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One Sentence Summary:,  Ehmt1 +/- mice show decreased exploration and episodic-like memory but 
increased semantic-like memory In the Object Space Task. (143 of 150) 
 
 

Abstract 
Kleefstra syndrome is a disorder caused by a mutation in the EHMT1 gene characterized in humans by 
general developmental delay, mild to severe intellectual disability and autism. Here, we characterized 
semantic- and episodic-like memory in the Ehmt1+/- mouse model using the Object Space Task. We 
combined conventional behavioral analysis with automated analysis by deep-learning networks, a 
session-based computational learning model and a trial-based classifier. Ehmt1 +/- mice showed more 
anxiety-like features and generally explored objects less, but the difference decreased over time. 
Interestingly, when analyzing memory-specific exploration, Ehmt1 +/- show increased expression of 
semantic-like memory, but a deficit in episodic-like memory. A similar dissociation of semantic and 
episodic memory performance has been previously reported in humans with autism. Using our automatic 
classifier to differentiate between genotypes, we found that semantic-like memory features are better 
suited for classification than general exploration differences.  Thus, detailed behavioral classification with 
the Object Space Task produced a more detailed behavioral phenotype of the Ehmt1 +/- mouse model.  
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Introduction 
Most if not all mental disorders are accompanied by memory deficits, with the quality of the deficit 
depending on the overlap between the underlying circuit needed for the respected memory type and the 
circuit affected by the disorder. For example, semantic memories depend on cortical structures such as 
the medial prefrontal cortex and anterior cingulate cortex, while episodic memories are thought to rely 
on intact hippocampal functioning 1-3. Thus, larger deficits in episodic in contrast to semantic memories 
are expected in disorders affecting the hippocampus more than cortex. This also means that detailed 
characterization of the memory deficit can help predict, which circuits are affected by a disorder and lead 
future imaging or molecular investigations. 
In animal models, most commonly simple memory paradigms are used to assess memory deficits in 
disease. Such tasks, e.g. contextual fear conditioning or simple object in place memory, mainly test 
hippocampal processing 1. However, just as critical for human cognition are semantic memories 
representing our knowledge of the world. Semantic memory is not tested by simple tasks and thus rarely 
assessed in animal models of disease. We recently developed a new task – the Object Space Task – that 
addresses this deficit: across different conditions both simple memories (episodic-like) as well as 
abstracted, cumulative memories (semantic-like) are tested 4. The task is based on a rodent’s tendency of 
natural exploration of new objects in an open-field environment. In the key condition of this task – 
overlapping – spatial configurations with two objects are presented to the animal over multiple trials per 
day, for 4 consecutive days. This allows the animal to accumulate information over time in order to 
construct an abstracted or semantic-like memory across training days. The additional advantage of this 
task is that it allows behavioral characterization beyond the memory measure, such as general movement 
patterns within an open field.   
Monogenetic causes of neurodevelopmental disorders are a molecular entry point in understanding 
underlying mechanism and circuits of cognition. Kleefstra syndrome is a neurodevelopmental disorder 
characterized in humans by general developmental delay, severe intellectual disability and autism 5-8, 
caused in most cases by haploinsufficiency of the EHMT1 gene (Euchromatic Histone Methyltransferase 
1). Previous studies have shown that the heterozygous Ehmt1 knock out mouse (Ehmt1 +/-) recapitulates 
the core features of Kleefstra syndrome.  
The protein encoded by EHMT1 (EHMT1 or GLP (G9a-like protein) acts as a histone methlystransferase, 
i.e. an epigenetic regulator.  EHMT1 catalyzes mono- and dimethylation of histone H3 at lysine 9 
(H3K9me2) 9, thereby working as repressor of transcription. The mouse homolog has been shown to 
specifically regulate the expression of several activity-dependent genes in the hippocampus following fear 
conditioning 10. Furthermore, it has been shown to be critically involved in homeostatic synaptic scaling 
in vitro and in the developing visual cortex in vivo 11,12.  
Ehmt1 +/- mice recapitulate core features of the human phenotype: they show delayed postnatal 
development and facial and cranial abnormalities that correspond to the phenotype observed in human 
patients 13. At a behavioral level, Ehmt1 +/- mice display reduced exploration, increased anxiety when 
exposed to novel environments, and impaired social behavior 14. In a fear conditioning task, Ehmt1 +/- mice 
show increased freezing and decreased extinction, another indication for increased anxiety in this mouse 
model 15. Ehmt1 +/- mice perform similar to their wildtype controls in the Barnes-maze, a task that uses 
anxiety to the open field as a motivator, but show a deficit in simple object recognition or placement 
memory 15. Interestingly, Ehmt1 +/- mice outperform wildtypes in a touch-screen pattern separation task, 
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a process that heavily depends on the dentate gyrus in the hippocampus 16. Similar results on pattern 
separation have been demonstrated in human individuals with high-functioning autism 17. In contrast, 
Kleefstra Syndrome in humans is classically associated with severe learning disabilities. Earlier studies 
have shown impaired hippocampal-dependent learning in Ehmt1 +/-mice and impaired hippocampal 
physiology, including reduced excitatory connectivity between CA3 and CA115. While impairments in 
hippocampal-dependent memory may to some extent reflect the episodic memory impairments in 
humans, the increased anxiety-like behavior in Ehmt1 +/-mice may have confounded performance in 
hippocampal memory paradigms in previous studies. In addition, to our knowledge, semantic-like learning 
abilities in these animals have not yet been tested in those mice.  
Thus, to further characterize both semantic-like and episodic-like memory processes in Ehmt1 +/- mice, we 
assessed performance of these animals in the Object Space Task4. The task contains both an episodic-like 
as well as semantic-like memory condition. In addition to the conventional behavioral analysis, we 
modeled the learning behavior over training days as well as build a classifier for individual trial behaviors 
automatically extracted from the videos with in-house deep learning networks based on DeepLabCut 18.  
Ehmt1 +/- mice showed overall decreased exploration of the objects and more corner sitting but expressed 
increased semantic-like memory compared to controls. In contrast, Ehmt1 +/- mice showed reduced 
episodic-like memory. Computational modelling revealed that the difference in semantic-like memory 
stems from a change in memory expression and not learning rate. Finally, using the classifier we showed 
that behavioural measures from video analysis of individual trials allow the automatic identification of 
genotype. The classifier performed best in our semantic-like memory condition using memory-specific 
features (discrimination index). Thus we could show that our Object Space Task allows for the in-depth 
characterization of innate behavior as well as episodic- and semantic-like memories in animal models of 
disease that can guide future circuit investigations. 
 
