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Abstract 21 

Routine strain-level identification of plant pathogens directly from symptomatic tissue could 22 

significantly improve plant disease control and prevention. Here we tested the Oxford Nanopore 23 

Technologies (ONT) MinIONTM sequencer for metagenomic sequencing of tomato plants either 24 

artificially inoculated with a known strain of the bacterial speck pathogen Pseudomonas 25 

syringae pv. tomato (Pto), or collected in the field and showing bacterial spot symptoms caused 26 

by either one of four Xanthomonas species. After species-level identification using ONT’s WIMP 27 

software and the third party tools Sourmash and MetaMaps, we used Sourmash and MetaMaps 28 

with a custom database of representative genomes of bacterial tomato pathogens to attempt 29 

strain-level identification. In parallel, each metagenome was assembled and the longest contigs 30 

were used as query with the genome-based microbial identification Web service LINbase. Both 31 

the read-based and assembly-based approaches correctly identified Pto strain T1 in the 32 

artificially inoculated samples. The pathogen strain in most field samples was identified as a 33 

member of Xanthomonas perforans group 2. This result was confirmed by whole genome 34 

sequencing of  colonies isolated from one of the samples. Although in our case, metagenome-35 

based pathogen identification at the strain-level was achieved, caution still needs to be exerted 36 

when interpreting strain-level results because of the challenges inherent to assigning reads to 37 

specific strains and the error rate of nanopore sequencing. 38 

 39 

Introduction 40 

Early detection of plant disease outbreaks and accurate plant disease diagnosis are 41 

prerequisites of efficient plant disease control and prevention (Tinivella et al. 2008). In many 42 

cases, an experienced plant pathologist can quickly diagnose a disease based on symptoms. 43 

However, visual diagnosis does not identify the causative agent at the strain-level. For example, 44 

three different strains of the plant pathogen Pseudomonas syringae pathovar (pv.) tomato (Pto) 45 

cause indistinguishable bacterial speck disease symptoms in tomato (Cai et al. 2011). 46 

Sometimes, visual diagnosis cannot even identify a pathogen at the species level. For example, 47 

four different species of the genus Xanthomonas cause indistinguishable bacterial spot disease 48 

symptoms on tomato (Solanum lycopersicum) leaves (Jones et al. 2004). Note that in this 49 

article, we use the term “strain” as an intraspecific, monophyletic group of bacteria, which have 50 
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a very recent common ancestor and are thus genotypically and phenotypically more similar to 51 

each other than to other members of the same species (Dijkshoorn et al. 2000). To avoid 52 

confusion, we use the term “isolate” instead of “strain” when referring to a pure culture of 53 

bacteria isolated on a specified date at a specified geographic location from a specific plant. 54 

While most disease control measures may be the same for different pathogen strains or 55 

species, depending on the precise identity of the pathogen, additional control measures may 56 

need to be undertaken. For example, different strains of the same pathogen species may have 57 

different host ranges. Therefore, it may be necessary to avoid certain crop rotations or to 58 

eliminate certain weeds depending on the identity of the strain that causes a disease and its 59 

specific host range. In the case of Pto, strain T1 causes disease only in tomato while strain 60 

DC3000 causes disease in tomato and in leafy greens of the family Brassicaceae (Yan et al. 61 

2008). Strain DC3000 could thus spread from tomato fields to leafy green fields, cause disease 62 

in a leafy green planted after tomato, and/or survive in weeds that belong to the Brassicaceae 63 

family. In other cases, identifying a pathogen to strain level could even trigger eradication 64 

procedures to stop further spread of the disease. For example, this would happen if the select 65 

agent Ralstonia solanacearum Race 3 Biovar 2 were to be identified as the causative agent of 66 

bacterial wilt disease outbreak in the USA (Williamson et al. 2002). Fast strain-level plant 67 

pathogen identification would thus add significant value to plant disease diagnostics. 68 

Many molecular tools have been developed over the years for pathogen identification. 69 

They all have their strengths and weaknesses (Fang and Ramasamy 2015). Many of them 70 

depend on a pure pathogen culture and thus require lengthy procedures to isolate and culture 71 

the pathogen from the plant tissue.  Moreover, many of them cannot identify pathogens at the 72 

strain level. Gene sequence-based techniques, such as multilocus sequence typing/analysis 73 

(MLST/A) (Almeida et al. 2010), can identify a pathogen to strain-level but usually require pure 74 

cultures. Moreover, gene sequence-based techniques depend on previous species-level 75 

identification because different species require different primers to amplify the genes to be 76 

sequenced by polymerase chain reaction (PCR), for example see (Rees-George et al. 2010). 77 

One alternative gene-based method is to amplify the 16S rRNA gene directly from DNA 78 

extracted from plant tissue and to identity the putative pathogen based on its 16S rRNA 79 

sequence. We have recently tested this method but not found it to be suitable because of its low 80 

resolution (Mechan-Llontop et al. 2019). 81 

Whole genome sequencing (WGS) does not require PCR and strain-level identification is 82 

now routine practice in the surveillance of food-borne pathogen outbreaks in several countries 83 

(Nadon et al. 2017). With the drop in sequencing cost and development of genome databases 84 

that contain strain-level classification of plant pathogens, WGS now represents a real possibility 85 

in plant disease diagnostics. For example, LINbase at linbase.org (Tian et al. 2019) contains 86 

precise genome-based circumscriptions for many bacterial plant pathogens from the genus level 87 

to the strain level. Genome sequences of unknown isolates can be identified as members of 88 

circumscribed plant pathogens based on how similar they are at the whole genome level, 89 

measured as Average Nucleotide Identity (ANI) (Konstantinidis and Tiedje 2005), to the other 90 

members of these taxa. However, the limitation of WGS is its dependence on pure cultures. 91 

