
1 

 

Title: Quantifying geographic accessibility to improve cost-effectiveness of entomological monitoring.  1 

Short title: Entomological monitoring using GIS. 2 

Authors: Joshua Longbottom1, 2, Ana Krause1, Stephen J. Torr1, Michelle C. Stanton1, 2  3 

 4 

Author Affiliation:  5 

1Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA  6 

2Centre for Health Informatics, Computing and Statistics, Lancaster Medical School, Lancaster University, 7 

Lancaster, LA1 4YW 8 

 9 

Corresponding author: 10 

Mr Joshua Longbottom 11 

Department of Vector Biology,  12 

Liverpool School of Tropical Medicine,  13 

Liverpool, L3 5QAUK 14 

Email: joshua.longbottom@lstmed.ac.uk 15 

 16 

ORCIDs: 17 

Joshua Longbottom: https://orcid.org/0000-0002-4151-9031 18 

Ana Krause: https://orcid.org/0000-0002-9665-5102 19 

Stephen J. Torr: https://orcid.org/0000-0001-9550-4030  20 

Michelle C. Stanton: https://orcid.org/0000-0002-1754-4894 21 

 22 

 23 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 23, 2019. ; https://doi.org/10.1101/779561doi: bioRxiv preprint 

https://doi.org/10.1101/779561
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

 

Abstract:  24 

Background 25 

Vector-borne diseases are important causes of mortality and morbidity in humans and livestock, 26 

particularly for poorer communities and countries in the tropics. Large-scale programs against these 27 

diseases, for example malaria, dengue and African trypanosomiasis, include vector control, and 28 

assessing the impact of this intervention requires frequent and extensive monitoring of disease vector 29 

abundance. Such monitoring can be expensive, especially in the later stages of a successful program 30 

where numbers of vectors and cases are low. 31 

Methodology/Principal Findings  32 

We developed a system that allows the identification of monitoring sites where pre-intervention 33 

densities of vectors are predicted to be high, and travel cost to sites is low, highlighting the most cost-34 

effective locations for longitudinal monitoring. Using remotely sensed imagery and an image 35 

classification algorithm, we mapped landscape resistance associated with on- and off-road travel for 36 

every gridded location (3m and 0.5m grid cells) within Koboko district, Uganda. We combine the 37 

accessibility surface with pre-existing estimates of tsetse abundance and propose a stratified sampling 38 

approach to determine cost-effective locations for longitudinal data collection. Our modelled 39 

predictions were validated against empirical measurements of travel-time and existing maps of road 40 

networks. 41 

We applied this approach in northern Uganda where a large-scale vector control program is being 42 

implemented to control human African trypanosomiasis, a neglected tropical disease (NTD) caused by 43 

trypanosomes transmitted by tsetse flies. Our accessibility surfaces indicate a high performance when 44 

compared to empirical data, with remote sensing identifying a further ~70% of roads than existing 45 

networks.  46 

Conclusions/Significance 47 
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By integrating such estimates with predictions of tsetse abundance, we propose a methodology to 48 

determine the optimal placement of sentinel monitoring sites for evaluating control programme 49 

efficacy, moving from a nuanced, ad-hoc approach incorporating intuition, knowledge of vector ecology 50 

and local knowledge of geographic accessibility, to a reproducible, quantifiable one.  51 

 52 

Author Summary 53 

Assessing the impact of vector control programmes requires longitudinal measurements of the 54 

abundance of insect vectors within intervention areas. Such monitoring can be expensive, especially in 55 

the later stages of a successful program where numbers of vectors and cases of disease are low. Cost-56 

effective monitoring involves a prior selection of monitoring sites that are easy to reach and produce 57 

rich information on vector abundance. Here, we used image classification and cost-distance algorithms 58 

to produce estimates of accessibility within Koboko district, Uganda, where vector control is 59 

contributing to the elimination of sleeping sickness, a neglected tropical disease (NTD). We combine an 60 

accessibility surface with pre-existing estimates of tsetse abundance and propose a stratified sampling 61 

approach to determine locations which are associated with low cost (lowest travel time) and potential 62 

for longitudinal data collection (high pre-intervention abundance). Our method could be adapted for use 63 

in the planning and monitoring of tsetse- and other vector-control programmes. By providing methods 64 

to ensure that vector control programmes operate at maximum cost-effectiveness, we can ensure that 65 

the limited funding associated with some of these NTDs has the largest impact. 66 