Results 
To assess semantic-like and episodic-like memory in the Ehmt1 +/- mouse model, we used the Object Space 
Task 4. In this task, mice are allowed to explore sets of objects (two identical objects, each trial a different 
set) in an open-field box (75cmX75cm) that are placed according to one of three conditions (see Fig. 1):  
In the random condition – the negative control – the objects are in semi-random configurations 
(randomness restricted by counterbalancing). In the stable condition the two objects always remain in the 
same positions until the final trial (trial 21, test) when one of the objects is moved. The stable condition 
tests memory of the most recent event, i.e. episodic-like memory. Finally, the key condition, overlapping, 
always has one object at the same position, while the other object is placed in one of the three other 
corners (stable location is counterbalanced across animals). Thus over time and trials, animals build up a 
cumulative or semantic-like memory resulting in a preference for the less often shown location 4. At the 
test trial, the same configuration as the final training trial is used, thus controlling for episodic-like 
memory. In this study, mice (WT n=31, Ehmt1 +/- n=24, 8 weeks, male) were first habituated (1 week) and 
then trained (3 weeks, each week 1 session of 20 training and 1 test trials, 5 trials a day) in the task (Fig. 
1). During the training period the animals went through the 3 conditions in a counterbalanced order.  
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Fig. 1 Study Design: Across three weeks animals are trained in three conditions in a counterbalanced order with Mo-Thu training 
5 trials/day (each 5min) and Fri test (1 trial 10min). The three conditions differ in the underlying statistical regularities of object 
placement. Random: semi-random (constricted to equal number of occurance across the week) placement; Stable: during training 
the same two locations, one object moved at test; Overlapping: one location always contains an object, the second object is in 
one of the other three corners. Final training trial and test trial have the same configuration to control for episodic-like memory. 
The stable and moved location identities were counterbalanced across animals to control for general location preferences. 

