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ABSTRACT 

Objective: Traumatic life-events can leave individuals with contrasting posttraumatic stress 

disorder (PTSD) symptoms, including re-experiencing and avoidance. Notably, patients with 

PTSD are known to periodically switch between two opposing attentional biases; namely, toward 

threat and away from threat. We hypothesized that reciprocal inhibition between the amygdala 

and ventromedial prefrontal cortex (vmPFC) may induce alternations between these attentional 

biases, which in turn may contribute to the re-experiencing and avoidance symptoms, 

respectively. 

Methods: To test this reciprocal inhibition model, we performed an experiment to measure the 

attentional biases of patients with PTSD. We examined the differential relationships between 

PTSD symptom clusters (re-experiencing/avoidance) and attentional biases (toward/away from 

threat). Additionally, we performed a meta-regression analysis to examine the role of amygdala 

reactivity in the imbalance between re-experiencing and avoidance symptoms. 

Results: We found that attentional bias toward threat was selectively associated with re-

experiencing symptoms whereas attentional bias away from threat was selectively associated 

with avoidance symptoms. Meta-regression analysis based on twelve participant populations 

(total N = 316) revealed that left amygdala activity was positively correlated with the severity of 

re-experiencing symptoms relative to avoidance symptoms.  
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Conclusions: Our findings support the hypothesis that reciprocal inhibition of common neural 

circuits may underlie the switch between attentional biases toward and away from threat as well 

as that between re-experiencing and avoidance symptoms. Re-experiencing and 

avoidance/emotional numbing are the core symptoms used to distinguish between the non-

dissociative and dissociative PTSD subtypes. The reciprocal inhibition mechanism may help 

elucidate the mechanisms underlying those PTSD subtypes.  
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INTRODUCTION 

Posttraumatic stress disorder (PTSD) is a debilitating disorder that develops after 

experiencing life-threatening traumatic events. It is a paradoxical disorder because individuals 

with PTSD can display seemingly opposing symptoms. Specifically, they may display re-

experiencing symptoms where they automatically engage with traumatic cues but may also 

display avoidance/dissociative symptoms where they actively stay away from such cues (1, 2).  

Patients with strong dissociative symptoms are categorized as having the dissociative 

PTSD subtype, which was added to the fifth edition of the Diagnostic and Statistical Manual of 

Mental Disorders (DSM-V) (1). These participants exhibit multiple characteristics, including 

lower treatment response and a higher suicidal risk (3), which are distinct from those exhibited 

by typical patients with PTSD (the “non-dissociative subtype”). The dissociative subtype is 

characterized by hypoarousal (avoidance/dissociation) symptoms and was postulated to be driven 

by over-inhibition of the amygdala by the ventromedial prefrontal cortex (vmPFC) (1, 2). 

Conversely, the non-dissociative subtype is characterized by hyperarousal (re-

experiencing/hypervigilance) symptoms and was postulated to be driven by under-inhibition of 

the amygdala by the vmPFC (1, 2). 

It remains unclear whether patients remain stable or spontaneously fluctuate between 

either the non-dissociative or dissociative state. The current theoretical and clinical consensus is 

that PTSD is a dynamic disorder that involves fluctuations between the non-dissociative and 

dissociative states (1, 4–6). In line with this, previous studies reported fluctuating behavioral, 

physiological, and neuroimaging responses within individual patients with PTSD (4–7), which 

possibly reflects variability of their inner dissociative state levels. However, it is unclear whether 

the observed fluctuations in responses specifically reflect switches between the non-dissociable 
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and dissociable states or if they just reflect random jitters in responses within one stable state. 

Dissociating these two possibilities would benefit from a comprehensive framework 

encompassing both within- and between-patient fluctuations in their states. 