 67 

Keywords: Accessibility, Entomology, Remote sensing, Resistance, Vector control 68 

 69 

 70 
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1. Introduction 72 

Vector-borne diseases (VBDs) are important causes of mortality and morbidity in humans and livestock, 73 

particularly for poorer communities and countries in the tropics, accounting for an estimated 17% of the 74 

global burden of all infectious diseases (1). The control of VBDs, or their elimination as a public health 75 

problem, is dependent upon effective vector management, which includes pre-intervention surveys and 76 

subsequent longitudinal monitoring of vector abundance to assess the effectiveness of an intervention. 77 

Such monitoring is an important component of the overall costs of control. 78 

 79 

To improve the cost-effectiveness of vector control programs, there is a requirement to identify optimal 80 

locations for longitudinal monitoring site placement. Ideally, these sites should be in locations that 81 

maximise information on the distribution and density of vectors while minimising costs of obtaining 82 

these data. In practice, most vector surveillance is opportunistic and lacks a rigorous framework (2). A 83 

more rational method would involve combining information on vector abundance with estimates of 84 

geographical accessibility, to identify sites across operational areas where pre-intervention catches are 85 

high and sampling costs are low. Towards this goal, we examined the utility of remotely sensed (RS) data 86 

to produce contemporary estimates of geographic accessibility to entomological sampling sites, using 87 

sleeping sickness control as an example application. 88 

 89 

1.1 Sleeping sickness control as an example application 90 

Human African trypanosomiasis (HAT) is a neglected tropical disease (NTD) affecting remote areas of 91 

sub-Saharan Africa. The disease, also termed ‘sleeping sickness’, is caused by the protozoan parasite 92 

Trypanosoma brucei with two sub-species, T.b.gambiense and T.b.rhodesiense, causing Gambian (gHAT) 93 

and Rhodesian (rHAT) human African trypanosomiasis respectively. The burden of the Gambian form of 94 

the disease, for which humans are the main hosts, is >10 times that of the Rhodesian form, with annual 95 
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reported cases being in the region of 2-3,000 (3). The World Health Organization (WHO) has targeted 96 

the elimination of gHAT as a “public health problem” by 2020, which is defined as a 90% reduction in 97 

areas reporting >1 case in 10 000 compared to 2000–2004, and <2000 annually reported cases globally 98 

(4). Several countries appear to be on track to achieve this target (5). Uganda is unique in that it is the 99 

only country where both gHAT and rHAT occur, albeit within different local level zones (6, 7). Vector 100 

control forms an important part of Uganda’s efforts against both forms of HAT (8, 9). 101 

 102 

The important vectors of gHAT are Palpalis-group species of tsetse, which concentrate in riverine 103 

vegetation where, consequently, interventions are focused. In Uganda, tsetse control is being achieved 104 

through the deployment of Tiny Targets, small (20 x 50 cm) panels of insecticide-treated material which 105 

are deployed at 50-100m intervals along rivers (9, 10). Prior work produced estimates of tsetse 106 

abundance across Northern Uganda, identifying locations of high pre-intervention abundance (11), 107 

which has informed the identification of operational control areas. 108 

 109 

Methods to quantify accessibility largely involve cost-distance analyses, which have been widely used 110 

within the field of public health in analyses mapping accessibility to healthcare (12-15). Such analyses 111 

require an input surface of landscape friction (‘resistance’) – estimates of associated travel cost for 112 

gridded cells within a Cartesian plane. The cost-distance analysis identifies the cumulative cost of 113 

traversing each cell based on the given resistance surface and an origin location – opting to traverse 114 

through cells associated with the lowest resistance values. The use of accessibility mapping in the 115 

planning and implementation of control programmes for vector-borne disease is novel and has the 116 

potential to improve the cost-effectiveness of monitoring VBD interventions.  117 

 118 
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In this paper, we use RS satellite data to derive a contemporary road network within Koboko district, 119 

Northern Uganda, where an existing tsetse control programme is in operation. To obtain a road network 120 

within this district, we compare the utility of RS data at two differing spatial resolutions (one source 121 

characterising locations within the district as 3 × 3m grid cells on a Cartesian plane, and another as 0.5 × 122 