Metagenomic sequencing consists in extracting DNA directly from plant tissue followed 92 

by sequencing all DNA present in the sample. Compared to WGS, the two main advantages of 93 

this approach are that (1) it is much faster because it does not require lengthy pathogen 94 

isolation and culturing procedures; and (2) it does not require much prior knowledge about the 95 

pathogen since any pathogen, besides RNA viruses, can be detected with this method. 96 

However, the main challenge of this approach is that the obtained DNA sequences also contain 97 

host plant sequences and microbe sequences that do not belong to the pathogen. Therefore, 98 

obtaining sufficient sequences of the causative agent and identifying the causative agent among 99 

all the other potential causative agents present in the same plant requires optimized 100 
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experimental methods for DNA extraction and sequencing and optimized algorithms and 101 

genome databases for precise pathogen identification. 102 

The sequencing method that is currently most attractive for metagenomics-based 103 

pathogen identification is nanopore sequencing with the Oxford Nanopore Technologies (ONT) 104 

MinIONTM device (Jain et al. 2016). The main strengths of this method are that (1) DNA can be 105 

prepared for sequencing with relatively short protocols (from a few hours to less than an hour; 106 

https://community.nanoporetech.com), (2) the MinIONTM sequencer is not much larger than a 107 

USB stick and can be used with a desktop or a laptop computer in the lab or even in the field, 108 

(3) it provides the first sequencing results within minutes from the start of a sequencing run, and 109 

(4) the output can reach over 10 gigabases of DNA sequences (more than 1000 times the size 110 

of an individual bacterial genomes) after 48 hours (MinION brochure 2019a). However, the 111 

major weaknesses are (1) the high sequencing error rate of approximately 10% (Tedersoo et al. 112 

2019; Loit et al. 2019) and (2) that the sequencing hardware only works once at full capacity 113 

limiting reuse (MinION brochure 2019b). 114 

Metagenomic sequencing with the MinIONTM has already been used on several crops for 115 

identification of various pathogens (Chalupowicz et al. 2019) using ONT’s software WIMP (Juul 116 

et al. 2015) and on wheat to identify various fungal pathogens (Hu et al. 2019) using the 117 

sequence alignment tool BLASTN (Camacho et al. 2009) in combination with custom 118 

databases. The MinIONTM has also been used for plant pathogen detection and identification 119 

starting from extracted RNA or DNA in combination with general or specific primers to increase 120 

the quantity of input for the MinIONTM (Loit et al. 2019; Badial et al. 2018). However, in none of 121 

these studies, was strain-level identification attempted directly from sequencing metagenomic 122 

DNA without prior amplification. 123 

Here we tested the MinIONTM with tomato plants artificially inoculated with different 124 

strains of Pseudomonas syringae, including isolates of the Pto strains T1 and DC3000 (Cai et 125 

al. 2011), and with plants from tomato fields showing symptoms of natural infection with 126 

bacterial spot for which we did not know the Xanthomonas species that caused the infection. 127 

We then explored the precision of identification that can be achieved when using ONT’s WIMP 128 

software, Sourmash (Brown and Irber 2016), and MetaMaps (Dilthey et al. 2019) in combination 129 

with default and custom reference databases. We also assembled metagenomic sequences into 130 

contigs and identified contigs in combination with BLASTN (Camacho et al. 2009) and in 131 

combination with the LINbase Web service for genome-based microbial identification (Tian et al. 132 

2019). 133 

 134 

Materials and Methods 135 

Laboratory-infected tomato plants 136 

Seeds of tomato (Solanum lycopersicum) ‘Rio Grande’ were germinated in potting mix soil 137 

(Miracle-grow, OH, USA) under laboratory conditions with a long day period (16-h photoperiod) 138 

and infected at 4 weeks of age. Pto isolate K40 (belonging to strain T1), Pto isolate DC3000 139 

(belonging to strain DC3000) (Cai et al. 2011), P. syringae pv. syringae B728a (Feil et al. 2005), 140 

and P. syringae 642 (Clarke et al. 2010) were grown in King’s B solid medium at 28oC for 24 141 

hours. Isolate Pto K40 was suspended at a concentration corresponding to an OD600 of 0.001 142 

in 10 mM MgSO4 for single-strain inoculation. For the mixed-strain inoculation, all four isolates 143 

were suspended at an OD600 of 0.001 in 10 mM MgSO4 and pooled together in equal amounts 144 

before inoculation. Silwet L-77  was added to bacterial suspensions (0.025% vol/vol) to facilitate 145 

bacterial infection. Plants were placed in ziplock plastic bags for high humidity conditions for 24 146 

hours before inoculation. After plants were spray-inoculated with 10 ml of bacterial suspensions, 147 

they were placed back into the plastic bags for another 24 hours. Plants were processed for 148 

DNA extraction three days later. Inoculation with 10mM MgSO4  was included as a mock 149 

treatment. 150 

 151 
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Naturally infected tomato plants 152 

Five tomato plants with bacterial spot symptoms, one plant with symptoms of Septoria leaf spot, 153 

and one plant without symptoms were collected on August 10, 2018, on the Eastern Shore of 154 

Virginia (Accomack and Northampton counties) and shipped overnight to the Virginia Tech 155 

campus in Blacksburg, VA, where they were processed for DNA extraction. Another set of 156 

plants with bacterial spot symptoms were collected in May, 2019. Bacteria were isolated from 157 

symptomatic leaves on King’s medium B. Plants and plates were shipped to the Virginia Tech 158 

campus overnight where plants and bacterial colonies were processed for DNA extraction. 159 

 160 

DNA extraction 161 

All plant samples used for DNA extraction are listed in Table 1. DNA extraction was performed 162 

according to (Ottesen et al. 2013) with the following modifications. Briefly, wearing gloves, the 163 

top of each plant sample (6 to 10 leaves from the top with or without stems) was collected using 164 

clippers. The weight of samples was between 5 to 10 grams. After removing all the dirt from the 165 

plant surface by shaking vigorously, each sample was placed in a 6-1/2"× 5-7/8" Ziploc® bag 166 

together with 300 ml sterilized double-distilled water (DDW). Samples were sonicated for 15 167 

minutes using a Branson 1510 Ultrasonic Cleaner. DNA was extracted with DNeasy® 168 