 
General Exploration Differences: Decreased exploration in Ehmt1 +/-mice 
Initially, we focussed our analysis on differences in explorative behaviour and compared total exploration 
time, total count of object visits, and average exploration bout length (scored manually, blinded to 
condition and genotype). Ehmt1 +/- mice show decreased total exploration time (p=0.004), however this 
difference decreased over time (each session is one week, session X gene interaction p=0.001, Fig. 2). The 
difference in overall exploration time is explained by a lower number of visits to each object (p=0.003), 
while average length of each individual exploration bout did not differ (p=0.223). Interestingly, over time 
(both within a week as well as across weeks) bout length increased independent of genotype (p=0.027), 
while the number of visits decreased over time in WT. Thus the convergence of total exploration time 
over sessions is explained by sustained number of visits with increasing bout length in Ehmt1 +/-and 
decreased number of visits with increasing bout length in WT. Total exploration time, count of 
explorations and bout length did not differ significantly across training conditions for either genotype. 
To further asses what the animals were doing when they were not exploring objects, we extracted 
different behaviors in an automatic way (object exploration, wall/cue exploration, corner sitting) from a 
randomly selected sub-set of the video data (1764 of 3465 trials) with in-house deep-learning networks 
based on DeepLabCut 18.  
The first, in-house model used Kinetic Action Recognition to extrapolate when the mice explored objects. 
The model was trained on in-lab available action labeled Object Exploration video data. The second model 
used pose estimation from DeepLabCut to extract the actions wall/cue exploration and corner sitting 
(because no labeled data are available for these actions). In the end, the predicted actions of both models 
are frame-wise concatenated for each video trial. The code implementation for this section can be found 
at https://github.com/Iglohut/autoscore_3d. Automatic behavioral classification confirmed the 
difference in object exploration time (p=0.001) and revealed that Ehmt1 +/-animals spent more time sitting 
in corners (p= 0.006, Fig. 2D).  
In sum, the initial difference in exploration time due to decreased object visits and more corner sitting in 
Ehmt1+/- mice, could indicate increased anxiety-like features (reluctance to leave corner for an object visit). 
This decrease in exploration and increase in sitting has been shown before 14, but we could add that the 
anxiety decreases with time and habituation over the weeks of training. 
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Fig. 2 General Exploration for WT/ Ehmt1 +/- Shown is A. exploration time B. count of exploration bouts and C. average bout 
length across the three weeks/sessions (S1, S3, S3) of training. Each day averaged across 5 trials. Ehmt1+/- show decreased 
exploration time due to decreased number of object visits, but this difference decreases over the three week training period. 
Exploration Time sessionXgene F2,104=7.3 p=0.001 (linear constrast p=0.002), day F3.2,208=17.3 p<0.001 (linear contrast p<0.001), 
sessionXday F5.5,416=4.6 p=0.001, gene F1,52=9.0 p=0.004; Count session F2,82=8.2 p=0.001 (linear contrast p=0.001),  sessionXgene 
F2,82=5.6 p=0.005 (linear contrast p=0.019), day F2.5,104=26.1 p<0.001 (linear contrast p<0.001), dayXgene F3,123=4.0 p=0.009 
(quadratic contrast p=0.026), sessionXday F4.5,185=2.2 p=0.048, sessionXdayXgene F6,246=2.5 p=0.022,  gene F1,41=9.7 p=0.003; 
Bout Length session F2,82=3.8 p=0.027 (linear contrast p=0.026),  day F2.5,123=3.4 p=0.025 (linear contrast p=0.021), dayXgene 
F3,123=3.0 p=0.031 (linear contrast p=0.008), sessionXday F4.5,183=4.0 p=0.003, gene F1,41=1.5 p=0.223. D. shows the different 
behaviours extracted from the automatic classification of a sub-set of videos. Ehmt1 +/- spend less time exploring objects but 
more time sitting in the corners Behavior F3,93=13.9 p<0.001, BehaviorXgene F3,93=8.3 p<0.001, object exploration p=0.001, corner 
sitting p=0.006). Data shown as mean and SEM. 
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Memory Specific Differences: Decreased Episodic-like and Increased Semantic-like Memory in Ehmt1+/- 
mice 
After characterizing general exploration features, we assessed memory performance by calculating the 
discrimination index for each exploration time, count of explorations and bout length (DI={moved-
stable}/{moved+stable}). In our episodic-like memory condition (stable) only WT were above chance at 
test (in the discrimination indicies for exploration time, count, bout length) and not Ehmt1+/- mice (Fig. 
3A). As expected in our negative control condition (random) neither genotype was above chance at test 
(Fig. 3B).  
 

  
Fig. 3 Episodic-like Memory (stable and random conditions): Shown are the discrimination indicies at test (trial 21) calculated 
for I. exploration time II. count of exploration bouts and II. average bout length for both stable and random. Only WT and not 
Ehmt1 +/-performed above chance level in our episodic-like memory test (stable). T-Test to chance in stable: Exploration Time 
WT wilcoxon rank test p=0.03; Count WT t-test t28=2.6 p=0.01; Bout Length WT t-test t28=2.1 p=0.05. Data shown as mean and 
SEM. 

 
In our semantic-like memory condition – overlapping – we would expect a positive discrimination index 
during training (trials 1-20) as well as test. In contrast to stable with static objects and random, there is an 
aligned pattern across animals in overlapping already during training and the animals develop a 
preference for the less-stable location (resulting in a positive DI, Fig. 4 I). At training both WT and Ehmt1 
+/- showed a discrimination index above chance expressed across all three variables (exploration time, 
count, bout length) but Ehmt1+/- showed slightly higher discrimination index values especially during 
training (only significant p<0.05 for exploration time) indicating increased memory expression (Fig. 4). At 
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test both WT and Ehmt1+/- showed above-chance discrimination index in the overlapping condition, but 
due to high variability only significantly so (p=0.027) in the count of explorations measure (Fig. 4 III). 
Thus both WT and Ehmt1+/- have semantic-like memory expression, with Ehmt1+/- showing a slightly 
stronger effect (overlapping condition). In contrast, only WT express episodic-like memory at test (stable 
condition). This decrease in episodic-like memory in stable replicates findings in a one-trial object 
recognition and location paradigm in these mice 15. 
 

