminus of FMDV capsid protein VP2 76 

(VP2N) was characterised using a panel of cross-reactive mAbs. This revealed a universal 77 

epitope in VP2N which has been investigated as a peptide antigen to detect FMDV-specific 78 

antibodies in serum samples from animals infected or vaccinated with any of the FMDV 79 

serotypes. 80 

81 
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Material and Methods 82 

Cells lines and Viruses 83 

The IBRS-2 (pig kidney) cell line and the BHK-21 (baby hamster kidney 21) cell line, used 84 

for FMD viruses propagation and immunoassays, were maintained either in Dulbecco’s 85 

modified Eagle’s medium or in Minimum Essential Medium, (DMEM; Thermo-Fisher 86 

Scientific, UK) supplemented with 10% heat-inactivated foetal bovine serum (FBS; Thermo-87 

Fisher Scientific, UK) and 100 U of penicillin-streptomycin (Sigma) per ml. FMDV strains 88 

used are indicated in each relevant paragraph.  89 

Peptides 90 

Peptides representing the N-terminal 15 (VP2N15), 30 (VP2N30) or 45 (VP2N45) amino 91 

acids of FMDV VP2 were synthesised (Peptide Protein Research, UK) without modifications 92 

except for the addition of 6 lysines at the C-terminus of the peptides to increase the solubility. 93 

VP2N45 was used for the development of the peptide ELISA. A control peptide equivalent to 94 

a capsid sequence from the related picornavirus human rhinovirus was used [18]. Eight 95 

peptides (15mer each) overlapping by ten amino acids , covering the first 45 amino acids 96 

from the N-terminus of the FMDV capsid sequence, were used for the fine mapping of the 97 

epitope (Fig.1a). 98 

Serum samples  99 

Sera from infected cattle with FMDV O/UKG 34/2001 [19] was used to optimise the ELISA. 100 

Reference sera from experimentally vaccinated or infected animals were supplied by FAO 101 

World Reference Laboratory for FMD (WRLFMD, The Pirbright Institute). The parameters 102 

of selecting serum samples were as follows: Negative (n=100): samples that been collected 103 

from negative coherent country (during the UK 2007 outbreak). These samples are from non-104 

vaccinated animals and proved to be negative using NSP-ELISA. Positive (n=72): samples 105 
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that are known to be infected or vaccinated with FMDV. Selection of the positive samples 106 

was based up on more than 7days post vaccination or infection to ensure a positive response. 107 

See supplementary table (1) for more details.   108 

Production of mAbs 109 

The following FMD viruses were used as immunogens to produce mAbs in mice and for the 110 

following selection of heterotypic cross-reactive mAbs: serotype A Malaysia 16/97, C1 111 

Brescia 1964, Asia 1 Nepal 29/97, A24 Cruzeiro and O UK 31/2001.  112 

For each immunogen, BALB/c mice were primed subcutaneously with 20μg of purified FMD 113 

virus in Freund’s complete adjuvant and boosted intraperitoneally with the same antigen in 114 

phosphate buffered saline (PBS) once or twice at one-month intervals. Three days after the 115 

last boost, mice were humanely sacrificed and hybridomas were generated by fusion of 116 

splenocytes with NS0 myeloma cells following standardized procedures [20]. Briefly, at least 117 

108 spleen cells were recovered from each mouse and fused with NS0 myeloma cells at a 118 

10:1 ratio using PEG 4000. Fused cells diluted in Dulbecco’s modified Eagle medium, 119 

supplemented with hypoxanthine/aminopterin/thymidine and 20% fetal calf serum, were 120 

distributed over five microplates (200μl per well). Growing colonies were observed in all 121 

wells; in order to select hybridomas secreting monoclonal antibodies specific for the 122 

immunogen, the supernatants were screened by trapping ELISAs against the homologous 123 

virus strains. Selection of the inter-types cross reactive mAbs was based on results of the 124 

trapping ELISA against the homologous and heterologous virus serotypes, as previously 125 

described [21]. The selected hybridoma cells were cloned by limiting dilution in order to 126 

obtain antibodies from one single cell. The supernatant from exhausted cultures was then 127 

used as source of mAb. 128 

 129 
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Immunofluorescence confocal microscopy 130 