One effective way to assess within- and between-patient alternations in non-dissociative 

and dissociative states may be to examine the fluctuations in attentional bias within individual 

patients (i.e., toward or away from threat) (7, 8). Attentional bias toward threat allows one to 

detect imminent threats rapidly and to adaptively avoid them (9). While  bias toward threat is 

found to be overemphasized in most anxiety disorders, including PTSD (10, 11), some patients 

with PTSD have been reported to instead display attentional bias away from threat (12). The 

heterogeneity of these results suggest that attentional biases are unstable and fluctuate over time 

in patients with PTSD. This attentional fluctuation is usually viewed as a reflection of 

“instability” in threat monitoring in patients with PTSD (7, 8). In traditional analyses of 

attentional bias, an overall bias toward threat is associated with non-dissociative characteristics 

(11) while an overall bias away from threat is associated with dissociative characteristics (13, 

14). Although researchers have not determined the mechanism involved in this “instability” of 

attentional bias, one possibility is that such “instability” may emerge from the same mechanism 

as that causing within-patient alternation between the non-dissociative and dissociative states. 

We tested if a single neural network model could comprehensively explain the fluctuations in 

both attentional bias and dissociative states. 

Fluctuations between the non-dissociative and dissociative states in PTSD may be 

explained by neural circuits that can produce rhythmic fluctuations between two states rather 

than by those that only possess stable equilibrium points. Generally, reciprocally inhibiting 

circuits produce such rhythmic fluctuations (15–17). Here, we propose a conceptual neural 
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network model to explain the two opposing PTSD states and attentional biases. To test the 

predictions of this model, we conducted a behavioral experiment to measure attentional bias 

among patients with PTSD. To further test the neural-level assumptions underlying the model, 

we performed a meta-regression analysis of findings from previous neuroimaging studies on the 

association between amygdala reactivity and non-dissociative/dissociative symptom clusters 

using data from 12 populations (total N = 316).  

 

Reciprocal inhibition model: proposal for attention oscillations and alternations of 

dissociative/non-dissociative states 

In reciprocal inhibition, two distinct neural circuits alternatively dominate each other via 

mechanisms such as post-inhibitory rebound and spike frequency adaptation (17, 18). For 

example, neurons in one circuit that are initially inhibited may escape from the inhibitory 

modulation when their intrinsic membrane properties allow them to cross the spike threshold, 

which then inhibits neurons in the initially inhibiting circuit. Thus, two competing neural circuits 

take turns to induce two alternative states. 

We hypothesized that reciprocal inhibition between the amygdala and vmPFC may 

contribute to alternations between the non-dissociative and dissociative states in PTSD (Figure 

1A). When the amygdala is activated, the vmPFC is suppressed, causing attention to be biased 

toward threat. This subsequently induces re-experiencing symptoms (Figure 1A left). 

Conversely, when the vmPFC is activated, the amygdala is suppressed, causing attention to be 

biased away from threat. This subsequently induces avoidance/dissociative symptoms (Figure 

1A right). 

In a neural circuit model with only a stable equilibrium point, re-experiencing and 
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avoidance symptoms could have stable associations with attentional bias and neural reactivity 

over time. In contrast, our model predicts that these two distinct symptom clusters are distinctly 

associated with these measures, depending on the predominant state. The activity of the 

amygdala averaged over a time-window is predicted to be composed of the average of high and 

low activities from the amount of time spent in the non-dissociative and dissociative states, 

respectively. Amygdala activity should be positively correlated with re-experiencing symptoms 

during the non-dissociative state and negatively correlated with avoidance symptoms during the 

dissociative state. Therefore, overall amygdala activity is predicted to be positively correlated 

with subtraction of avoidance scores from re-experiencing scores. 

The proposed model is circumstantially supported by the following empirical data. The 

amygdala and vmPFC appear to be generally reciprocally inhibitorily connected. A previous 

resting-state functional connectivity analysis of healthy individuals demonstrated that 

spontaneous fluctuations in the blood oxygen level-dependent (BOLD) signals of an amygdala 

subdivision were negatively correlated with those in the vmPFC (19). Moreover, during fear-

processing, the BOLD signal of the amygdala is negatively correlated with that of the vmPFC in 

healthy adults (20–26). In patients with PTSD, abnormality of the amygdala-vmPFC network is 

widely observed (27–35). The amygdala-vmPFC network is characterized by a pattern of 

predominant bottom-up and top-down connectivity in the non-dissociative and dissociative 

subtypes, respectively (36). Additionally, amygdala activity is positively correlated with 

attentional bias toward threat (37–39) and re-experiencing symptoms (11, 40, 41) while vmPFC 

activity is positively correlated with attentional bias away from threat (14, 42) and 

avoidance/dissociative symptoms (36, 43, 44). Findings from rodent studies indicate precise 

microcircuits that could at least in part underlie the reciprocal inhibition proposed by our model. 
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In these studies, reciprocal inhibition is shown to occur between the amygdala “fear-on” neurons 

and vmPFC “fear-off” neurons via GABAergic inhibitory interneurons (Figure 1B) (25, 45–51).   

