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Abstract 

 

The increasing accumulation of antibiotic resistance genes (ARGs) in pathogens 

poses a severe threat to the treatment of bacterial infections. However, not all ARGs 

do not pose the same threats to human health. Here, we present a framework to rank 

the risk of ARGs based on three factors: "anthropogenic enrichment", "mobility", 

and "host pathogenicity". The framework is informed by all available bacterial 

genomes (55,000), plasmids (16,000), integrons (3,000), and 850 metagenomes 

covering diverse global eco-habitats. The framework prioritizes 3% of all known 

ARGs in Rank I (the most at risk of dissemination amongst pathogens) and 0.3% of 

ARGs in Rank II (high potential emergence of new resistance in pathogens). We 

further validated the framework using a list of 38 ARG families previously 

identified as high risk by the World Health Organization and published literature, 

and found that 36 of them were properly identified as top risk (Rank I) in our 

approach. Furthermore, we identified 43 unreported Rank I ARG families that 

should be prioritized for public health interventions. Within the same gene family, 

homologous genes pose different risks, host range, and ecological distributions, 

indicating the need for high resolution surveillance into their sequence variants. 

Finally, to help strategize the policy interventions, we studied the impact of 

industrialization on high risk ARGs in 1,120 human gut microbiome metagenomes 

of 36 diverse global populations. Our findings suggest that current policies on 

controlling the clinical antimicrobial consumptions could effectively control Rank I, 

while greater antibiotic stewardship in veterinary settings could help control Rank 

II. Overall, our framework offered a straightforward evaluation of the risk posed by 
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ARGs, and prioritized a shortlist of current and emerging threats for global action to 

fight ARGs. 
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Main 

 

Antibiotic resistance genes (ARGs) are widespread pollutants1–5 (Figure S1) 

threatening human health. The World Health Organization (WHO) calls for global 

action to fight them6, but action cannot realistically be taken against thousands of 

known (and unknown) ARGs7–9. The risk of ARGs to human health varies 

considerably according to a number of factors including their genetic context. For 

example, intrinsic colistin resistance ARGs were found decades ago10,11 but their 

low potential for horizontal gene transfer (HGT) limited their spread. In contrast, 

the mcr-1 colistin resistance gene has rapidly spread into eight pathogenic species 

(“host pathogenicity”)12 across 31 countries and into 1-20% animal and human gut 

microbiome samples13–16 (“anthropogenic enrichment”), largely driven by its 

capacity for HGT (“mobility”)17. These characteristics are typical of high risk 

ARGs, but current databases and analyses7–9,18 do not distinguish ARGs based on 

them. Mobilizing policymakers to implement interventions on ARGs will require 

substantial scientific capital, and prioritizing high risk ARGs will allow that capital 

to be effectively invested. 

 

Therefore, there exists a need for a framework to categorize the risk of ARGs to 

human health. Previous attempts19,20 at defining such a framework based on critical 

factors have largely remained theoretical (such as mobility and sub-inhibitory 

antibiotic concentrations), and thus, difficult to implement. In this study, we 

developed an empirical approach that combines three factors (“anthropogenic 

enrichment”; “mobility”, and “host pathogenicity”) to prioritize our efforts and 
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identify emerging threats. 

 

Results 

 

ARGs enriched by anthropogenic activities, and correlated with antibiotics 

contamination should pose a higher risk than ARGs that are not enriched. 

Through investigating ARGs in 854 global metagenomes, we found that ARG 

composition clustered samples into three habitats along the primary axis of 

anthropogenicity (Figure 1a) from undisturbed natural habitats, to wastewater 

treatment plants (WWTPs), to feces. Through a literature review of 30 studies, 

we observed a 100-fold difference (p < 0.01 by kw-test) in the total 

concentration of antibiotics along the anthropogenicity axis (Figure 1b), posing 

a potential selection for the transmission and evolution of ARGs21–25 that 

increases bacterial fitness in human-related environments. These observations 

guided the framework that the anthropogenic impact (i.e., via antibiotics) 

primarily shaped the ARG composition, and should be assessed first to evaluate 

ARG risk. Yet the majority of ARGs26 27 were not impacted by 

anthropogenicity with no significant difference across habitats (p > 0.05 by kw-

test, Figures 1b and S2a). This indicates that the genes we classify as ARGs 

probably have other primary functions in the environment28. Thus, we prioritize 

ARGs that are: enriched in anthropogenic environments (Figures 1b and S2b); 