IBRS-2 cells on 13-mm glass coverslips (VWR) were infected with FMDV type O1 131 

Kaufbeuren (MOI = 2) for 3.75 hours and then washed with PBS and fixed with 4% 132 

paraformaldehyde for 40 min at room temperature (RT). The cells were then permeabilized 133 

for 20 min with 0.1% Triton X-100 prepared in blocking buffer (Tris-buffered saline 134 

supplemented with 1 mM CaCl2, 0.5 mM MgCl2, 10% normal goat serum, and 1% fish skin 135 

gelatin). The cells were then incubated with primary antibody (mouse mAb 4A3) diluted 136 

1/1000 in blocking buffer for 1h at RT. Subsequently, the cells were washed and incubated 137 

with Alexa-Fluor-conjugated secondary antibody (goat anti-mouse IgG Alexa-568; Thermo 138 

Fisher Scientific, UK) in blocking buffer for 45 min at RT. After washing, the cells were 139 

mounted using Vectashield mounting medium with DAPI (4,6-diamidino-2-phenylindole) 140 

(Vector Labs) and the coverslips sealed with nail varnish. All data were collected sequentially 141 

using a Leica SP8 confocal laser scanning microscope.  142 

 143 

SDS-PAGE and western blot 144 

Initial tests to verify the reactivity in western blot of each mAb with the homologous partially 145 

purified strain were performed as previously described [21]. Later on, the cross-reactivity of 146 

one representative mAb (4A3) with all FMDV serotypes was confirmed as follows. 147 

Virus lysates from IBRS-2 cells infected cells with different FMDV serotypes were denatured 148 

and reduced by heating at 95°C for 5min in Red Loading Buffer and DTT (NEB). The samples 149 

were resolved through 12% Tris-glycine gels and transferred to nitrocellulose membrane 150 

(0.45μM, GE Healthcare) using a Mini-Protean tetra cell (BioRad). Membranes were placed in 151 

blocking buffer (20mM Tris, 150mM NaCl pH7.6 with 0.1% v/v tween-20 (TBS-T) with 1% 152 

bovine serum albumin (BSA) w/v (Melford)) for 1h at RT followed by incubation with 153 

hybridomas supernatants (mAbs) and anti-mouse HRP-conjugated secondary antibody (Dako) 154 
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(1/5000 in blocking buffer) in sequence for 1h at RT. Each incubation was separated by cycles 155 

of three washings with TBS-T. West Pico chemiluminescent substrate (Thermo Fisher 156 

Scientific, UK) was added to the membrane and exposures of the membrane were collected 157 

and visualised using a G: Box Chemi XX6 (Syngene). 158 

Serological standard tests: virus neutralisation test (VNT), liquid-phase blocking 159 

ELISA (LPBE), solid-phase competition ELISA (SPCE) and commercial kits 160 

(PrioCHECKTM FMDV Type O, Type A and Type Asia 1 Antibody ELISA kits) 161 

VNT was carried out in microplates against 100 TCID50 of the homologous or heterologous 162 

viruses and results were reported as the final dilution required to neutralize 50 % of the 163 

inoculated cultures [14]. The LPBE and the SPCE were carried out as described by Hamblin 164 

et al., (1986) [12] and by Paiba et al., (2014) [13] respectively. The cut offs used in the VNT 165 

(log titre 1.65), LPBE (log titre 1.95) and SPCE (40% of inhibition) were according to the 166 

standard operating procedures for the WRLFMD (The Pirbright Institute, UK). PrioCHECK 167 

ELISAs for FMDV type O, A and Asia 1 antibody were carried out according to the kits 168 

instructions, with 50% of inhibition as cut-offs.  169 

The frequency distribution of values generated by various serological assays for the negative 170 

and the positive (vaccinated and infected animals) serum samples were plotted using 171 

GraphPad Prism (V7). Statistical analysis was performed using GraphPad Prism V7 for 172 

Windows (GraphPad Software, La Jolla California USA, www.graphpad.com). 173 

Indirect ELISAs and the development of the VP2 ELISA 174 

Plastic 96-well plates (Maxisorp –Nunc) were coated with 100μl per well of the peptides in 175 