PowerWater® Kit (QIAGEN; Catalog # 14900-50-NF). All steps for DNA extraction were 169 

performed according to the kit’s specifications, except that after adding 1 mL of the kit’s solution 170 

PW1, the tube was incubated at 65ºC for 15 minutes and then vortexed for 20 minutes. 171 

DNA from isolated bacteria was extracted with the Gentra® Puregene® Cell and Tissue 172 

Kit (Gentra Systems; Catalog # D5000). All steps for DNA extraction were performed according 173 

to the Gram-negative Bacteria protocol, except that cells were collected in 1 mL of sterilized 174 

DDW in a 1.5 ml microcentrifuge tube for the lysis step. For both extraction procedures, the 175 

concentration and purity of DNA was measured using a Thermo Scientific™ NanoDrop™ OneC 176 

Spectrophotometer. 177 

 178 

DNA library preparation 179 

Library preparation was performed according to the ‘1D Native barcoding genomic DNA 180 

protocols (EXP-NBD104, EXP-NBD114, and SQK-LSK108 or SQK-LSK109) provided by ONT. 181 

Sequencing libraries were prepared using the Ligation Sequencing Kit (ONT Ltd.; SQK-182 

LSK109). For each run, NEBNext® Ultra™ II End Repair/dA-Tailing Module (New England 183 

Biolabs, Inc.; Catalog # E7546S) was used for DNA repair and end-prep for each sample. 184 

Repaired DNA was cleaned up by 1.5 volumes of AMPure XP beads, washed on a magnetic 185 

rack using freshly made 70% ethanol, and eluted with 25 μL nuclease-free water. 22.5 μL elute 186 

was used for barcoding by mixing with the Blunt/TA Ligase Master Mix (New England Biolabs, 187 

Inc.; Catalog # M0367S) and Native Barcode (Oxford Nanopore Technologies Ltd.; Native 188 

Barcoding Expansion Kit EXP-NBD104), followed by another wash step using 1.5 volumes of 189 

AMPure XP beads, and DNA was eluted in 26 μL nuclease-free water. Equimolar amounts of 190 

barcoded DNA were then pooled into a 1.5 mL microcentrifuge for ligation. Adapter ligation was 191 

performed by mixing the pooled barcoded sample with Adapter Mix (Oxford Nanopore 192 

Technologies Ltd.; SQK-LSK109), NEBNext® Quick Ligation Reaction Buffer (New England 193 

Biolabs, Inc.; Catalog # B6058S) and Quick T4 DNA Ligase (New England Biolabs, Inc.; 194 

Catalog # M2200S). Ligated DNA was cleaned up by one volume of AMPure XP beads, washed 195 

on a magnetic rack using Long Fragment Buffer (Oxford Nanopore Technologies Ltd.; SQK-196 

LSK109), and eluted with 15 μL Elution Buffer (Oxford Nanopore Technologies Ltd.; SQK-197 

LSK109). 198 

Sequencing reactions were performed independently for each run on a ONT MinIONTM 199 

flow cell (FLO-MIN106 R9 Version) connected to a Mk1B device (ONT Ltd.; MIN-101B) 200 

operated by the MinKNOW software (latest version available). Each flow cell was primed with 201 

the priming buffer prepared by mixing 30 μL Flush Tether (ONT Ltd.; EXP-FLP001) with a tube 202 
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of Flush Buffer (ONT Ltd.; EXP-FLP001). 12 μL of the final library mixed with Sequencing Buffer 203 

(ONT Ltd.; SQK-LSK109) and Library Loading Beads (ONT Ltd.; SQK-LSK109) was loaded 204 

onto the SpotON sample port of the flow cell in a dropwise fashion. The sequencing run was 205 

stopped after 48 hours. 206 

 207 

Illumina genome sequencing and assembly 208 

Genomic DNA from isolated bacteria was used to prepare 350bp insert DNA libraries and 209 

sequence on an Illumina platform PE150 at Novogene Corporation Inc (Sacramento, CA). 210 

FastQC was used to assess the quality of the raw sequencing data (Andrews 2010). Adapter-211 

trimming was performed using BBduk with the parameters 'k=23, mink=9, hdist=1, ktrim=r, 212 

minlength=100' (Bushnell 2015). Unicycler v0.4.7 with default parameters was used to de novo 213 

assemble the bacterial genomes (Wick et al. 2017). 214 

 215 

Read-based metagenomic analysis  216 

Guppy 217 

For all samples, the Fast5 files containing raw reads were base-called with the base-calling 218 

ONT software Guppy (v3.3.2), which uses neural networks to translate raw signals into DNA 219 

sequences in fastq format (available via https://community.nanoporetech.com).  220 

What’s in my pot? (WIMP) 221 

The ONT workflow WIMP (v2019.7.9), which uses Centrifuge (Kim et al. 2016) to assign 222 

taxonomy to reads in real-time, was used for species level identification in all samples.  223 

Sourmash 224 

Sourmash, a command-line tool used for k-mer based taxonomic classification for genomes and 225 

metagenomes, computes MinHash sketches to create signatures of DNA sequences which are 226 

then used to assign taxonomic annotations. The gather function in this software was used for 227 

taxonomic classification at the species- and strain-level. For species-level classification, the 228 

default Genbank LCA database (v.2018.03.29, k=31) containing 100,000 microbial genomes 229 

was used. For strain level-classification, a custom library with 245 microbial genomes 230 

representative of  tomato plant pathogens and close relatives was used. A complete list of 231 

genomes used in the custom reference library is provided in Supplementary Table 1. For all 232 

samples, signatures were computed at 31 k-mer size (for species level) and 51 k-mer size (for 233 

strain level) and abundance filtering was performed to exclude k-mers with an abundance of 1 234 