are more likely to deal with clinically relevant antibiotics; and could be 

controlled by public health interventions that limit antibiotic usage. 
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Our risk framework reflected the evolution and emergence of ARGs into 

human pathogens driven by antibiotics selection (Figure 2a). After assessing 

the anthropogenic enrichment, we prioritized mobile ARGs that are usually 

specialized resistance loci responding to antibiotics21,29 and are more capable of 

transferring between lineages30–34. We further prioritized ARGs carried by 

human pathogens, since this indicates a potential ineffective treatment of 

diseases by antibiotics. Based on these properties, we designed a risk 

framework that sequentially assessed three criteria (Figure 2b): Namely: being 

100-fold more abundant in human dominated ecosystems than other 

ecosystems; being carried via mobile genetic elements (MGEs); and being 

resident in pathogens (see supplementary information and Figure S3 for 

analyses). We ranked all 4,050 ARGs in the Structured ARG Database8 (Table 

S2) and obtained relevant data by searching the ARGs in all available bacterial 

genomes and plasmids from NCBI, MGEs databases35,36, and 854 global 

metagenomes by the ARGs Online Searching Platform37. We found that 75% 

ARGs were not significantly responsive to anthropogenic impact (Rank IV) 

and were generally non-mobile (83%) and 5-10 fold more abundant in nature 

(Figure S4). Of all the anthropogenically enriched ARGs, 80% were non-

mobile as Rank III ARGs. Rank III largely represented the intrinsic resistance 

evolved in pathogens as 80% of Rank III ARGs were hosted only by pathogens 

(50% by ESKAPE pathogens). We found that most mobile ARGs (132 of 145) 

were already carried by human pathogens as top risk Rank I ARGs. We 

consider Rank I as an immediate and current threat because they have several 

dangerous characteristics, such as notable host pathogenicity (93% in ESKAPE 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2019. ; https://doi.org/10.1101/784322doi: bioRxiv preprint 

https://doi.org/10.1101/784322
http://creativecommons.org/licenses/by-nd/4.0/


 

 

pathogens); wide host range (98% across several genera); and highly prevalent 

in impacted environments (14%) (Table S2). We also found 13 mobile ARGs 

that have not yet been carried by any pathogen (Rank II), which could pose a 

future threat through a potential contact and transfer into a pathogen. 

 

The ranking framework accurately identified 95% of all well-known high risk 

ARG families as Rank I ARGs and expanded the list by 43 unreported Rank I 

ARG families. We compared our results against a list of 38 ARG families that 

were reported to have high clinical concern (to cause treatment failure of 

healthcare associated infections and/or have been wide-spread phylogenetically 

and geographically) by the WHO and by literature review (highlighted in 

purple)17,19,20,22,38–47 (Figure 3). For example, we included extended-spectrum 

beta-lactamases (ESBL) ARGs (i.e., TEM, SHV, and CTX-M), that recently 

caused the death of fecal microbiota transplantation (FMT) recipients. Our 

framework properly identified 36 as Rank I and two as Rank IV. Both Rank IV 

ARGs (sul1, vanA) met the requirements of “mobility” and “pathogenicity”, 

but they were 5-20 fold more abundant in nature. More importantly, we 

automatically identified 43 Rank I ARG families that have not been reported as 

high risk in previous studies, but which exhibited the same features as 

frequently reported ARGs. Some of them have shown a strong clinical 

relevance (such as IMP-4, OXA47–49) and should also be prioritized for 

interventions. Rank I ARGs had a wide host range, in that 80% were shared 

across species and 60% across genera (same sequence variant), while 50% of 

Rank II-IV ARGs had a narrow host range within single species. We found 
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homologs of one ARG family tended to pose different risks, different host 

range, and different ecological distributions. Usually only a few Rank I 

homologs covered a broad host range and others Rank I homologs shared a 

narrow subset (i.e., 14-16 genera compared to 1-3 genera for tetM). However, 

Rank II ARGs usually did not share the same host range with Rank I homologs 

(i.e., probiotic bacteria Lactobacillus for tetM). We also found Rank II ARGs 

without Rank I homologs and they were hosted by abundant gut commensals 

and/or close relatives to pathogens that could be a reservoir of new resistance 

for gut pathogens50, especially aadA and vatE with a host range across two 

orders. Besides, Rank I-II homologs did not share the same host strain (founder 

effect) and have distinct sequence variants in different habitats (Figure S5), 

while multiple Rank III-IV homologs within one genome were quite common. 