0.05M standard carbonate/bicarbonate coating buffer (pH 9.6) at 4°C overnight. Different 176 

peptides concentrations, ranging from 125ng/ml up to 4µg/ml, were initially evaluated for 177 

test optimization. Wells were washed three times with phosphate buffered saline (PBS) 178 
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containing 0.1% Tween 20 (PBS-T) between all incubations. Wells were blocked with 200μl 179 

blocking buffer (1% w/v BSA in PBS-T) at 37°C for 1h, and incubated either with 100μl of 180 

mAb (hybridoma supernatants, 1/5) or bovine sera (diluted 1:50 to 1 in 400 in blocking 181 

buffer) at 37°C for 1h. Antibody binding was detected by incubation at 37°C for 1h with 182 

100μl of species specific HRP conjugated secondary antibodies (Dako), diluted in blocking 183 

buffer 1:1,000 in case of anti-mouse Ig conjugate or 1:15,000 for the anti-bovine-Ig conjugate 184 

. The chromogen development was mediated by the addition of 50μl of HRP substrate (OPD: 185 

Sigma FAST, Sigma, UK). The reaction was stopped after 20min by addition of 50μl of 186 

1.25M sulphuric acid and the optical density (OD) was measured at 490nm. 187 

Results 188 

Characterisation of an FMDV-VP2 conserved epitope by cross reactive mAbs 189 

Among the multiplicity of mAbs generated from mice independently immunized with four 190 

different FMDV serotypes (A Malaysia 16/97, C1 Brescia 1964, Asia 1 Nepal 29/97, A24 191 

Cruzeiro, or O UK 31/2001), seven mAbs were selected because of their cross-reactivity with 192 

the seven FMDV serotypes. All mAbs were characterised as non-neutralising. Five of these 193 

mAbs strongly recognised the capsid protein VP2 by western blot and showed a weaker 194 

reaction with VP0, while two mAbs reacted with P1 (Table 1). 195 

Previous studies have identified the conserved N-terminus of VP2 as a site for recognition by 196 

cross-reactive mAbs [15, 16, 17]. We therefore tested the reactivity of the seven mAbs 197 

against peptides equivalent to the first 15 (VP2N15), 30 (VP2N30) or 45 (VP2N45) amino 198 

acids of the N-terminus of VP2 from FMDV O1K (Fig.1a). The N-terminus of VP2 is known 199 

to be most highly conserved within the first 15 amino acids. The five mAbs (4D1, 1D6, 4A3, 200 

5B2 and 5F10) identified as VP2-specific by Western blots also reacted strongly with the 201 

VP2 peptides in ELISA (Fig.1b). Among them, two mAbs (4A3 and 5B2) showed an 202 
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equivalent reactivity with the three peptides, while the three remaining mAbs recognized the 203 

VP2N15 peptide with lower intensity (Fig.1b). The mAb 4A3 was taken forward for further 204 

characterisation. In particular, fine mapping using 15mer peptides with 10 amino acids 205 

overlaps (Fig.1a) showed that mAb 4A3 reacted with the 15mer peptide that corresponded to 206 

the N-terminus of VP2 and not with a 15mer starting at amino acid 6, confirming the 207 

presence of an epitope at the N-terminus of VP2 (Fig.1c). The mAb 4A3 specifically detected 208 

a protein band in western blot of the expected size for VP2 in cell lysates from infections 209 

with all 7 serotypes (Fig.1d) confirming that the epitope is linear, conserved and specific for 210 

VP2. MAb 4A3 also recognised virus infected cells when used as the primary antibody in 211 

indirect immunofluorescence microscopy of IBRS-2 cell cultures infected with type O 212 

FMDV (Fig.1e). 213 

VP2N peptides detect antibodies in sera from animals infected with all serotypes of 214 
FMDV  215 

An indirect ELISA using peptides VP2N15, VP2N30 or VP2N45 was used to assess the 216 

presence of antibodies against the N-terminus of VP2 in a representative serum from an animal 217 

infected with type O FMDV. All three peptides captured antibodies, with the longer peptides 218 

producing a slightly higher signal (Fig.2a). A control peptide equivalent to a capsid sequence 219 

from the related picornavirus human rhinovirus gave a low signal consistent with background.  220 