0.5m grid cells) (16, 17), and an existing open source dataset detailing road locations (18). Image 123 

classification algorithms, specifically maximum likelihood estimators were used to detect dirt and 124 

tarmac roads within the RS imagery (19). Ground truth tracking (GPS) data detailing motorbike speeds 125 

along roads within the district were used to assign on-road travel costs to each grid cell. We used 126 

published estimates of time taken to traverse through different densities of vegetation to assign 127 

resistance values to off-road grid cells (20, 21). Resistance surfaces were validated using withheld 128 

ground-truth tracking data, comparing observed and predicted travel times within a linear regression. 129 

The resulting resistance surfaces were used within a least-cost path algorithm to identify cumulative 130 

costs to locations of high tsetse abundance (11). We apply a stratified sampling approach to determine 131 

locations which are associated with low cost (lowest travel time) and potential for rich longitudinal data 132 

collection (high pre-intervention abundance). 133 

 134 

Here, by combining field data on travel time along varying road types and remotely sensed imagery, we 135 

describe the process of producing a high-resolution accessibility surface. By integrating such estimates 136 

with predictions of tsetse abundance, we propose a methodology to determine the optimal placement 137 

of sentinel monitoring sites for evaluating the efficacy of a tsetse control programme, moving from a 138 

nuanced, ad-hoc approach incorporating intuition, knowledge of vector ecology and local knowledge of 139 

geographic accessibility to a reproducible, quantifiable one. The work described here is presented in the 140 

context of tsetse control, but the methods used are applicable to a wide range of vector-borne diseases. 141 

 142 
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2. Materials and Methods 143 

2.1 Study area: The focal area of this study was Koboko District, located within the West Nile Region of 144 

Uganda. The West Nile region consists of eight districts, with current and planned intervention initiatives 145 

(i.e. the Tiny Target programme), operating in seven. Koboko district covers roughly 860km2 and has a 146 

population of 229,200 people (22). Between 2000 and 2018, 14.6% (620/4235) of gHAT cases reported 147 

from Uganda occurred in Koboko, but the incidence of gHAT is in decline as a consequence of an 148 

integrated programme of screening and treatment of the human population and, more recently, vector 149 

control (23). A map showing the location of existing, and planned intervention areas within West Nile 150 

Region is provided as Fig. S1, highlighting the position of Koboko within these intervention districts. 151 

 152 

2.2 Field methodology and data collection: To obtain data informing variation in speeds along road 153 

class, technicians making routine visits to traps within Koboko were provided with GPS devices. The 154 

recording of GPS tracks was performed during three time periods in the dry season: May-June 2017, 155 

February-April 2018, and December 2018-January 2019. Trap attendants within Koboko operate using 156 

motorbikes; therefore, observed speeds were representative of motorbike-based travel. Devices were 157 

configured to record track points at ~15-second intervals. 158 

 159 

2.3 Obtaining remotely sensed satellite data: To compare the effect of different spatial resolutions of 160 

satellite data on the ability to identify roads, we used two differing sources of RS imagery. Imagery 161 

obtained from PlanetScope™ satellites, captured on February 12th, 2018 were utilised. PlanetScope™ 162 

imagery is provided at a 3m × 3m resolution, and includes the following four spectral bands: blue (455 – 163 

515 nm), green (500 – 590 nm), red (455 – 515 nm), and near infrared (780 – 860 nm) (16, 24). 164 

PlanetScope™ data are freely accessibly through an education and research program account.  165 
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Data captured through the Pléiades-1A satellite, available at a 0.5m × 0.5m resolution and captured on 166 

27th December 2016 were used to represent high-spatial resolution imagery (25). Imagery captured on 167 

this date was the most contemporary data available. The Pléiades-1A imagery similarly consists of the 168 

same four spectral bands as PlanetScope™. Data obtained by Pléiades-1A is available by request through 169 

Airbus (previously known as the European Aeronautic Defence and Space Company) (17). 170 