Thus, research and surveillance into ARGs should be conducted at the 

resolution of their sequence variants, not by just documenting their ARG 

families. 

 

We observed that Rank I was strongly correlated with the potential exposure of 

clinical antibiotics, while Rank II was associated with industrialized lifestyles. We 

applied the ranking framework to 1,120 human gut microbiome metagenomes (36 

global populations ref in preparation and 85 healthy FMT donors51) to understand 

how industrialization impacts the risk of antibiotic resistance. Industrialization 

dominated over all other factors that shaped the ARG composition across 

populations (Figure S6). Thus, we classified populations into five levels from non-

industrialized rural lifestyles to industrialized urban lifestyles (details in Figure 4). 
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We roughly estimated the potential exposure to clinical antibiotics considering the 

access to antibiotics and policy interventions on antimicrobial consumptions52–54. 

Rank I was highly responsive to industrialization and revealed the same pattern 

with antibiotics exposure. In total of 57 of 65 Rank I ARGs presented this pattern 

individually (including mcr-1 and all multidrug resistance), suggesting that this 

response was robust regardless of different host ranges and resistance mechanisms 

(Figure S8). Total Rank I was similarly abundant and diverse in non-industrialized 

rural populations (Level 1 with limited access with antibiotics) and highly 

industrialized populations (Levels 4-5 with policy interventions on clinical 

antimicrobial consumptions), and was significantly lower than middle industrialized 

populations (Levels 3-4 with access but limited interventions on clinical 

antimicrobial consumptions)55. Moreover, Rank I showed a 5-10 fold lower 

abundance (p < 0.01 by kw-test) in FMT donors who had no antibiotic 

consumptions from 6 months before sampling (Figure 4a). Meanwhile Rank I could 

maintain its low abundance with low variance in four FMT donors over 150-550 

days of surveillance (Figures 4c and S8). These observations suggest that Rank I 

could be mainly associated with the potential exposure of clinical antibiotics. In 

addition, we detected 6 Rank II ARGs commonly shared across populations. Three 

Rank II ARGs with Rank I homologs (catA, ermB, tetM) were loosely correlated 

with clinical antibiotics. Since they were not carried by pathogens, they could be 

under a less selection than their Rank I homologs that were carried by pathogens. 

Another three novel Rank II ARGs (aadA, vatE, mdtM) were found highly abundant 

in the highest industrialized population (Level 5). Overall, Rank II was more 

abundant in industrialized populations (Levels 4-5) than high-risk population 
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(pastoralist population that uses antibiotics in animal farms) and non-industrialized 

rural populations (Level 1), and most Rank II was less likely to get lost over time in 

FMT donors without antibiotic selection (Figure 4c). We also observed the transfer 

of lifestyles from farmers and hunter gatherers to industrialized lifestyles increased 

the Rank II by 3-10 fold (Figure 4b). Thus, Rank II seemed not to be correlated 

with clinical antibiotics but industrialized lifestyles. Instead, total ARGs displayed 

no significant difference across populations. 

 

Discussion 

 

We designed a risk-ranking framework to prioritize high risk ARGs through 

“anthropogenic enrichment”, “mobility”, and “host pathogenicity”. Our framework 

successfully identified 36 of 38 high risk ARG that have been reported (including 

mcr-1) and expanded the list by 43 unreported emerging Rank I ARGs. 