Here, in our meta-analysis we were able to analyze reactivity in the amygdala but not in 

the vmPFC. This is because most previous studies did not focus on the vmPFC but focused 

instead on related, overlapping, or sub-regions of the vmPFC (52–54). Therefore, there was an 

insufficient number of previous studies with coherent definitions of the vmPFC for meta-

analysis. 

Unlike other dissociative symptoms, such as depersonalization or derealization, 

avoidance symptoms are a necessary requirement to meet the full PTSD criteria; therefore, they 

are found in all patients with PTSD (1). This allowed us to use scores from the avoidance 

symptom cluster of the DSM-IV scores to index the severity of dissociative symptoms in each of 

our patients. The dissociative PTSD subtype was first officially defined in the DSM-V as being 

characterized by depersonalization and derealization symptoms. Emotional numbing symptoms, 

which are the main type measured in the DSM-IV avoidance symptom cluster and are also 

thought to represent a dissociative state, were not included in this official definition. As further 

elaborated in the Discussion section, this suggests that the dissociative/non-dissociative PTSD 

subtypes are related but do not directly correspond to dissociative/non-dissociative states. 

 

METHODS 

Behavioral analysis 

Participants 

 We enrolled 20 patients with PTSD (2 males, 18 females; mean age = 41.2 years; range = 

22-53 years) from the Flower of Light Clinic for Mind and Body (n = 15) and the Chiyoda-

Shinryou clinic (n = 2), which are both located in Tokyo, and the Shinchi-clinic (n = 3) located 
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in Osaka. All the participants were diagnosed with DSM-IV PTSD resulting from domestic 

violence (n = 5), childhood abuse (n = 2), an unpleasant sexual experience (n = 2), or a 

combination of these (n = 11) according to the Clinician-Administered PTSD Scale (CAPS: 

mean score = 80.6, SD = 20.2, range = 51-119, see Supplementary Table 1 for details). These 

participants reported strong fear when viewing pictures of angry male faces; were not taking 

psychotropic medication; had not suffered traumatic brain injury or loss of consciousness; and 

did not have any lifetime history of psychosis, alcohol abuse, or substance abuse. This study was 

approved by the Ethics Committees of the Central hospital of National Defense Force and 

Advanced Telecommunications Research Institute International (ATR). All the participants 

provided written informed consent. 

 

Experimental tasks and procedures 

The breaking continuous flash suppression (b-CFS) task was adapted from the study by 

Yang, Zald, and Blake (55). CFS renders a target stimulus invisible by presenting it to one eye 

while presenting a mosaic pattern to the other eye (56). The b-CFS task assesses the detection time 

of stimuli masked by binocular suppression (Figure 2A). Grayscale pictures of six male faces were 

obtained from the ATR Facial Expression Image database (DB99) and used as target stimuli. These 

pictures depicted angry or neutral expressions and were cropped in a circular shape to include the 

brows, eyes, nose, and mouth. All pictures were equated for contrast and luminance. Visual stimuli 

were presented using MATLAB (MathWorks, Inc.) with the Psychophysics Toolbox extensions 

(57, 58). Stimuli were presented dichoptically through an Oculus Rift head-mounted display. To 

facilitate binocular fusion, one black “fusion frame” was displayed to each eye. A black fixation 

cross was drawn in the center of each fusion frame and the participants were instructed to remain 
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fixated. Target stimuli were presented covering 1 of 4 quadrants within the fusion frames. Twelve 

pictures (6 males × 2 expressions) were presented once in every quadrant in a randomized order 

resulting in a total of 48 trials. To render stimuli invisible, Mondrian-like masks were flashed at 

10 Hz to the dominant eye while target stimuli were presented to the other eye. 

 Each trial started with a fixation period of 4 s. Subsequently, suppression masks were 

flashed to the dominant eye, and the target stimulus was gradually faded into the non-dominant 

eye by linearly increasing its contrast over 1 s. During the 1-7 s period after trial onset, the contrast 

of the CFS masks was slowly decreased to zero. Stimuli were displayed until the participants 

pressed a key to indicate the quadrant in which the target stimulus (or any part of the target 

stimulus) emerged from suppression (55, 59). The participants were required to respond as quickly 

as possible without compromising accuracy. The participants’ response cleared the screen. 