 171 

2.4 GPS data review and cleaning: To calculate travel speeds, the time-difference between subsequent 172 

points within a track and the Euclidean distance between these points were used within the following 173 

formula (Equation 1): 174 

 175 

Where ��  represents the GPS coordinate of point �, ��  represents the time recorded for point � and || · || 176 

represents the Euclidean distance: 177 

��		
 �  
||�� � ��||

|�� � ��|
 

(Eq. 1) 178 

Recorded points with a speed <1km/hr were assumed to be stationary points (based on average walking 179 

speeds (26)), and were removed from the track dataset. Similarly, we removed data points for which the 180 

speed exceeded 150 km/hr (93.2 mph) as these were likely to be artefacts created due to errors with 181 

location positioning and are not representative of true travel speed. 182 

 183 

2.5 Open street map validation: To determine the accuracy of currently available open source data, 184 

OpenStreetMap (OSM) geolocated roads, and roads visible within 0.5m and 3m satellite data were 185 

compared. Shapefiles detailing mapped roads hosted by OSM were retrieved from Geofabrik OSM Data 186 

Extracts on March 3rd, 2018, to align with the dates during which field-obtained tracking data were 187 

collected (18). A 1 km × 1km fishnet constructed for Koboko district was used to produce a random 188 
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sample of 25 grid squares for manual digitisation. The digitisation process consisted of tracing over 189 

visible roads and tracks, as seen in the 0.5m resolution imagery (metric one), or as seen in the 3m 190 

resolution imagery (metric two). The length of digitized road obtained from each of the three sources 191 

was calculated in metres. 192 

 193 

2.6 Remote sensing image preparation: In total, 14 scenes covering an area of 745.8 km2 were 194 

downloaded from Planet.com. To produce one complete surface, overlapping scenes were merged using 195 

ArcGIS (version 10.4), and the composite image was cropped to district boundaries. Imagery obtained 196 

from Pléiades-1A (0.5m) were provided as a pre-prepared mosaic.  197 

 198 

2.7 Image classification: To aid image classification, image segmentation utilising a mean-shift approach 199 

was first performed within ArcGIS. We applied a maximum likelihood classification algorithm using an a 200 

priori probability weighting to identify the class in which each cell had the highest probability of being a 201 

member (19). We opted to use the following classes within this analysis: dirt road and/or track, tarmac 202 

road, dense vegetation (for example: woodlands, forest, bushwood and shrubwood), grassland (for 203 

example: grassland, meadow, steppe and savannah) and barren land. To account for “salt and pepper” 204 

speckling effects representative of potentially misclassified and/or isolated cells, we performed post-205 

classification processing. This processing stage included filtering to remove isolated cells, smoothing to 206 

smooth rugged class boundaries and generalizing to reclassify small regions of isolated cells. Post-207 

classification cleaning was performed in ArcGIS. 208 

 209 

2.8 Classification validation: A total of 500 accuracy assessment points were randomly generated for 210 

each classified surface (i.e. 3m × 3m and 0.5m × 0.5m imagery). A step-by-step comparison was then 211 

made for each randomly selected point, noting the algorithm-derived class and the manually assigned 212 
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(ground-truth) class. Utilising this information, a confusion matrix was constructed for each image 213 

source. Accuracy was calculated with respect to both omission and commission rates, where omission 214 

refers to instances where a feature (point) is omitted from the evaluated category, and commission 215 

refers to instances where a feature is incorrectly assigned to the category being evaluated. 216 

 217 

2.9 Road network update: Using the outputs from the image classification process, the GPS tracking 218 

data, and available OSM data, two contemporary road networks (one per remotely sensed data source) 219 

were produced. Cleaned, field-obtained tracking points were used to inform estimates of average travel 220 

speeds along selected roads as follows. Tracking points were converted to polylines, consisting of line 221 

segments constructed from five trailing points. These segments were assigned a mean observed speed 222 

by calculating the Euclidean distance of each segment and incorporating start and end times. These 223 

segments were then rasterised, resulting cells were stacked, and overlapping cells resulting from 224 

replicate trips across all tracking days were averaged. This produced a surface indicating the average 225 

observed speed for each cell. Tracks obtained during December 2018 were withheld from this network 226 

and were used for validation (see below). A surface detailing urban and rural locations (27) was used to 227 

categorise roads as being within urban or rural areas. This classification was paired with the Ugandan 228 

Traffic and Road Safety Act detailing maximum speed limits based on roads within urban/built-up areas 229 

and rural areas. Characterising roads by these features imply a legal maximum speed for each road 230 

representative of true travel speeds. Classified urban and classified rural cells were assigned the speeds 231 

given in Table 1, as informed by the official Traffic and Road Safety Act 2004 (28) and the Highway code 232 