 
Fig. 4 Semantic-like Memory (Overlapping condition): Discrimination Index for WT/ Ehmt1 +/-. Shown are the discrimination 
indecies for training (trials 1-20) and test (trial 21) calculated on I. exploration time for each trial seperatly, and averaged across 
training II. exploration time, III. count of exploration bouts, and IV. average bout length. T-test Ehmt1 +/-vs WT overlapping pt 
t53=2.3 p=0.027; Test to chance Training: Exploration Time WT wilcoxon rank test p=0.02; Ehmt1 +/-t-test t22=4.0 p=0.0007; Count 
WT t-test t26=2.7 p=0.01; Ehmt1 +/-t-test t19=2.8 p=0.01; Bout Length WT wilcoxon rank test p=0.015; Ehmt1 +/-t-test t19=3.0 
p=0.008; Test to chance Test: Count WT t-test t25=2.3 p=0.03; Ehmt1 +/-t-test t19=3.1 p=0.006; Bout Length overlapping WT t-test 
t26=1.9 p=0.066; Data shown as mean and SEM, grey shading in I for individual training days. 
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Modelling learning: Ehmt1 +/- mice show same learning rate as WT  but increased semantic memory 
expression 
The decreased overall exploration seen in the Ehmt1 +/- mice could have confounded the difference seen 
in the discrimination index in the overlapping condition. Thus, to further disentangle these effects and to 
characterize the build-up of a memory trace and its expression, we applied a computational model 4 that 
progressively learns place-object associations and makes decisions about which proportion of time to 
spend exploring each object in order to minimize uncertainty about these place-object associations. The 
model employs 2 parameters: a learning rate 𝛼𝛼 which determines the balance between recent and remote 
memories; an inverse temperature 𝛽𝛽, which determines the balance between neophilic (preference for 
more novel/uncertain object location, positive values) and neophobic (aversion for more novel/uncertain 
object location, negative values) exploratory behaviors, and thus measures memory expression. Values 
around 0 indicate that the behaviour is not driven by memory. We fitted the model separately for each 
animal and each condition (stable, random, overlapping), in order to observe potential differences in the 
optimized parameters between conditions. Thus together 𝛼𝛼 and 𝛽𝛽 let us disentangle if animals actually 
have a better memory and/or learn faster (𝛼𝛼) or just express their memory more independent of memory 
strength (𝛽𝛽). 
As with the conventional discrimination index, 𝛽𝛽 values took more extreme either positive of negative 
values in Ehmt1 +/- animals, which is why we took the absolute value of  𝛽𝛽 as the key parameter for the 
following analyses: we want to characterize the strength of memory expression independent of neophobic 
or neophilic tendencies. Interestingly, Ehmt1 +/-animals showed significantly higher absolute 𝛽𝛽 values but 
only in the overlapping condition (Kruskal-Wallis, Chi2 = 4.09, p = 0.0432, Fig. 5A). In contrast, learning 
rate 𝛼𝛼 did not differ between genotype for any condition (Fig. 5B). We did replicate the finding from 4 that 
overall, the stable condition shows higher learning rates (more recent memory thus more episodic-like) 
in contrast to the random and overlapping conditions, which show smaller 𝛼𝛼’s (more influenced by remote 
memory thus more semantic-like). 
Next, we reran the model only within a day (bins of 5 trials) to characterize the development over the 
week of training. Memory expression (absolute 𝛽𝛽) decreased over the week (Fig.5C), which may explain 
the decreased memory expression at test seen in the discrimination index of total exploration time (Fig. 
4). However, the learning rate remained constant (Fig. 5D). 
To conclude, our model shows that WT and Ehmt1 +/- learned at a similar rate. Consequentially, differences 
in discrimination index are based on increased memory expression in Ehmt1 +/-. However, this difference 
is specific to semantic-like memories that show underlying statistical regularities as tested in our 
overlapping condition. 
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Fig. 5 Modelling Memory Expression and Learning Rate: A. Absolute memory expression (𝛽𝛽) only showed a significant difference 
between the two genotypes in the overlapping condition (Kruskal-Wallis, Chi2 = 4.0885, p = 0.0432, values above 25 stacked 
above the line). B. No differences between WT and Ehmt1 +/-was seen in the learning rate (𝛼𝛼). Focussing on the overlapping 
condition memory, memory expression (C) and learning rate (D) plotted by bins of 5 trials with groups split by genotype and by 
neophilic/phobic preference (pos/neg 𝛽𝛽) or by 𝛼𝛼=0.5. WT grey, Ehmt1 +/-black. 