To familiarize the participants with the procedure, they were presented with 12 practice 

trials (each of the 12 target stimuli was presented once) at the beginning of the experiment. Before 

beginning the experiment, eye dominance was examined using the hole-in-a-card test (60). 

 

Two attentional bias scores 

Reaction times for correct trials were the main outcome measured in this study. Trials with 

incorrect responses and one extreme outlier trial, in which the response time was more than five 

standard deviations above the participants’ mean for that particular condition, were excluded from 

subsequent analysis (<3% of all trials). There was no difference in the percentage error rate 

between stimulus facial expressions (i.e., fearful or neutral) (t = 1.228, df = 19, p = 0.23). During 

each trial, 1 of the 6 different faces (Face1 to Face6; angry or neutral expressions) was presented 

within 1 of 4 quadrants (position1 to position4) on a frame presented to one eye. We refined 
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previously used attentional bias parameters for each participant (61) to generate a more stable 

index that was less influenced by the effects of face identity and the presented position. To this 

end, stimuli were paired in dyads consisting of one neutral face trial and one angry face trial with 

consistent face identity (e.g., Face1) and position (e.g., position1). Next, for each dyad, the 

attentional bias score was defined as the difference between the reaction time to the angry face and 

the reaction time to the neutral face. Since positive attentional bias scores represent attentional bias 

toward threat, we averaged all of the positive attentional bias scores and defined them as attentional 

bias score toward (ABTOWARD). Similarly, since negative attentional bias scores reflect attentional 

bias away from threat, we averaged all the negative attentional bias scores and defined them as 

ABAWAY. The absolute value of the participants’ ABAWAY was used in subsequent analyses to allow 

easy comparisons of the magnitudes of attentional bias scores. 

 

Statistical analysis of attentional bias scores and PTSD symptoms 

A stepwise multiple regression analysis was performed to evaluate the relationships 

between three symptom clusters (re-experience, avoidance, and hypervigilance) and each 

attentional bias score (ABTOWARD and ABAWAY). In this regression, an automatic statistical model 

selection procedure was adopted as an exploratory means of identifying which symptom 

cluster/combination best explains the attentional bias scores. To test if the current data met the 

assumption of multicollinearity, we computed the intercorrelation between the predictor variables 

(re-experience, avoidance, and hypervigilance). In all analyses, p < 0.05 was considered 

statistically significant.  
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Meta-regression analysis of the relationship between amygdala fMRI signals and PTSD 

subcluster scores 

 

Systematic literature search 

We performed a systematic literature search using PubMed between April 1, 2019 and 

April 20, 2019. The following keywords were used in our search: “fMRI” OR “functional 

magnetic resonance imaging” combined with AND “PTSD” OR “posttraumatic stress disorder” 

OR “acute stress disorder”. The present systematic review follows the Preferred Reporting Items 

for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The inclusion criteria are 

presented in the PRISMA flow chart (Supplementary Figure 1). Neuroimaging studies were 

included if they (1) included traumatized individuals as participants; (2) were published in 

English; (3) compared fMRI BOLD signals to (a) threatening stimuli vs. neutral stimuli, (b) 

stimuli that included threatening/unpleasant stimuli vs. stimuli that did not include 

threatening/unpleasant stimuli, or (c) threatening/unpleasant stimuli vs. baseline; and (4) reported 

(a) PTSD subcluster scores and (b) amygdala BOLD signals as z-scores or t-stats. Titles and 

abstracts were screened for eligibility by one assessor (TC; screening phase, n = 323). The full 

texts of all the finally included studies were examined in detail and independently selected by 

two assessors (KI, TC; n = 191). All the reference lists of the reviewed papers were examined to 

identify other eligible studies. 