(29). 233 

 234 

Table 1. Assigned travel speeds to roads lacking ground-obtained tracking data. 235 

Road type Speed (km/h) 
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Built-up area Rural area 

Paved 50 100 

Gravel/dirt 50 80 

 236 

2.10 Normalized Difference Vegetation Index analysis: As the majority of mapped roads do not lead 237 

directly to a river or tributary, trap attendants are required to traverse off-road in order to reach 238 

suitable habitats for trap placement. We therefore aimed to characterise the cost associated with off-239 

road travel within our analysis. Utilising the two differing imagery sources, two separate NDVI surfaces 240 

were generated (Equation 2). During the calculation, output values were normalised to range between -241 

1.0 and 1.0, representing greenness. Generally, output NDVI values ≤0 represent waterbodies including 242 

lakes and major rivers; values between 0.1 and 0.2 represent barren land, including areas of rock, sand, 243 

or snow; values between 0.2 and 0.3 represent shrub and grassland (areas of moderate vegetation), and 244 

values between 0.3 and 0.8 represent areas of dense vegetation (for example temperate and tropical 245 

rainforest) (30, 31). 246 

 247 

Where 
�� represents the near infrared band, and � represents the red band within the RS imagery: 248 

  249 


��� �  
�
�� � ��

�
�� � ��
  

              (Eq. 2) 250 

2.11 Assigning off-road resistance values: Resistance values are values associated with a specific cost to 251 

traverse through a cell (time, in seconds). For this study, off-road resistance values were assigned 252 

utilising the NDVI outputs, with cost values ranging based on indicative terrain. Locations which contain 253 

dense vegetation are generally slower to navigate and therefore cells representative of these areas were 254 

associated with a higher resistance value; conversely, cells which represent areas with little to no 255 
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vegetation were presumed to be easier to traverse and were assigned a lower resistance value. Average 256 

off-road walking speeds for differing terrains were obtained from published literature (20, 21) (Table 2).  257 

 258 

Table 2. Resistance values (cell crossing time) associated with off-road travel. 259 

NDVI 

value 

Off road walking speed 

(km/h) 

Off road walking speed 

(m/s) 

Cell crossing time (��) 

0.5 × 0.5m 3m × 3m 

≤0 Essentially impassable Essentially impassable 200 200 

0.1-0.2 3.5 0.97 0.73 4.37 

0.2-0.3 2.48 0.69 1.03 6.14 

0.3-0.8 1.49 0.41 1.73 10.34 

 260 

2.12 Resistance surface and cost-distance analysis: The updated road networks, featuring a cell crossing 261 

time based on assigned speeds (representative of on-road resistance), were combined with their 262 

respective NDVI resistance surface (Files S2 and S3, 3m and 0.5m surfaces respectively). To validate the 263 

generated surfaces, we used field-obtained tracking data (obtained December 2018) withheld from the 264 

road network construction. Sixty-three segments along the withheld tracks were used to create 265 

validation points. Using the resistance surface, the cumulative travel time from the start to the end 266 

point of each segment was generated utilising a least-cost path algorithm within QGIS 3.4.4 (32). A linear 267 

regression model was then fitted to the observed travel time data with predicted travel time being 268 

included as the only covariate to quantify the relationship between the two measures. The ability of the 269 

predicted travel time to each validation point to accurately predict the observed travel time was used to 270 

detect an association between the two, and to provide a means of adjusting the generated surface 271 

values if necessary. The accuracy of each resistance surface was defined by the coefficient p-values, and 272 

by root-mean-square error (RMSE). Utilising these resistance surfaces, two separate cost-distance 273 
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analyses were performed (one per spatial resolution), each using the location of our district 274 

entomologist’s base as the origin. 275 

 276 

2.13 Identifying optimal sentinel site placement: We performed a spatially stratified sampling approach 277 

to aid the identification of 102 least-cost, high abundance locations per 25km2 for sentinel site 278 

placement. Firstly, we produced a fishnet consisting of 5 km × 5 km grid squares across Koboko district, 279 

and assigned each grid square a sequential stratum identification number (see Fig. S2 for strata 280 

distribution). For each strata within the proposed intervention area, we ranked each cell by their 281 