(Brown and Irber 2016). Sourmash was run on Virginia Tech’s High Performance Computing 235 

system, Advanced Research Computing (ARC), with 32 cores and 128GB memory. 236 

MetaMaps 237 

Metamaps (Dilthey et al. 2019) was used for taxonomic classification at the species-level using 238 

the miniSeq+H database, which includes more than 12,000 microbial genomes and is included 239 

with the software package. For strain-level classification, the custom library described above for 240 

Sourmash was used. However, the list of genomes was reduced to 149 to include only those 241 

genomes that had NCBI taxonomy IDs as per a prerequisite for Metamaps. MetaMaps was also 242 

run on Virginia Tech’s High Performance Computing system, Advanced Research Computing 243 

(ARC), with 32 cores and 128GB memory. 244 

Metagenome-assembled genome analysis 245 

The reads of each metagenome were mapped using minimap2 (Li 2018) with the -x and ava-ont 246 

parameters and then a de novo assembly was performed for each metagenome using the long 247 

reads assembler miniasm with default parameters (Li 2016).    248 

BLAST 249 

The assemblies of each metagenome were used as input to the command-line version of 250 

BLASTN (Camacho et al. 2009) against the bacterial tomato pathogens custom database 251 

described above and with the parameter of e-value set to less than or equal to 0.01. The top hit 252 

was determined to be the alignment with the longest length for each contig. 253 
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LINbase 254 

The longest two contigs in each metagenome were used as input to LINbase at linbase.org 255 

(Tian et al. 2019) with the function “Identify using a genome sequence” to identify the pathogens 256 

at the strain level. 257 

 258 

 259 

Results 260 

Read-based pathogen identification after single-strain inoculation in the laboratory 261 

Tomato plants inoculated with Pto isolate K40 (strain T1) in the laboratory showed bacterial 262 

speck symptoms four days after inoculation (Figure 1A), at which time DNA was extracted.  263 

The quantity and quality of the extracted DNA is listed in Table 2. An entire MinIONTM 264 

flow cell was used to sequence this sample (called L-K40). Of all the sequencing reads, 265 

1,377,617 reads (approximately 60% of the total number of reads) were base-called after the 266 

run was completed using the guppy software. The base-called reads had a total length of 267 

approximately 4.2 Gigabases (Gbp) with the longest read measuring 66,000 bp (see more 268 

details about reads in Table 1). 269 

The base-called reads were used as input to WIMP, which classified 89% of reads as of 270 

bacterial origin. Of these reads, WIMP identified 77.47% as P. syringae genomospecies 3, a 271 

genome similarity group of which Pto is a member. This genome similarity group was never 272 

validly published as a named species and is thus referred to with the number 3 instead of a 273 

name (Gardan et al. 1999). Also NCBI’s taxonomy database (Sayers et al. 2009) includes this 274 

taxon as P. syringae genomospecies 3. The next most abundant species were identified as P. 275 

syringae (9.39%), P. cerasi (2.09%), and P. savastanoi (1.60%). Figure 2 shows a screenshot of 276 

the WIMP result. The composition analysis is shown in Figure 3A (see Supplementary Table 2 277 

for all relative abundance values for all composition analyses shown in Figure 3 and 4). 278 

Next, the reads were used as input for composition analysis using Sourmash (Brown 279 

and Irber 2016) and MetaMaps (Dilthey et al. 2019) using the default reference libraries 280 

provided by these programs. Results are shown in Figure 3A. Sourmash identified 56.84% of 281 

the reads as P. syringae genomospecies 3 while MetaMaps identified over 91.53% of the reads 282 

as P. syringae genomospecies 3. Similarly to WIMP, both programs identified P. syringae as the 283 

next most abundant species (14.41% and 4.17%, respectively). All other species were found at 284 

a relative abundance of 2% or below. Therefore, WIMP, MetaMaps, and Sourmash all correctly 285 

identified the pathogen used in the inoculation as a member of P. syringae genomospecies 3. 286 

Supplementary Table 3 reports the run times for the three tools for this sample. 287 

In an attempt to reach strain level resolution (not that WIMP is limited to species-level 288 

identification), we built Sourmash and MetaMaps custom reference libraries consisting of 289 

genome sequences of representative bacterial tomato pathogen isolates and closely related 290 

isolates that do not cause disease on tomato. The libraries included multiple isolates of the Pto 291 

strains DC3000 and T1 (Supplementary Table 2). When using these custom libraries, Sourmash 292 

identified 71.64% of the sequences in the sample as Pto isolate T1 (the isolate after which strain 293 

T1 is named) and the remaining sequences as other P. syringae isolates that are not pathogens 294 

of tomato (Table 2). Only 0.9% of the sequences were misidentified as Pto DC3000. MetaMaps 295 

in combination with the same custom library identified 70.93% as Pto isolate T1, 15.90% as Pto 296 

isolate NCPPB1108 (another isolate belonging to strain T1), and 7.81% as Pto isolate DC3000. 297 

Therefore, both Sourmash and MetaMaps identified most of the reads correctly as an isolate 298 

belonging to Pto strain T1 but Metamaps misidentified many more reads as Pto strain DC300 299 

compared to Sourmash. 300 

 301 

Read-based pathogen identification after multi-strain inoculation in the laboratory 302 

Next, we wanted to test the bioinformatics pipelines established with the single-strain inoculation 303 

by using a mixed inoculum consisting of the Pto isolate K40 (strain T1) and the Pto isolate 304 
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DC3000 (strain DC3000) of P. syringae genomospecies 3 together with two additional isolates 305 

of the species P. syringae that do not cause disease on tomato: the bean pathogenic isolate 306 