 

Statistical analysis of amygdala reactivity and PTSD symptoms 

For participants from each study selected for the meta-regression analysis, PTSD 

symptom imbalance was defined as the difference between the patients’ avoidance scores and 
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their re-experiencing scores. Before subtraction, symptom scores were normalized so that the 

highest possible value was one and the lowest possible value was zero. Different studies 

measured their patients’ levels of PTSD using different versions of the DSM. The variables that 

contribute to avoidance scores in the DSM-IV protocol are divided in that some contribute to the 

avoidance scores and others to the emotional numbing scores in the DSM-V. Therefore, in 

studies where the DSM-V was used, the participants’ avoidance and emotional numbing scores 

were summed before being normalized to allow for direct comparisons between these studies and 

those that used the DSM-IV. Pearson correlation values were calculated between symptom 

imbalance and z-scores that represented left and right amygdala activity separately. If the study 

did not provide a z-score, the t-stat was transformed into a z-score using the SPM12 built-in-

function. 

 

RESULTS 

Correlation between attentional bias scores and PTSD symptoms  

We did not find multicollinearity in the data. The coefficients for the correlations between 

re-experiencing and avoidance (r = 0.69), avoidance and hypervigilance (r = 0.53), and re-

experiencing and hypervigilance (r = 0.53) were below the suggested cut-off value of 0.8 (62). The 

percentage of “toward trials” (Figure 2C) was 46.3% (range 39.1-58.3%), which indicates that all 

the patients alternated between toward and away trials and is consistent with a previous study that 

showed alternations between the two attentional states (61). This is also consistent with another 

previous study in which patients with PTSD showed a mixture of hyperarousal and dissociative 

responses within the same experiment, indicating that multiple alternations between the non-

dissociative and dissociative states may occur within a time range of 5-10 minutes (63). A stepwise 
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regression analysis revealed that the re-experiencing symptom cluster was a significant predictor 

of ABTOWARD (overall model: r2 = 0.20, df = 1, 18, p = 0.0499; re-experiencing: beta = 0.44; Figure 

3A left), whereas the avoidance symptom cluster was a significant predictor for ABAWAY (overall 

model: r2 = 0.22, df = 1,18, p = 0.036; avoidance: beta = 0.47; Figure 3A right). The order of 

variables added into this model was automatically determined by the algorithm and was based 

solely on the t-statistics of their estimated coefficients. A higher re-experiencing score predicted a 

greater ABTOWARD (Figure 3B) whereas a higher avoidance score predicted a greater ABAWAY 

(Figure 3C) (see Supplementary Table 1 for details). Interestingly, a similar relationship was 

observed between the PTSD symptom clusters and the variability within each direction of attention 

bias (ABTOWARD and ABAWAY). Specifically, the re-experiencing score was significantly correlated 

with the variability within ABTOWARD (r2 = 0.31, df = 1,18, p = 0.01) whereas the avoidance score 

was significantly correlated with the variability within ABAWAY (r2 = 0.37, df = 1,18, p < 0.01).  

 

Relationship between amygdala fMRI signals and symptom imbalance: results from the 

meta-regression analysis 

The data from 12 participant populations (total N = 316) were extracted from 9 studies 

for the meta-regression analysis. Among these, left amygdala activity was reported in 8 

populations while right amygdala activity was reported in 11 populations. Symptom imbalance 

was significantly correlated with left amygdala activity (r = 0.70, p = 0.028, one-tailed: Figure 

4A) but not with right amygdala activity (r = 0.15, p = 0.66, one-tailed: Figure 4B). 
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DISCUSSION 

Although studies have reported an array of clinically vital differences between patients with 

dissociative and non-dissociative PTSD (1, 36, 64), little is known about whether individual 

patients experience fluctuations between the dissociative and non-dissociative states. In this 

study, we hypothesized that reciprocal inhibition between the amygdala and vmPFC might 

generate rhythmic oscillations between these states within individual patients. Our behavioral 

experiment and meta-regression analysis of previous studies provided supportive data for this 

model at two distinct levels. At the between-individual level, re-experiencing symptoms were 

selectively correlated with a higher attentional bias toward threat (ABTOWARD), while the 

avoidance symptoms were selectively correlated with a higher attentional bias away from threat 