The longer peptide VP2N45 was then used to test monovalent sera from different animals 221 

vaccinated against the seven serotypes of FMDV; this showed that the same peptide was able 222 

to detect antibodies against all the serotypes (Fig.2b).  223 

Development of a VP2 ELISA for universal detection of FMDV antibodies 224 

A VP2 ELISA using peptide VP2N45 was developed using reference sera. The optimal 225 

concentration of peptide and dilution of sera to be used in the test was first evaluated by 226 
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checkerboard titrations using bovine sera known to be negative or strongly positive or weakly 227 

positive for antibody by existing tests. The best signal to noise ratio (positive: negative) was 228 

obtained using a serum dilution of 1 in 100 and peptide concentration of 2μg/ml (Fig S.1). At 229 

these optimised conditions, the cut off for distinguishing between positive and negative 230 

signals was set as 0.4 OD units, calculated using the average value of three independent tests 231 

using the standard negative reference serum sample used by WRLFMD for routine FMDV 232 

diagnostics. 233 

Using the optimized assay conditions, a collection of previously characterized serum samples 234 

was tested in triplicate and repeated twice independently, representing naïve cattle (n=100) 235 

and cattle vaccinated (n=38) or infected (n=34) with all seven serotypes of FMDV. The 236 

majority of vaccinated and infected (positive) samples gave a relatively strong signal 237 

(average absorbance value of 1.4) and the majority of naïve (negative) samples gave a 238 

relatively low signal below 0.4 (Fig.3a).  239 

Seven negative sample exceeded the cut off of 0.4 OD units (ranging between 0.4 and 1.0 240 

OD) and would be considered false positive, therefore producing a diagnostic specificity for 241 

the test of 93%. The signal for one positive sample (type A vaccinated) was below this cut off 242 

and would be considered a false negative in this test giving a sensitivity of 98.6%.  243 

Comparison of the VP2 ELISA with existing tests (VNT, LPBE, SPCE and 244 

PrioCHECK) 245 

For the positive serum samples analyzed by VP2 ELISA in Fig.3a, pre-existing WRLFMD 246 

data generated using established diagnostic tests was accessed retrospectively and used to 247 

compare the performance of the VP2 ELISA. The pre-existing data was generated with four 248 

tests: VNT to quantitate neutralising antibodies, LPBE, SPCE and PrioCHECK to quantitate 249 
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anti-capsid antibodies. The sensitivity of the VNT, LPBE and SPCE are dependent on close 250 

antigenic match between reagents used (virus/antigen and antibodies) and the serum sample 251 

being tested. Therefore, the data from VNT and LPBE were subdivided into groups carried 252 

out with homologous (same virus used to vaccinate or infect the animal) or heterologous 253 

(same serotype but strain different than those used to vaccinate or infect the animal) reagents. 254 

The data obtained with PrioCHECK kits was only available for samples from infections with 255 

serotypes O, A and Asia 1.   256 

As mentioned above, the VP2 ELISA data (Fig.3a) contained a single false negative 257 

equivalent to a sensitivity of 98.6%. In comparison, the homologous VNT data (n=37) had no 258 

false negatives (sensitivity of 100%) while the heterologous VNT data (n=72) had a 259 

sensitivity of 73.2% (Fig.3b and Table 2). Similarly, the homologous LPBE data (n=30) had 260 

no false negatives (sensitivity of 100%) and the heterologous LPBE data (n=72) had several 261 

false negatives (sensitivity of 93.0%) (Fig.3c and Table 2). The SPCE data (n=72) had a 262 

single false negative (sensitivity of 98.6%) (Fig. 3d and Table 2) and the PrioCHECK data 263 

(n=29) had two false negatives (sensitivity of 93.1%) (Fig. 3d and Table 2). 264 

The single false negative sample (A Eritrea 3/98- 41dpv) in the VP2 ELISA was also a false 265 

negative in both the heterologous VNT (log titer =1.04) and heterologous LPBE (log 266 

titre=1.6), but was positive in homologous VNT (log titer of 2.06) and weakly positive in the 267 

SPCE (52 % inhibition) and PrioCHECK (65 % inhibition).  268 

Overall these results show that the VP2 ELISA detected antibody to all serotypes and the OD 269 

values may provide an estimate of the level of antibodies. The sensitivity of the new test 270 

resulted equivalent to or better than PrioCHECK kits and SPCE; sensitivity was significantly 271 

higher than LPBE and VNT when such assays are carried out with heterologous reagents.   272 
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Discussion 273 

This study describes the development of a novel assay for the detection of antibodies against 274 

the FMDV capsid that can be used to test for seroconversion in infected or vaccinated animals. 275 