Psy B728a and the non-pathogenic isolate Psy 642. DNA was again extracted on day four after 307 

inoculation and sequenced on an entire flow cell. All details for this sample (called L-mix) are 308 

listed in Table 1. Approximately 1 million reads of a total length of 4.2 Gbp were obtained with 309 

the longest read measuring 67,000 bp. Since this time 100% of reads were base-called, the 310 

number of base-called reads and the total length of reads were very similar to the single strain 311 

inoculation sample. 312 

The caveat with this sample is that we did not know the relative abundance of the 4 313 

isolates in the sample. However, since Pto isolates T1 and DC3000 are tomato pathogens while 314 

Psy isolates B728a and 642 are not, we expected that most sequences would be identified 315 

again as P. syringae genomospecies 3. In fact, WIMP identified 79.61% of all bacterial 316 

sequences (which constituted 95% of all reads) as P. syringae genomospecies 3 (Figure 3B), 317 

similar to the 77.47% identified in the single-strain inoculation sample. Compared to WIMP, 318 

Sourmash and MetaMaps showed the same trend as with the single strain inoculation sample: 319 

Sourmash found a lower relative abundance of P. syringae genomospecies 3 (43.24%) 320 

compared  to WIMP and MetaMaps found a higher relative abundance compared to WIMP 321 

(91.09%) (Figure 3B). 322 

Since both Psy isolates used in the inoculation belong to the species P. syringae, we 323 

expected a slightly higher relative abundance of P. syringae compared to the single strain 324 

inoculation sample. Interestingly, this expectation came true for Sourmash (36.87% versus 325 

14.4%) but for WIMP and MetaMaps the relative abundance of P. syringae only increased 326 

marginally from 9.38% to 10.01% and from 4.17% to 5.39%, respectively (Figure 3B). 327 

We then used the custom reference libraries of representative tomato pathogens to see 328 

if Sourmash and MetaMaps could distinguish isolate K40 (of strain T1) from isolate DC3000 (of 329 

strain DC3000). Sourmash did identify isolate T1 of strain T1 at a relative abundance of 65.98% 330 

and isolate DC3000 of strain DC3000 at a relative abundance of 16.01% (Table 2) while 331 

MetaMaps identified 84.71% of the reads as isolates that belong to strain T1 and 5.61% as 332 

isolate DC3000 (not shown in Table 2 since only the top three hits are shown for each sample). 333 

Since we did not know the correct relative abundances of strains in this inoculated plant 334 

sample and could thus not determine how accurate the results were, we decided to sequence 335 

an additional sample (called L-culture-mix) that consisted of DNA extracted from an equal 336 

mixture of the same four strains after they were grown separately overnight in liquid culture. 337 

Approximately 54,000 reads of a total length of 150 Mbp were obtained on 1/6th of a flow cell 338 

with the longest read measuring 76,000 bp. WIMP classified 95% of the reads as bacterial. 339 

WIMP, MetaMaps, and Sourmash identified both, P. syringae and P. syringae genomospecies 3 340 

in this sample, which we expected to be present at 50% each. WIMP over-estimated P. syringae 341 

compared to P. syringae genomospecies 3 (56% compared to 28%) and identified some other 342 

species at low relative abundance (Figure 3C). Metamaps also overestimated P. syringae 343 

compared to P. syringae genomospecies 3: 65.58% vs 32.19%. Sourmash came the closest to 344 

the expected 1 to 1 ratio finding 52.20% of P. syringae and 41.68% of P. syringae 345 

genomospecies 3  (Figure 3C). When using the custom reference libraries of tomato pathogens 346 

with MetaMaps and Sourmash, MetaMaps outperformed Sourmash since it identified DC3000 347 

and T1 close to the expected 25% abundance: 38.89% and 27.48%, respectively (Table 2).  348 

Sourmash instead assigned a much higher abundance to strain DC3000 (75.1%) compared to 349 

strain T1 (19.63%) (Table 2). 350 

Finally, we sequenced a tomato plant grown in the lab that was not inoculated with any 351 

pathogen (called sample L-mock). Since the DNA concentration of this sample was very low, 352 

only approximately 82,000 base-called reads were obtained on 1/7th of a flow cell with a total 353 

length of 103 Mb. The longest read was only 19,000 bp long. Only 8% of the reads were 354 

classified as bacterial showing that this lab-grown plant was not colonized by many bacteria, 355 
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which was probably also the reason for the low DNA concentration. WIMP, Sourmash, and 356 

Metamaps provided very different results for this sample (Figure 3D). Importantly, as expected 357 

from a non-inoculated plant, none of the reads were identified by either of the three tools as P. 358 

syringae or P. syringae genomospecies 3. 359 

 360 

Read-based pathogen identification in naturally infected tomato field samples 361 

After obtaining promising results in regard to strain-level identification with laboratory samples, 362 

we used DNA extracted from tomato field samples that were collected on the Eastern Shore of 363 

Virginia to test our pipelines with naturally infected plants (Table 1). The samples came from 364 

tomato plants that either showed symptoms of bacterial spot (samples F1-bs, F2-bs, F4-bs, F7-365 

bs, F8-bs; see Figure 1B), symptoms of the fungal disease Septoria leaf spot (sample F5-366 

Septoria) or no signs of any disease (F6-healthy). We also obtained one sample (F3-bs) with 367 

symptoms of bacterial spot but colonies that had been obtained from culturing bacteria from this 368 

plant had been found to be a mixture of colonies identified as either Pseudomonas or 369 

Xanthomonas. 370 

DNA from all tomato field samples were barcoded and sequenced together with other 371 

samples by multiplexing them on the same flow cell. Therefore, the number of reads (between 372 

35,923 for samples F6-healthy and 137,497 for F1-bs) and total read length (between 66 373 

megabases (Mb) for F6-healthy and 588 Mb for F1-bs) for these samples were much lower 374 

compared to the laboratory samples (Table 1). 375 

Detailed results for all samples are reported in Figure 4. Similarly to the lab-inoculated 376 

samples, the majority of reads in the field samples that had symptoms of bacterial disease were 377 

classified as bacteria by WIMP (between 78 and 81%). Importantly, WIMP and Sourmash 378 

agreed that X. perforans was the species with the highest relative abundance in these samples 379 