(ABAWAY). This is consistent with the prediction that attentional bias fluctuations synchronize 

with alternations between the dissociative and non-dissociative states, rather than simply 

reflecting random fluctuations in brain states. The meta-regression analysis revealed that the 

imbalance between re-experiencing and avoidance symptoms was correlated with left amygdala 

reactivity to threat. This result is consistent with the hypothesis that symptom fluctuations are 

produced from reciprocal inhibition between the amygdala and vmPFC. Overall, we provided 

empirical data at the between-individual and meta-regression analysis levels that are consistent 

with the reciprocal inhibition model. 

 Our results also suggest that the findings obtained from subtype-wise analyses may be 

relevant at the individual patient level. For example, we can hypothesize that treatment response 

could be predicted by the imbalance between amygdala and vmPFC activity within individual 

patients. This is because patients with the dissociative PTSD subtype usually show a lower 

treatment response (65, 66). Further, exaggerated amygdala reactivity, which is a typical 
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characteristic of the non-dissociative subtype, predicts a poor response to exposure-based therapy 

(67). An individual patient may show a smaller or greater response to an administered treatment 

when the amygdala/vmPFC imbalance is large or small, respectively. This is especially 

important since one reciprocal inhibitory circuit can produce a whole range of different 

oscillation frequencies under the influence of different neuromodulators (17). Reciprocal 

inhibition between the amygdala and vmPFC may not only induce a switch of states within the 

oscillation periods found here but also on the order of weeks. This may explain the different 

periods of symptom fluctuations observed in previous studies (68). Future studies based on the 

reciprocal inhibition model may result in the development of new therapies and a deeper 

understanding of the pathogenesis of PTSD. 

The current study has several limitations. First, we used avoidance symptoms as an index 

of the dissociative level despite this not being included in the official definition of the 

dissociative subtype. We used this measurement because the reciprocal inhibition model 

provides a prediction that the differences between PTSD subtypes are quantitative rather than 

qualitative. Unlike other dissociative symptoms, avoidance symptoms are found, to some extent, 

in all patients with PTSD. The reciprocal inhibition model predicts that oscillations between the 

two states should be observed in all patients with PTSD; however, the frequency and/or 

magnitude of these oscillations should differ between PTSD subtypes. Consistent with this, the 

findings of our behavioral experiment revealed that the relative frequency of the non-dissociative 

state, as indexed by the number of toward trials, was numerically but not statistically greater in 

patients with the non-dissociative compared with those with the dissociative subtype (t = 1.38, df 

= 18, p = 0.18). However, future studies should confirm this because the medium effect size 

(Hedge’s d = 0.60) indicates that a sample size of n = 44 for each group is required to reach 
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statistical significance. Despite it is yet to empirical examination, this might have been a result of 

the average suppression of the amygdala by the vmPFC being relatively stronger in the 

dissociative subtype and vice versa in the non-dissociative subtype.  

Second, there was non-uniformity in the studies included in the meta-regression analysis 

regarding several factors such as the preprocessing methods or experimental conditions. 

However, despite these methodology differences, we still observed a strong correlation between 

symptom imbalance and amygdala activity, which indicates the robustness of our findings.  

Third, we only selected 9 studies for the meta-regression analysis. However, each study 

reported the results for dozens of people (total N = 316).  

Fourth, although neural evidence, such as data from functional magnetic resonance 

imaging (fMRI), may support individual fluctuations and a pivotal role of vmPFC, we did not 

obtain this information in the current study. Therefore, there is a need for future neuroimaging 

studies on patients with PTSD focusing on within-individual dynamics. Although much more 

extensive and intensive examinations of our reciprocal inhibition model are necessary, we 

believe that the proposed model could be useful in providing a new perspective on the 

advancement of the diagnosis and treatment of PTSD. Classifying patients with PTSD with 

different symptoms into different subtypes has allowed more careful analysis of their differential 

responses to psychological trauma, which is eventually expected to lead to a more sophisticated 

understanding of the neurobiology and treatment of PTSD (69). The next step could be 

classification of different PTSD states within individual patients. 