 
Automatic Behavioural Scoring and Classifier for WT/ Ehmt1 +/- 

On a per-session level including all 21 trials, we have shown that Ehmt1+/- mice explore objects less and 
show increased memory expression, which is specific to our semantic-like memory condition. Next, we 
analyzed discrete behaviors on a trial-by-trial level: We trained two classifiers on multiple behavioral 
features extracted from the video data automatically with deep-learning methods as explained in the 
Materials and Methods section 18. We included both general exploration features (e.g. min explore time) 
as well as memory specific features (e.g. discrimination index, total 45 features, see Tab. 1).  
Extracted features were fed into two classifiers: Random Forest and XGBoost. To test whether the AUROC 
(Area Under the Receiver Operating Curve, ROC) performance metric of each model was above the 
expected value of chance, both models were tested under the permutation distribution (see Materials 
and Methods section). Performance of each model for each condition (all pooled, overlapping, stable, 
random) are depicted in Fig. 6A. All models except the ones in the random condition have an AUROC > 
0.61 that is significant (∀i : pi < 0.001) under the permutation distribution. With the classifier performing 
at a similar level when only including the data of the overlapping condition in itself as using all data from 
all conditions, despite the data-set being only 1/3 of the size of all pooled.  
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Furthermore, inspection of each significant model’s ROC-curve shows that all models have relatively high 
specificity relative to their sensitivity (sensitivity≈ 0.35 - 0.49, specificity≈ 0.87-0.89). For the models 
trained on trials in the random condition, neither model (Random Forest, AUROC ≈ 0.56, p > 0.05 XGBoost, 
AUROC ≈ 0.59, p > 0.05) could predict the genotype based on single trials. 
Top ten features’ relative importances (Fig. 6B) were tested under the permutation distribution and also 
compared between genotype (Fig. 6C). A high relative feature importance means that a model uses that 
specific feature and all its potential interactions with other features. Interestingly, top features used in all, 
stable and random conditions were based on general exploration features such as total number of 
exploration bouts in the first 2min of the trial. In contrast, such general exploration features became less 
weighted in the overlapping condition, in which memory-based features gained importance (e.g. DI at 3 
min/4 min/5 min).  
The increased weights of memory-based features would further support that while we see genotype-
specific differences in general exploration features, differences in semantic-like memory expression are 
more prominent and thus here drive automatic classification of WT and Ehmt1 +/-.  
 

Feature Description 
First object Whether the first object explored was either object 1 or object 2 
First object latency Latency to first exploration of any object 

Stayi 

Likelihood of exploring object i next, after having last explored object i. Where i is either 
1 or 2. 

SteadyState1(SS1) The probability of exploring object 1 after many explorations 

Perseverance Index 

Index ranging from −1 to 1 represent the tendency of switching between objects during 
exploration as −1, the tendency to reexplore the same object during exploration as 1, 
and no tendency as 0 

n_transitions 
Total number of transitions made between objects during the whole trial. Per minute i, 
the total number of explorations of any object up until that minute 

mini_n_explore Per minute i, the total number of explorations of object j up until that minute 
mini_n_explore_object
j mini_time Per minute i, the total time any object was explored up until that minute  
mini_objectj_time Per minute i and object j, the total time that object was explored up until that minute 
bout_time Mean time of explorations of any object 
bout_time_objj Mean time of explorations of object j 

mini_DI 

Per minute i, the discrimination index (DI) up until that time representing a preference 
for exploring object 2 as −1, a preference for exploring object 1 as 1, and no preference 
as 0 

Table 1 Model Features: Features extracted from the sequence data per trial. In total 45 features were calculated (above features 
for each object (i) and min (n) respectivly thus 13 feature description result 45 specific features). 
 

Fig. 6 Classifier for WT/ Ehmt1 +/-: A. AUROCs by all classifiers for all subsets of data (all conditions, stable, overlapping, random). 
Asterisks represent the p-value of its respective AUROC under the permutation distribution: B. Top 10 features and their relative 
feature importance per model for all subsets of data (all conditions, stable, overlapping, random). C. Box plots of the top 9 
features per model for all subsets of data (all conditions, stable, overlapping, random). The white square represents the mean. 
The difference of the mean between genotype was tested for each feature under the permutation distribution.  * = (p < .05), ** 
= (p < .01), *** = (p < .001). 
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Discussion 
In this study, we used the Object Space Task to characterize the behavioral phenotype of the Ehmt1 +/- 
mouse model in detail. The task tests general as well as memory-specific exploration features, and 
contained both an episodic- and semantic-like memory condition. By combining conventional behavioral 
analysis with automatic behavioral analysis via deep-learning networks, computational modelling of 
learning behavior across days, and a trial-by-trial behavioral classifier, we could elucidate a variety of 
behaviors influenced by genotype and their relative importance.  
Ehmt1 +/-animals showed 1) decreased total exploration time due to decreased number of object visits 
and increased corner sitting. Over training sessions, both parameters approached WT levels. 2) In contrast 
to WT, Ehmt1+/- show no episodic-like memory, but 3) increased semantic-like memory expression. 4) 
Modelling revealed that Ehmt1 +/-and WT showed similar learning rates in all conditions, but Ehmt1 +/-

showed increased memory expression (𝛽𝛽) in comparison to WT. This difference was specific to the 
semantic-like memory condition (overlapping). 5) Likewise, computational video analysis with two 
different classifiers could differentiate between Ehmt1 +/-and WT on a trial-by-trial basis. Relative weights 
revealed that memory-features in the semantic-like condition showed a larger difference and drove the 
classifier more than general exploration features.  
 