predicted tsetse abundance values (11), and by their predicted travel time from the origin – as obtained 282 

from the cost-distance output. To account for spatial clustering, and to ensure a more even spatial 283 

distribution of sentinel sites, we retained the cell with the highest predicted abundance and lowest 284 

associated cost per 50m × 50m area. We calculated the cumulative rank for each cell within the de-285 

clustered dataset, where predicted abundance values were ranked from high to low, and accessibility 286 

values ranked from low to high. We retained two locations (paired sites) with the lowest cumulative 287 

rank per sampled strata, with these locations being identified as the optimal placement for sentinel 288 

monitoring sites.  289 

 290 

3. Results 291 

3.1 GPS data collection: To inform estimates of on-road travel cost for each 3m × 3m and 0.5m × 0.5m 292 

cell within Koboko district, Northern Uganda, we obtained tracking data during three periods: May-June 293 

2017, February-April 2018, and December 2018-January 2019. Tracks collected between May 2017 - 294 

April 2018 were used to inform road speeds, and tracks collected between December 2018-January 295 

2019 were withheld for validating the resistance surfaces (Fig. S3).  296 

 297 
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3.2 OpenStreetMap accuracy assessment: Analyses evaluating the accuracy of an existing, community-298 

driven, open-source road network (from OpenStreetMap), indicate that at least one road exists within 299 

the OpenStreetMap (OSM) dataset for 17 out of 25 randomly sampled 1km2 grid squares across Koboko 300 

district (mean road length = 1.97 km). Only one out of 25 grid squares contained no visible roads across 301 

sources (i.e. 0.5m imagery, 3m imagery, and OSM). When comparing total road length visible in 3 × 3m 302 

imagery with that charted by OSM, the two sources show close agreement (97.43% similarity [total road 303 

length across 25km2], paired t-Test � = 0.91), however, when comparing the 0.5 × 0.5m imagery and the 304 

OSM dataset, only 28.16% of digitised roads are charted by OSM (paired t-Test � < 0.001, Fig. 1, Table 305 

S1, Fig. S4). This section of the analysis provided the rationale for the classification of 0.5m imagery, with 306 

the inclusion potentially capturing up to 71% more roads than OSM within the study area. 307 

 308 

Fig. 1. Example of composite images of digitised road networks within Koboko district. Purple roads 309 

represent roads visible in 0.5m imagery (17), as digitised in this study; black roads represent roads 310 

visible in 3m imagery (24), as digitised in this study, and light blue roads represent roads available within 311 

the OSM dataset (18). The overlap of all three colours indicate areas of consistency across sources. 312 

 313 

3.3 Image classification: Classification of two differing sources of RS imagery (0.5 × 0.5m and 3 × 3m) 314 

yielded varying accuracies across classes, and across spatial resolutions, with accuracy values ranging 315 

from 38% to 89% for dirt roads and 5% to 84% for tarmac roads for 3m and 0.5m imagery respectively 316 

(Table 3; Fig. 2). Overall image classification accuracy, considering all five classes utilised (dirt road 317 

and/or track, tarmac road, dense vegetation, grassland and barren land), ranged from 53% (3m) to 78% 318 

(0.5m), with 0.5m imagery proving to be more effective at identifying both dirt and tarmac roads than 319 

the 3m imagery. 320 

 321 
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Fig. 2. Confusion matrices for the classification of each surface (Left: 3m, Right: 0.5m). Diagonal 322 

squares (bottom left to top right) indicate the percentage of correctly classified cells per class. 323 

 324 

Table 3. Maximum likelihood classification (MLC) accuracy assessment validation values for each class. 325 

Values represent the percentage of correctly classified cells (classified vs ground truth) for the five 326 

classes of interest.  327 

Class 3m imagery 0.5m imagery 

Correct Incorrect Accuracy (%) Correct Incorrect Accuracy (%) 