(between 25.82% and 56.44% for WIMP and between 18.51 and 66.01% for Sourmash) 380 

suggesting that X. perforans was the causative agent. Sample F3-bs, which had a mixed 381 

Xanthomonas/Pseudomonas infection based on culturing, was found by both WIMP and 382 

Sourmash to still be dominated by X. perforans (21.98% and 19.55% respectively) followed by 383 

either P. oryzihabitans (10.11%) and P. fluorescens (5.09%) based on WIMP or P. putida 384 

(16.98%) based on Sourmash. Therefore, the presence of a mixed infection was confirmed by 385 

both tools. 386 

In contrast to the results from WIMP and Sourmash, MetaMaps identified X. 387 

euvesicatoria and  X. alfalfae instead of X. perforans as the two species with the highest relative 388 

abundance in all samples with bacterial spot symptoms. This is because X. perforans was 389 

missing from the MetaMaps reference library. 390 

Interestingly, even the non-symptomatic tomato sample (F6-healthy) was found to 391 

include X. perforans as the species with the highest relative abundance based on WIMP and 392 

Sourmash. However, the relative abundance values were lower (6.89% and 18.54%, 393 

respectively). This suggests that this plant might have been infected with X. perforans but was 394 

asymptomatic because of lower bacterial titer. This non-symptomatic sample also included a 395 

number of species at relatively high abundance that were rarely found in the samples with 396 

bacterial spot symptoms, for example, P. oleovorans, Sphingomonas parapaucimobilis, 397 

Microbacterium sp. Leaf203, and Methylobacterium populi. 398 

The sample with Septoria leaf spot symptoms (F5-Septoria), probably infected by the 399 

plant pathogenic fungus Septoria lycopersici, carried a diverse bacterial population consisting of 400 

species in the genera Pseudomonas, Xantomonas, Pantoea, Curtobacterium, 401 

Methylobacterium, and Sphingomonas. No species in the fungal genus Septoria was included in 402 

any of the reference libraries and was thus not identified by any of the programs. 403 

When we switched to Sourmash and MetaMaps using our custom database of 404 

representative bacterial tomato pathogens as reference libraries, X. perforans isolates TB9, 405 

TB15, and Xp9-5 were identified as the top hits in all plants with bacterial spot symptoms with 406 
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the exception of F3-bs, which had the mixed Pseudomonas/Xanthomonas infection. In this 407 

sample, isolate Xp17-12 was identified by both Sourmash and MetaMaps as top hit. 408 

Interestingly, isolates TB9, TB15, and Xp9-5 are all members of the same intraspecific group, X. 409 

perforans group 2, based on core genome phylogeny (Schwartz et al. 2015), suggesting that the 410 

X. perforans strain infecting the tomatoes with bacterial spot symptoms on the Eastern Shore of 411 

Virginia was also a member of X. perforans group 2. 412 

For sample F8-bs, we also isolated Xanthomonas bacteria to compare the results from the 413 

culture-independent read-based metagenomic approach with a culture-dependent genomic 414 

approach. DNA was extracted from two colonies and sequenced using Illumina HiSeq. The two 415 

genome sequences were assembled into 87 and 86 contigs, respectively, with a total length of 416 

5,340,265 bp and 5,339,287 bp. We used the LINbase Web service for genome-based microbial 417 

identification and found isolate GEV1063 to be the best match for both genomes with 99.98% 418 

ANI and both genomes were identified by LINbase as members of X. perforans group 2, which 419 

is circumscribed in LINbase as an intraspecific taxon. Therefore, the culture-dependent 420 

genome-based identification confirmed the culture-independent read-based strain-level 421 

identification of X. perforans group 2 as the causative agent in sample F8-bs. 422 

 423 

Metagenome assembly-based pathogen identification 424 

In parallel to the read-based pipelines described above, we also assembled each metagenomic 425 

sample using all reads that had a minimum length of 1,000 bp and that were identified by WIMP 426 

as bacterial. The results are summarized in Table 3. The non-inoculated tomato sample from 427 

the lab (L-mock), the healthy tomato sample from the field (F6-healthy), and the sample of the 428 

tomato plant with Septoria leaf spot (F5-Septoria) had the lowest number of contigs (between 4 429 

and 9) with the shortest  total length of contigs (between 21,390 bp and 122,956 bp). This was 430 

probably a result of the low number of bacterial reads in these samples (Table 1). 431 

The samples with symptoms of either bacterial speck or bacterial spot had a wide range 432 

in contig number and in the total length of contigs ranging from 10 to 131 contigs of a total 433 

length from 5.2 to 12.5Mbp. For our goal of identifying the causative agent in each symptomatic 434 

plant to strain level, we focused on the longest contigs in each sample since these contigs were 435 

the most likely to be of the causative pathogenic agents. It was very promising to see that in 436 

some of the symptomatic samples the longest contig was of a size similar to an entire bacterial 437 

genome, for example, 6.08Mbp in the tomato lab sample inoculated with Pto isolate K40 (L-438 

K40), and 5.03Mbp for the field sample F7-bs showing bacterial spot symptoms (Table 3). We 439 

then used the genome alignment tool MUMmer (Marçais et al. 2018) to determine how much of 440 

the published genome sequences these contigs covered. We found that in the case of sample 441 

L-K40, the longest contig aligned with 93.92% of the published genome sequence of isolate 442 

K40. For F7-bis, the longest contig aligned with 95.52% of the published X. perforans genome 443 

of Xp8-16. 444 

To obtain a preliminary identification of all contigs we used BLASTN (Camacho et al. 445 

2009) in combination with our custom tomato pathogen database. The results were mostly in 446 

agreement with the reads-based analysis at the species level (Figure 5) but X. euvesicatoria 447 

was identified as species instead of X. perforans in some of the samples with bacterial spot. 448 