The benefits of this assay are that FMDV-specific SP antibodies from all seven serotypes can 276 

be detected without the requirement for individual specific antigen or antibody reagents that 277 

are required for existing tests such as VNT, LPBE, SPCE.  278 

 279 

This assay targets a capsid epitope at the N-terminus of VP2 that exhibits high sequence 280 

conservation among all seven serotypes of FMDV. Cross-reactive mAbs and overlapping 281 

peptides were used to show that the minimum sequence required for this linear epitope was 282 

VP2-N 1-DKKTE-5. This is consistent with previous studies, where structures of the FMDV 283 

capsid suggested that the N-terminus of VP2 is an internal component but may be flexible 284 

allowing it to be present at the surface to contribute to antigenicity [22, 23, 24]. In addition, the 285 

production of monoclonal antibodies to VP2 N-terminus in response to immunisation with 286 

FMDV, suggested that capsid flexibility may expose some of the internal domains of the capsid 287 

proteins to the surface enabling them to become antigenic sites [15,16, 17]. It has also been 288 

reported that a purified recombinant 1AB (VP4/VP2) capsid protein was detected by antisera 289 

against all seven FMDV serotypes, indicating that the VP4/VP2 protein contained a highly 290 

conserved epitope. Peptides containing the VP2 N-terminal epitope were reactive with 291 

antibodies against all seven FMDV serotypes and one (VP2N45) was selected as the basis of a 292 

novel VP2 ELISA that was evaluated with a panel of reference sera from naïve (n=100), 293 

vaccinated (n=38) and infected (n=34) cattle, representative of all the seven FMDV serotypes. 294 

Results demonstrated that the VP2 ELISA detected antibody to all serotypes with a diagnostic 295 

specificity of 93% and sensitivity of 98.6%. The sensitivity of the new ELISA was equivalent 296 
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to or better than existing tests, such as PrioCHECK kits and SPCE; sensitivity was significantly 297 

higher than LPBE and VNT carried out with heterologous reagents. 298 

The VP2 ELISA is suitable for detection of antibodies against the capsid of FMDV either post 299 

vaccination or post infection. The capture antigen contains a universally conserved viral 300 

epitope that is expected to be present on any isolate of FMDV, this ensures that the VP2-ELISA 301 

is able to detect FMDV antibodies regardless of the viral strain. In contrast to the biological 302 

reagents necessary in many other ELISA, the VP2 capture antigen is a synthetic peptide, greatly 303 

facilitating standardisation, continuity of supply and reproducibility. More importantly, it does 304 

not require the optimisation and re-validation when serum from antigenic distant strains needs 305 

to be tested. 306 

Serological testing is a suitable tool for FMD surveillance. Detection of NSP antibodies 307 

currently offers the advantages of a DIVA and cross-serotype test. However, the VP2 ELISA 308 

can be used as a complementary or confirmatory test to the NSP ELISA, which is especially 309 

useful in obtaining FMDV free status after an outbreak. As for the NSP ELISA, the VP2 ELISA 310 

can also be used as (1) a front-line sero-surveillance assay in areas which are normally free 311 

from FMD without vaccination, (2) for areas conducting surveillance to achieve free from 312 

vaccination status, and (3) at the point of import and export to confirm the freedom of animals 313 

from FMDV antibodies. The test may also provide a simple approach for evaluating vaccine 314 

efficacy in experimental and field trails, although additional studies would need to be carried 315 

out to determine the cut-off that correlates to protection.  316 

In conclusion, the results suggest that the VP2 ELISA developed for the detection of antibodies 317 

to FMDV has potential applications as a rapid, simple and inexpensive test in the sero-diagnosis 318 

of FMDV and in sero-surveillance programmes. Further validation and standardisation will be 319 

required to confirm the potential benefits of the VP2 ELISA. 320 
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Fig.1 FMDV cross-reactive mAbs recognise the N terminus of VP2 
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Fig.1 (continue) 
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Fig. 2. Sera from animals infected with any serotype of FMDV react with VP2 

peptides 
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Fig.3. Testing reference negative and positive serum samples 

to define the diagnostic specificity and sensitivity of the VP2 ELISA 
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Fig.S1. Optimisation of the peptide ELISA using different concentrations of 

peptides and dilutions of the serum 
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