Dirt road and/or track 38 62 38.00 97 11 89.81 

Tarmac road 5 95 5.00 84 16 84.00 

Dense vegetation 91 9 91.00 95 5 95.00 

Grassland 65 34 65.65 80 20 80.00 

Barren land 70 30 70.00 38 54 41.30 

Overall 269 230 53.91 394 106 78.80 

 328 

3.4 Resistance surface and cost-distance analysis: The accuracy of the resistance surfaces was assessed 329 

by investigating the relationship between observed travel times and predicted travel times using 330 

withheld field-obtained tracks and a linear regression. Predicted values produced utilising the 3m 331 

resistance surface have a much closer alignment with ground truth (observed) values, root-mean-square 332 

error (RMSE) = 3.93 (3m) than the 0.5m resistance surface (RMSE = 6.01). In separate regressions with 333 

validation data from both surfaces, we identify that there is a significant association between observed 334 

and predicted values (� � 0.001 (0.5m) and � � 0.001 (3m)), indicating a high performance of each 335 

surface, with the 3m surface showing a stronger relationship with less variability (�� � 0.66 vs 336 

�� � 0.49, 3m and 0.5m respectively). Summaries of resistance surface validation are provided within 337 
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Fig. S5 and Table 4. Output cost-distance surfaces detailing the travel time from the location of our field 338 

station to each gridded cell within Koboko district are provided as Fig.3. 339 

 340 

Table 4. Model summaries for resistance surface validation. Summary statistics from four separate 341 

linear regressions are provided. 342 

 343 

 3m resistance surface 0.5m resistance surface 

Training data Validation data Training data Validation data 

p-value < 0.001 < 0.001 < 0.001 < 0.001 

Coefficient 1.10 0.59 0.78 0.34 

RMSE 1.11 3.93 0.85 6.01 

R2 0.93 0.66 0.95 0.49 

 344 

Fig. 3. Cost-distance surfaces. Figures show the cumulative travel time from the field site origin (black 345 

point), to each subsequent cell within the surface. Left: 3m cost-distance surface, Right: 0.5m cost-346 

distance surface. This figure was generated using ArcGIS version 10.4 (33), and products derived in this 347 

study from image classification of Planet (3m)(24) and Airbus (0.5m)(17) satellite imagery.  348 

 349 

3.5 Identification of optimal sentinel site placement: Utilising the 3m cost-distance surface and a 350 

predictive surface of tsetse abundance (11), we identified the optimal placement of 104 sentinel sites 351 

within the current intervention area (52 paired locations) (Fig. 4). Such sites are positioned within the 352 

most easily accessible, high abundant locations for 26 unique 5 x 5 km strata across the intervention 353 

area. Optimal sentinel-site placement identifies locations with abundance values ranging from 0.04- 354 
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19.57 (mean = 5.21) flies per cell, and locations which are within 5.55 - 151.81 (mean = 68.42) minutes 355 

from the field station location. 356 

 357 

Fig. 4. Optimal placement of sentinel sites (max two sites per grid square [25km2]) within Koboko 358 

district. Location of optimal sites visualised alongside the 3m accessibility surface (this study) and tsetse 359 

abundance surface (11), dashed lines represent the 5 x 5km sampling strata used to allocate optimal 360 

sites. This figure was generated using ArcGIS version 10.4 (33). 361 

 362 

4. Discussion 363 

This analysis investigated the ability of high-resolution satellite imagery to inform estimates of 364 

accessibility to entomological sampling sites, using tsetse control as an example application. We started 365 

by scrutinising the completeness of an existing open source road network for Koboko district, Uganda, 366 

comparing charted roads with those obtainable from manual digitisation of RS imagery at two differing 367 

spatial resolutions. Results from this section of the analysis indicate that, for this region of Uganda, 368 

roads visible within 3m imagery matched 97.43% of roads identified in OSM (paired t-Test � = 0.91) (Fig. 369 

1, Table S1). Comparing roads visible within 0.5m RS imagery, and those charted by OSM, yields 28.16% 370 

consistency across sources (paired t-Test � < 0.001) (Table S1).  371 

 372 

As data published on OSM is the result of community contributions incorporating local knowledge, data 373 

coverage is often inconsistent. The recent establishment of several refugee camps across the West Nile 374 

Region has resulted in increased road mapping efforts within this area, which explains the high levels of 375 

coverage seen here (34). OpenStreetMap completeness varies globally and the analyses we have 376 

developed will be particularly useful in places where OSM and standard sources of information on road 377 

networks are scant (35).  378 
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 379 