To attempt identification of the longest contigs to strain level, we used these contigs as 449 

queries with the “Identify using a genome sequence” function in the LINbase Web service (Tian 450 

et al. 2019). Table 4 lists the results that were obtained for the longest two contigs (separately 451 

and merged) for each sample. When using the longest contig of the tomato plant inoculated with 452 

isolate K40 (of Pto strain T1), the Pto strain T1 isolate BAV1020 was the best hit but only with 453 

an ANI of 92.76% compared to the query sequence. However, based on a direct genome 454 

sequence comparison, the two genomes are over 99.75% identical to each other. Since we 455 

know that isolate K40 was used as inoculum, the discrepancy between the two ANI value is 456 

necessarily a result of the high error rate of the MinIONTM sequencer. 457 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 23, 2019. ; https://doi.org/10.1101/777706doi: bioRxiv preprint 

https://doi.org/10.1101/777706
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10

For the tomato plant inoculated with the four-strain mix, the longest contig was again 458 

identified as Pto strain T1 based on the best hit to Pto isolate T1 with an ANI value of 92.73%. 459 

No contig of significant length was identified as Pto isolate DC3000. Since the genomes of Pto 460 

isolates DC3000 and T1 are over 98.5% identical to each other, the longest contig of this 461 

sample was probably assembled from a combination of DC3000 and T1 reads, which could not 462 

be distinguished from each other also because of the high error rate of the MinIONTM 463 

sequencer. 464 

For the longest contigs in the tomato field samples that showed bacterial spot 465 

symptoms, different isolates of X. perforans were the best hits: Xp8-16, Xp10-13, GEV1063, 466 

and GEV2116 (Table 4). These isolates belong to X. perforans group 2 (Schwartz et al. 2015) 467 

and are thus in line with the read-based results described above. Only the second-longest 468 

contig in sample F2-bs and the two longest contigs in sample F4-bs contradicted the read-469 

based results: X. perforans isolate 91-118, a member of X. perforans group 1B (Schwartz et al. 470 

2015), was the best hit for these contigs. 471 

Since for sample F8-bs we also had the genome sequences of the two cultured isolates 472 

(see previous section), we could again directly compare the metagenomic assembly-based 473 

approach with the culture-dependent genomic approach. Although there was no difference in 474 

the identification results themselves since the best matches in LINbase for both approaches 475 

were isolates of X. perforans group 2, the ANI between the longest contig of F8-bs and the most 476 

similar genome in LINbase was only 93.35% while the ANI between the genome sequences of 477 

the isolated colonies and their most similar genome in LINbase was 99.98%. As with the lab-478 

inoculated sample L-K40, this difference in ANI was probably again due to the high error rate of 479 

the MinIONTM and was the reason we could not directly identify the causative agent as a 480 

member of X. perforans group 2. 481 

 482 

Discussion 483 

Sensitive detection and precise identification of pathogens in real time directly from symptomatic 484 

organisms, or even better from infected but still asymptomatic organisms, without the need for 485 

pathogen isolation and culturing, is the ultimate goal in control and prevention of infectious 486 

diseases of humans, animals, and plants. 487 

As a step towards this goal in plant pathology, here we used the ONT MinIONTM for 488 

precise identification of two bacterial tomato pathogens by sequencing metagenomic DNA 489 

directly extracted from symptomatic plants and analyzing the obtained sequences with a set of 490 

different tools and databases. However, we neither attempted to maximize sensitivity of 491 

detection nor to minimize the time necessary for identification. 492 

Several other reports describing the use of the MinIONTM in culture-independent 493 

metagenomic DNA sequencing for plant pathogen identification have recently been published. 494 

Most of these reports either focused on species-level identification (Hu et al. 2019) and/or on 495 

accelerating the identification protocol (Loit et al. 2019). Only one report focused on strain-level 496 

identification but after polymerase chain reaction with primers specific to loci of a single 497 

pathogen species, which increased the sensitivity of detection and resolution of identification but 498 

restricts the approach to a single pathogen species at the time (Radhakrishnan et al. 2019). Our 499 

goal instead was to develop an experimental and bioinformatics pipeline that can be used for 500 

any bacterial plant pathogen, and, with modifications, possibly for fungal and oomycete 501 

pathogens as well. 502 

The first critical step in metagenomic-based pathogen identification is DNA extraction. 503 

There are mainly two possibilities: extracting DNA directly from plant tissue or extracting DNA 504 

from water used to wash the plant (after sonication to help dislocate the pathogen from the 505 

tissue). The first approach has the advantage that large quantities of high-quality DNA can be 506 

extracted. The obvious disadvantage is that a large fraction of the extracted DNA is plant DNA. 507 

The second approach is the approach we decided to use since it is widely used for plant 508 
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microbiome analysis, for example (Ottesen et al. 2013). Based on the results from our DNA 509 

sequence analysis, this approach allowed us to obtain DNA that was over 80% of bacterial 510 

origin for the naturally infected tomato field samples and over 90% of bacterial origin for the 511 

artificially inoculated tomato plants grown in the laboratory. This value was as high as the 512 

fraction of bacterial DNA when extracting DNA directly from a bacterial culture. Therefore, we 513 

conclude that for metagenome-based identification of bacterial foliar pathogens in symptomatic 514 

plant tissue extracting DNA from wash water after sonication is an excellent solution. 515 

Importantly, even the wash water of our healthy field sample still contained 30% of bacterial 516 