Management strategies should be evaluated and implemented on the basis of their 

ability to control these high risk ARGs. Moreover, the surveillance of high risk 

ARGs should target specific sequence variants since homologs (homologous ARGs) 

in the same ARG family pose different risks and different phylogenetic and 

ecological preference. The representativeness of available public datasets is the 

primary limitation of this study. With new sequencing data and clinical data, this 

ranking framework is expected to supervise the dynamic status of ARG risk and to 

identify future threats. Finally, to help strategize public health interventions, we 

studied the impact of industrialization and antibiotics exposure on high risk ARGs 

in global human gut microbiome. We found that current policy controlling the 
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clinical antimicrobial consumptions could effectively control Rank I (current 

threat)56,57 but not Rank II (future threat). We observed that antibiotics exposure 

could explain the pattern of Rank I, especially its relatively low diversity and 

abundance in industrialized populations with strict policy interventions on clinical 

antimicrobial consumptions54. Besides, Rank I was maintained at a significantly 

low abundance in FMT donors with no antibiotic consumptions. These observations 

suggested that Rank I could strongly and rapidly respond to clinical antibiotics56 

and was effectively controlled by current policy in developed countries54 (such as 

therapy guidelines, antibiotic formularies, antibiotic stewardship programmes, and 

public health interventions58). However, we found that Rank II was not directly 

correlated with the clinical antibiotics and was not observed to be effectively 

controlled in industrialized countries. The fact that novel Rank II ARGs were 

usually carried by abundant gut commensals and/or close relatives to gut pathogens, 

indicated their high potential and consequences to emerge into gut pathogens. We 

should take actions with new intervention strategies, such as controlling the usage 

of veterinary antibiotics as growth promoters59 (i.e, vatE)60,61. 

 

Methods 

 

Details of methods, data and scripts are all available in supplementary information. 

Briefly, the ARGs Online Searching Platform37 provided the presence and 

abundance of ARGs in 54,718 all available NCBI bacterial genomes (≥ 50% 

completeness and < 10% contamination) and 854 global metagenomes of 

Illumina shotgun sequencing. We further searched ARGs in all available NCBI 
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15,738 plasmids and other mobile genetic element (MGE) databases35,36 by 

usearch v11.0, diamond 0.9.24 and blast 2.5.0+62–64. The search cutoff was set 

for genomes and MGEs as e-value 1e-5, 90% aa similarity over 80% aa hit 

length; and for metagenomes as e-value 1e-7, 80% aa similarity over 75% aa hit 

length7,8,37,65. The abundance of ARGs was normalized into copy of genes per 

bacterial cell (ARGs-OAP7,8) using Equation 1. The total bacterial cell number 

of one metagenomic sample was inferred by counting the average copy number 

of bacterial essential single copy genes.  

(1) 

 

We developed a bioinformatics tool (arg_ranker) to assess the risk of ARGs in 

metagenomes and genomes (https://github.com/caozhichongchong/arg_ranker). 

The arg_ranker classifies all ARGs in one sample into Rank I-IV and quantifies 

the risk contributed by each Rank. 

 

We used 460 human gut microbiome metagenomes from 460 donors covering 

36 different populations of 9 lifestyles (ref in preparation) and 560 

metagenomes from 84 FMT donors51. The FMT metagenomes consisted of 400 

metagenomes of four donors with intensive sampling (231 samples over 536 

days, 83 samples over 375 days, 70 samples over 201 days, and 90 samples over 

144 days) and 160 metagenomes for 80 donors with sparse sampling (2 samples 

per individual over 2 to 460 days). We classified the populations into five 
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industrialization level and we roughly estimated the potential exposure to 

antibiotics based on the access to antibiotics and public health interventions on 

clinical antimicrobial consumptions of each population52–54. FMT donors are 

healthy individuals with no antibiotic consumptions from six months before 

sampling, which represents the least potential exposure to antibiotics. The high-

risk population is a pastoralist population that uses antibiotics in animal farms, 

which represents the highest potential exposure to antibiotics. Level 1: non-

industrialized rural populations with limited access to antibiotics (fisherman, 

hunter gatherer to farmer, farmer, and hunter gatherer); Level 2: non-

industrialized urban populations (farmer to western) with access to antibiotics 

and little policy interventions54; Level 3: industrialized rural population with 

access to antibiotics and little policy interventions54 (hunter gatherer to 

western); Level 4: industrialized rural populations (western) with access to 

antibiotics and policy interventions; Level 5: industrialized urban populations 

(western) with access to antibiotics and policy interventions. The relative 

abundance difference (abudiff) of an ARG between 2 time-points in one 

individual was calculated using Equation 2. 

(2) 
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