General Exploration Differences 
Initially Ehmt1 +/- mice visited the objects less frequently and remained more in the corners than WT, 
perhaps indicating increased anxiety. Balemans et al also showed that Ehmt1 +/- mice display impaired 
social behavior as well as reduced exploration and increased anxiety when exposed to novel environments 
14. However, the Object Space Task allowed us to add to this finding, in that this increased anxiety seems 
to habituate over time: in the third week of training (fourth week of box exposure) there was no difference 
between WT and Ehmt1 +/-. Thus, Ehmt1 +/- mice do not show persistently increased anxiety, instead they 
only need more time to habituate to novel situations. 
The difference in exploration behavior is sufficient for a classifier to determine genotype on a trial-by-trial 
basis. Especially the amount of exploration by minute 2 seems to drive the classifier when considering the 
stable or random condition. In contrast, when determining genotype in the overlapping condition, 
memory-related behaviors (discrimination index at different time points) outweigh general exploration 
features. This indicates that while the genotypes differ in general exploration behaviors, they differ even 
more in semantic-like behavior.  
Automatic classification of genotype based on video analysis is becoming more popular and shows great 
potential for monitoring treatment outcomes in pre-clinical studies. Both 3D and 2D video techniques can 
be used 18,19. Our findings highlight the importance of considering which behaviors are recorded with the 
video-data:  Behaviors with higher cognitive demands (such as our overlapping condition) may be more 
sensitive to genotype differences as we can show here.  
 
Memory-specific Exploration Differences 
In contrast to WT, Ehmt1 +/- mice did not perform significantly above chance at test in our episodic-like 
memory task (stable). This effect is similar to previous reports 15, in which Ehmt1 +/- mice demonstrated 
significantly reduced discrimination index compared to wildtype controls in a one-event object location 
memory test. This memory deficit may be due to hippocampal dysfunction since episodic-like memory 
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relies on this circuit 1. Other differences in hippocampal function have been found between Ehmt1 +/- mice 
and littermate controls, such as increased excitability in CA1 neurons 15,20. 
Interestingly, Ehmt1 +/- expressed a stronger semantic-like memory than wildtype controls. Initial evidence 
for this effect came from the conventional behavior analysis and we confirmed by modelling learning rate 
and memory expression. The learning model also revealed that especially absolute 𝛽𝛽 (memory expression) 
differed between genotypes and thus the strength of memory expression independent of neophobic and 
neophilic tendencies. This also explains why conventional analyses only weakly showed this difference in 
memory expression: Ehmt1 +/- mice show more extreme discrimination values (closer to -1 and 1) than the 
WT. With the mix of neophobic and neophilic tendencies that is present in both genotypes, the average 
discrimination index is similar between genotypes, disguising the difference in memory expression. In 
short, a distribution from -1 to 1 in Ehmt1 +/-  (and -0.5 to 0.5 in WT) will result in overall the same average 
but difference in standard deviation.  
In contrast to memory expression, learning rate did not differ between the genotypes. Thus Ehmt1 +/-did 
not simply show better memory or learned faster, instead the same memory strength was just expresed 
behaviourally more in these animals. Elucidating this difference is another argument why it is important 
to go beyond conventional analysis of behaviour when performing phenotyping.  
Notably, other experiments also showed comparable performance between Ehmt1+/- and WT in some 
behavioral tasks that typically involve the cortex as well as the hippocampus, including spatial learning in 
the Barnes Maze 15. Additionally, pattern separation learning in a touch-screen task is superior in Ehmt1 
+/- mice 16. It is highly likely that successful extraction of statistical regularities in the overlapping condition 
of the Object Space task requires both the hippocampus and the neocortex 3,21,22 
In sum, the dissociation between a deficit in episodic-like and intact semantic-like memory, may hint at a 
selective hippocampal and not cortical dysfunction in the Ehmt1+/- mouse model. Future experiments 
combining the Object Space Task with neural recordings may help elucidate the underlying mechanism. 
 