Overall, our reciprocal inhibition model may explain the associations between PTSD 

symptoms, attentional biases, and neural states. Our results are consistent with the concept that 

the neural state of a patient with PTSD may not be stable. Instead, individuals may fluctuate 
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between dissociative and non-dissociative states. The reciprocal inhibition model proposed here 

may be used as a unifying framework to study the dynamics of diverse characteristics of PTSD, 

such as neural activities, attentional biases, and symptomatology.  
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Figure 1. The reciprocal inhibition model, which explains fluctuations between the 

dissociative and non-dissociative states of PTSD 

(A) In the reciprocal inhibition model, reciprocal inhibition between the amygdala and the vmPFC would 

contribute to alternations between the non-dissociative and dissociative states in PTSD. Activation of the 
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amygdala causes attention to be biased towards threat, subsequently causing re-experiencing symptoms to 

manifest (Figure 1 A left). Conversely, activation of the vmPFC causes attention to be biased away from 

threat, subsequently causing avoidance/dissociative symptoms to manifest (Figure 1 A right). (B) The 

microcircuits that might underlie reciprocal inhibition. The amygdala (BLA “fear -on” neurons) and the 

vmPFC (IL “fear-off” neurons) reciprocally inhibit each other via activation of GABAergic inhibitory 

interneurons. 

PL: prelimbic (medial prefrontal) cortex, IL: infralimbic (medial prefrontal) cortex, vHPC: ventral 

hippocampus, BLA: basolateral amygdala, PV: parvalbumin 

Figure 1 (B) is adopted from Zimmermann et. al. with no permission yet asked (45).   
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Figure 2. Examples of CFS trial presentation and the putative generation of attentional 

bias during non-dissociative and dissociative states. 

(A) An example of a breaking continuous flash suppression (b-CFS) trial presentation. During each trial, 

1 of 6 different faces (Face1-Face6; angry or neutral expressions) was presented within 1 of 4 quadrants 

(position1 to position4) on a frame presented to one eye. (B) Each dyad consisted of one neutral face and 

one angry face trial with consistent face identity (e.g. Face1) and position (e.g. position1). (C) For each 

dyad, the attentional bias score was defined as the difference between the reaction time to the angry face 

and that to the neutral face. Positive and negative values represent attentional bias toward and away from 

threat, respectively. We averaged attentional bias scores of all the positive and negative dyads separately 

and defined them as ABTOWARD and ABAWAY. The standard deviations (SDs) of all of the dyads in total 
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(not split by valance) are comparable with attention-bias variability (Var) measures used in previous 

studies. The averages of all the dyads in total are comparable with traditional attentional bias (TAB) 

measures used in previous studies. Since the biases toward and away from threat are indicative of re-

experiencing and avoidance, respectively, we conceptually illustrated the putative generation of 

attentional bias during non-dissociative and dissociative states. That is, ABTOWARD and ABAWAY are 

associated with re-experiencing and avoidance states, respectively. 
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Figure 3. PTSD symptom clusters and attentional bias scores: results of the stepwise 

regression analysis 

(A) ABTOWARD was associated with re-experiencing, and ABAWAY was associated with avoidance.  

For demonstrative purposes, results of single-variable regression are shown here to demonstrate the 

relationships between re-experiencing and ABTOWARD (B) and avoidance and ABAWAY (C). * p < 0.05 
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Figure 4. PTSD symptom imbalance and amygdala BOLD response: Results of the meta-

regression analysis 

Each dot represents the mean value for one participant population from systematically selected studies 

(Supplementary Figure 1, Supplementary Table 2). The x-axis denotes the PTSD symptom imbalance, 

which was defined as the difference between avoidance and re-experiencing scores. Before subtraction, 

symptom scores were normalized so that the highest possible value was one and the lowest possible value 

was zero. The y-axis denotes the fMRI BOLD signal to threat, expressed as z-scores. 

Left, but not right, amygdala BOLD signal was positively correlated with symptom imbalance (left 

amygdala: r = 0.70, p = 0.028, one-tailed, right amygdala: r = 0.15, p = 0.66, one-tailed). 
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