Part of our analysis aimed to infer the effect of including spatially disaggregated data on estimates of 380 

accessibility, detailing whether the extra information obtainable from 0.5m imagery produces refined 381 

estimates. The results of a maximum likelihood classification algorithm indicate a high ability to identify 382 

roads and associated features within the 0.5m imagery, mirroring that seen by manual digitisation 383 

(Table 3; Fig. 2). Results from image classification also indicate that the spatial detail available within 3m 384 

imagery is too coarse to classify roads in this district accurately (38% and 5% accuracy for dirt and 385 

tarmac roads respectively). This result is to be expected as the majority of roads within Koboko district 386 

rarely exceed a width of 3m, resulting in decreased visibility; narrow roads are likely to be common 387 

across large parts of rural Africa. The utility of 3m imagery may be greater in more developed areas, 388 

where roads exceed 3m in width.  389 

 390 

Despite a higher image classification accuracy and a better model fit to training data, the 0.5m 391 

resistance surface appears to under-perform when presented with out-of-sample, withheld tracking 392 

data compared to the 3m resistance surface (Table 4, Fig. S5). Both resistance surfaces show a 393 

significant linear relationship between observed and predicted values, however, the 3m resistance 394 

surface has a lower root-mean-square error (3.93 vs 6.01 respectively). This under-performance may be 395 

due to the increased number of roads within the 0.5m resistance surface, and some of the assumptions 396 

made regarding travel along roads of differing class. When using the surfaces to identify optimal 397 

placement of sentinel-sites, the relative travel-time to each cell is more informative than the actual 398 

travel-time. Despite varying RMSEs, the significant relationship between predicted and observed travel 399 

times, support the utility of the generated surfaces. 400 

 401 
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By combining the generated 3m accessibility surface (Fig. 3) with previously published estimates of 402 

tsetse-abundance (11), we provide a novel framework for the identification of  cost-effective locations in 403 

which to place sentinel-monitoring sites (Fig. 4). Previous methods to inform the placement of sentinel-404 

monitoring sites have been based on intuition, incorporating knowledge of tsetse ecology and local 405 

knowledge of roads within an intervention area. Here, we further quantify this process, providing a 406 

more robust approach that can be applied to a range of vector-borne diseases. The movement from a 407 

nuanced, ad-hoc process to an evidence-based one will allow for a more efficient assessment of tsetse 408 

control programmes. The application of the methods used here to the context of intervention 409 

monitoring and assessment is novel, and the refinement of results has several cost-effective implications 410 

as vector control expands to other areas within the region. 411 

 412 

Several important vector-borne NTDs have been targeted for elimination as a public-health problem by 413 

2020 within the WHO NTD roadmap (4). Unfortunately, however, the burden of numerous VBDs will 414 

continue beyond the ambitious 2020 target (36-38). As evident within the WHO roadmap, both disease 415 

and vector surveillance form large components of most elimination strategies; however, the Strategic 416 

and Technical Advisory Group (STAG) for NTDs also recognise the need for a better understanding of the 417 

economic aspects of NTD control. By providing methods to ensure that vector control programmes 418 

operate at maximum cost-effectiveness, we can ensure that the limited funding associated with some of 419 

these NTDs has the largest impact.  420 

 421 

Although this analysis does not serve as an economic evaluation of methods to assess control 422 

programme efficacy, previous work has shown that vehicle running and travel costs are within the top 423 

five associated costs of running a tsetse control programme (39, 40), with staff salaries being the most 424 

expensive element. By strategically placing sentinel-monitoring sites in locations that are associated 425 
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with a low accessibility cost, programmes can reduce costs associated with travel (e.g., fuel, 426 

maintenance) and staff expenses, with current costs of tsetse monitoring being ~9.0$/km2/year (10.6% 427 

of tsetse control programme budgets) (40). The accessibility surface may also contribute toward cost-428 

effective planning of pre-intervention surveys, which are responsible for roughly 6% of control program 429 

budgets (40). Furthermore, by informing the positioning of these sites by additional metrics, such as pre-430 

intervention abundance, we identify locations that may provide more accurate evaluations of control 431 

efficacy. Accessibility, in general, is a very sought-after metric and the methodology applied here, 432 

although currently restricted to one district in Northern Uganda and limited to the purpose of 433 

identifying accessible tsetse monitoring sites, could inform other accessibility analyses within the area 434 

such as access to HAT diagnostic centres, and be applied to a range of vector-borne diseases. 435 
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