Implications for Phenotype 
Autism is a complex condition characterized by impaired social behavior, perseverant behaviors and 
communication deficits23 . Memory processes in autism are affected as well. Whereas episodic memory 
deficits have been found consistently 25,26, semantic memory abilities and gist extraction may be equal or 
even superior in individuals with autism in comparison to control subjects 27-30. This dissociation of deficit 
across memory type, is reminiscent of our findings in the Ehmt1+/- mouse model, where we also found a 
deficit in episodic-like but intact semantic-like memory. Autistic children are known for their increased 
need to pattern-separate: toys will often be arranged by color and size. Perhaps the increased semantic-
like memory expression seen in Ehmt1+/-mice, which has underlying statistical regularities, is a reflection 
of this characteristic in mice. Increased anxiety especially in novel situations, is often seen in autism as 
well. In Ehmt1 mice, this phenotype was expressed in the decreased number of visits to the objects and 
more corner sitting in the task. The effect alleviated over time, indicative of habituation. 
Overall, the more detailed characterization of memory and behavior with the Object Space Task in this 
model provides initial evidence that the phenotype may be reflecting autism more than intellectual 
disability as no deficits in semantic memory were seen. This is in contrast to the human, in which 
intellectual disability features are more prominent but autism features are also present  24. To further 
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classify the autistic features in the mouse model, tasks testing complex social interactions should be 
employed next.  
 
The Object Space Task for Phenotyping 
In this study, we used the Object Space Task for detailed behavioral characterization of the Ehmt1+/- mouse 
model. The advantage of the task in comparison to other behavioral assays is that two types of memories 
are tested in a controlled and comparable setting (episodic-like and semantic-like), that due to differences 
in underlying circuity can show a dissociation of deficits in neurological disorders. In addition to memory 
specific effects, general exploration, and movement patterns in an open-field environment can also be 
characterized in this task. When evaluating a behavioural phenotype, it is critical to avoid confounding 
effects such as increased anxiety or decreased mental flexibility. Thus, one should be cautious with one-
trial evaluations of behavior. These factors are controlled for in the Object Space Task and thus more 
nuanced phenotypes that normally would be occluded by confounding factors can be measured. Finally, 
we could also show that the task can easily be combined with automatic video analysis, modelling learning 
behavior as well as a trial-by-trial classifier that allow the in-depth characterization of phenotype beyond 
conventional behavioral measures. 
 
Conclusion 
In sum, we could show that Ehmt1+/- mice show increased semantic-memory compared to controls, but 
show deficits in episodic-like memory and increased habituation time to environments. We did so by 
combining conventional behavioral analysis with a session-based learning computational model and a 
trial-based classifier in the Object Space Task.  
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Materials and Methods 
Subjects 
Male wildtype and Ehmt1+/- mice (littermates, bred in-house), 12-16 weeks of age at the start of behavioral 
training were group housed with ad libitum access to food and water. Mice were maintained on a 
12hr/12hr light/dark cycle and tested during the light period. In compliance with Dutch law and 
Institutional regulations, all animal procedures were approved by the Centrale Commissie Dierproeven 
(CCD) and conducted in accordance with the Experiments on Animal Act.  
 
Behavioral training 
Habituation and behavioral training has been described previously in 4. Briefly, all animals were 
extensively handled before the start of habituation. Mice were habituated to a square arena (75cmx75cm) 
for 5 sessions within 5 days. In the first session, mice were placed in the arena together with all cage mates 
for 30 minutes. In the remaining sessions, mice were placed in the arena individually for 10 minutes. In 
the final two sessions, two objects (made from Duplo blocks, not used in the main experiment) were 
placed in the arena and animals were allowed to explore. 
Animals were trained on all three conditions: stable, overlapping and random. Conditions and locations 
were counterbalanced among animals and sessions, and the experimenter was blinded to the condition 
and genotype. At the beginning of each 5-day session, cues were placed on the walls inside the box and 
at least one 3D cue was placed above one of the other walls. Cue distribution was intentionally non-
symmetric. A camera was placed above the box to record every trial and to allow for online scoring of 
exploration time with our in-house scoring program, the Object Scorer. In each condition, animals were 
allowed to explore two objects for 5 minutes with an inter-trial interval of 30min. Before the beginning of 
each sample trial, the box and the objects were thoroughly cleaned with 70% ethanol. Each sample trial 
consisted of a different pair of matching objects varying in height width, texture and material. Objects 
were never repeated during the training period of one condition (1 session). The test trial, 24hrs after the 
last sample trial, consisted of again two objects and animals were allowed to explore for 10minutes, 
however only the initial 5min were used for analysis. The Object Scorer software (described in Chapter 2) 
was used for online scoring and extraction of exploration times during all trials. 
For the overlapping condition session, one object location was designated as the ‘stable’ object location, 
indicating that in each trial over the course of the entire session one object was positioned in this location. 
The other object location (‘less stable’ or ‘moved’ object location), was positioned in any of the other 
possible object locations, in a pseudo-random fashion. In the stable condition, two objects remained in 
the same location across all sample trials but one object moved during test. Finally, in the random 
condition objects were placed in two different locations with each trial in pseudo-random manner 
.  
Statistical analysis 
We measured three main variables: total exploration time of each object, count of visits to each object 
and average exploration bout duration. Due to technical reasons, not all animals could be included in the 
count and bout duration analysis. 
General behavioral differences during training were tested with a repeated measure ANOVA with day and 
session as factors for each variable separately. Additionally, we repeated the analysis but with condition 
instead of session (orthogonal thus not compatible in one analysis), which showed no significant effects. 
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To test for memory for all three measure the discrimination index was used calculated as the difference 
in time exploring the novel object location and stable location divided by the total exploration time. This 
results in a score ranging from -1 (preference for the stable location) to +1 (preference for the less stable 
object location). A score of 0 indicates no preference for either object location. To test for the presence 
of memory, the discrimination index was test with one-sample t-test to chance. In case of non-normality 
of the data Wilcoxon Signed Rank Test was used. 
 
Model 
The same computational model as in 4 was used (see article for more detailed methods). 
In short, the model learns place-object associations and then translates this memory into an exploratory 
behavior: the objects that were stably found at the same location have a very low uncertainty and are 
thus less attractive during exploration than objects found at changing locations (high uncertainty in place-
object association). 
The model employs two different parameters: a learning rate α, which determines the speed of memory 
accumulation; an inverse temperature β, which determines the strength and sign of memory expression 
during exploratory behavior. 
A low learning rate α (i.e., close to 0) means that the model will need numerous repetitions of the same 
observation (i.e., in the Object Space Task, many trials observing the same place-object association) to 
properly memorize it. In contrast, a high learning rate α (i.e., close to 1) means that the model quickly 
memorizes new observations at the expense of old observations which more quickly forgotten. As a 
consequence, with a low learning rate the exploratory behavior generated by the model will mostly reflect 
remote memories but not recent ones (semantic-like memory). Conversely, with a high learning rate, 
exploratory behavior in the model will mostly reflect recent memories but not remote ones (episodic-like 
memory). 
Finally, an inverse temperature β close to zero means that the model does not strongly translate 
memories into object preferences for exploration, thus showing little object preference. In contrast, a 
high inverse temperature will mean that the model’s exploratory behavior is strongly driven by differences 
in relative uncertainty between place-object associations. A high positive inverse temperature will result 
in neophilic behavior: the model spends more time exploring objects associated with high uncertainty 
(i.e., novelty or constantly changing location); a high negative inverse temperature will result in neophobic 
behavior: the model spends more time exploring objects with low uncertainty (stable/familiar objects). 
The model was fitted to each mouse’s trial-by-trial behavior using a maximum likelihood procedure 
described in [3]. In brief, this model fitting process found the best parameter values for each subject that 
best explain the relative proportion of time spent exploring each object at each trial. 
All model equations are described in [3]. 
 
Automatic Behavioral Analysis 
To classify genotype of mice in single trials, two main models were designed. The first model is a video 
action scoring classifier, upon which the general behavioural descriptions (i.e.  features) were based. The 
second model is a genotype classifier that uses these general behaviours to predict WT/KO based on a 
single trial in the Object Space Task. 
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The model that scores mouse behaviours (Object Exploration, Wall Exploration, Corner Sitting) in a video 
is two-fold, in that one model classifies Object Exploration, whereas the other model classifies Wall 
Exploration and Corner Sitting. The first model is an inflated deep inception neural network based on 
Carreira and Zisserman 31 human kinetic action recognition network. Transfer learning was applied to a 
restructured version of the neural network and re-trained on videos of mice performing the Object Space 
Task, labelled by humans for object exploration. Next, the second model uses DeepLabCut 18 to extract 
limb configuration of mice over a single video. In addition to limb configuration, head direction was 
calculated as ears pointing to the nose. The limb configuration and head direction were then used in 
combination with knowledge about the square arena, such as location of walls and corners.  Corner Sitting 
was defined as mean limbs location being near the corner, and Wall Exploration was defined as mean limb 
configuration being near a wall and head direction towards that wall.  

The model that classifies genotype based on single trials, uses the behaviours extracted from the 
automatic behavioural scoring. To elucidate, behavioural summaries over the 5 minute trials were 
calculated based upon the time-series of actions (see Tab 1.). These features were then used as input 
variables for a Random Forest and XGBoost classifier, with genotype as a target variable. The classifiers 
were trained to optimize the AUROC (Area Under the Receiver Operating Curve), for each subset of data 
(all trials, stable trials, overlapping trials, random trials). Significance of the AUROC was then tested under 
the permutation distribution. To assess which behavioural features were driving most of each model in 
their predictions, feature importance were calculated was drop-column importance. The top features per 
classifier were taken for additional analysis, to further investigate how behaviours differ between WT and 
KO mice in single trials per condition. The mean difference was tested under the permutation distribution 
for each top feature, with genotype as a between-subject factor. 
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