DNA, making this approach possibly still a good choice even for asymptomatic leaves with 517 

relatively low bacterial titers. 518 

Because in this project we were not interested in speed, we used the slower, higher 519 

yielding DNA sequencing library preparation protocol, as suggested by ONT, without significant 520 

modifications. Also for the sequencing protocol itself, we followed ONT’s instructions without 521 

modifications. The first critical step after sequencing the DNA, is base-calling, which is the 522 

process of translating the raw electrical signals measured by the MinIONTM into nucleotide 523 

sequences. Since base-calling is computationally intensive and takes longer than sequencing 524 

itself, base-calling needed to be completed after the sequencing runs themselves were 525 

completed. We used the ONT Guppy base-calling tool without any polishing. 526 

The actual assignment of sequencing reads to specific bacterial species and strains was 527 

done using a total of five tools: 1. ONT’s WIMP software with graphical user interface, which is 528 

intuitive to use and uses the software Centrifuge (Kim et al. 2016) to rapidly identify and assign 529 

taxonomy to the reads coming from the sequencing base calling in real-time, 2. the command-530 

line tool Sourmash (Brown and Irber 2016) that computes hash sketches from DNA sequences 531 

and includes k-mer based taxonomic classification for genomic and metagenomic analysis, 3. 532 

the command line tool MetaMaps (Dilthey et al. 2019) which uses approximate mapping 533 

algorithm to map long-read metagenomic sequences to comprehensive databases, 4. the 534 

command line version of BLASTN (Camacho et al. 2009) was used to speed up the 535 

identification of pathogens after metagenome assembly with a custom-built database, 5. 536 

assembly of metagenomes obtained by minimap2 and miniasm (Li 2016) followed by taxonomy 537 

assignment of the two longest contigs obtained by LINbase (Tian et al. 2019) . Moreover, 538 

Sourmash and MetaMaps were used both with default and custom libraries. 539 

For species-level identification, the three read-based tools performed similarly well with 540 

the lab samples in regard to accuracy with Sourmash coming the closest to the expected 1 : 1 541 

ratio of P. syringae genomospecies 3 : P. syringae in the sample L-culture-mix. For the field 542 

samples, the absence of X. perforans in the MetaMaps default reference library did not allow 543 

MetaMaps to identity X. perforans while WIMP and Sourmash performed similarly well. Both 544 

identified X. perforans as the most abundant species in all samples with bacterial spot 545 

symptoms. 546 

As for run time, only WIMP is set up to provide real-time results starting minutes after 547 

runs are initiated and results are updated as more sequencing reads are base-called. However, 548 

since base-calling cannot keep up with the amount of raw data that is being generated during a 549 

run, WIMP needs to be re-run when base-calling is completed after a run ends in order to 550 

analyze all data. This took over 36 hours for our largest sample, L-K40 (Supplementary Table 551 

3). The advantage is that users do not need any significant local computing resources to do this 552 

since WIMP runs on ONT’s cloud. For the same L-K40 sample, it took Sourmash only 35 553 

minutes to calculate the k-mer signature and perform species-level classification while 554 

Metamaps completed the same run in 6-8 hours. Both tools were run on Virginia Tech’s ARC 555 

high-performance computing system. Therefore, Sourmash is significantly faster than 556 

MetaMaps and WIMP but still requires significant computing resources. 557 

In regard to ease of use, WIMP cannot be beaten because of its intuitive graphical user 558 

interface. Although both Sourmash and Metamaps are command-line tools, Sourmash beats 559 
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Metamaps because of the extensive tutorials provided on the Sourmash website. The added 560 

ease of making custom reference libraries and adding genomes to existing libraries also makes 561 

Sourmash more user-friendly compared to MetaMaps, which requires NCBI taxIDs (or creation 562 

of custom taxIDs) for all genomes in custom reference libraries. 563 

Assembling reads into contigs before identification did not provide any advantages for 564 

species-level identification since species-level identification was successful with read-based 565 

tools and read-based identification is generally faster since it does not require prior assembly of 566 

reads into contigs. However, this advantage of speed may diminish with an increasing number 567 

of reads since mapping of a smaller number of assembled contigs might be faster than mapping 568 

a large number of reads individually. 569 

For strain-level identification, WIMP cannot be used since it only reaches species-level 570 

resolution. When comparing MetaMaps with Sourmash, MetaMaps misidentified a larger 571 

number of reads as strain Pto DC3000 compared to Sourmash in the single strain inoculation 572 

sample L-K40, which we knew did not contain any DNA of strain Pto DC3000. Instead in the 573 

sample L-culture-mix with known equal concentrations, it was Sourmash that overestimated 574 

strain Pto DC3000 compared to strain Pto T1. For field sample F8-bs for which we had also a 575 

culture-dependent result indicating X. perforans group 2 as causative agent, both software 576 

identified the same best hit in the custom database that was also a member of X. perforans 577 

group 2. Therefore, we conclude that Sourmash and MetaMaps did equally well in regard to 578 

strain accuracy. In regard to run time, Sourmash’s run time increased to 1-3 hours when using a 579 

k-mer size of 51, which is required for strain-level identification. Run time for MetaMaps 580 

decreased to 3-4 hours because of the smaller size of the custom library in comparison to 581 

default databases. However, Sourmash still performed better than MetaMaps in regard to 582 

computation time. 583 

The challenge when using either Sourmash or MetaMaps for strain-level identification is 584 

that we had to interpret the results based on prior knowledge of which isolates in our custom 585 

database belonged to which pathogen strain. For example, only by checking Figure 1 in 586 

(Schwartz et al. 2015), were we able to identify the best matches found by Sourmash and 587 

MetaMaps in our custom database as members of  X. perforans group 2. Moreover, a best 588 

match with an isolate that belongs to a certain strain, or any other group or taxon for that matter, 589 

still does not necessarily mean that the query is a member of the same group as well. To make 590 

such a conclusion, it is necessary to determine (1) the genomic breadth of the group, for 591 

example, 99.75% for X. perforans group 2, and (2) the genomic distance of the query to a 592 

representative member of that group with this distance needing to be smaller than the genomic 593 

breadth of the group. Alternatively, a phylogenetic analysis could be performed to determine if 594 

the unknown is a member of the clade that corresponds to the specific group. Because species 595 

have a standard genomic breadth of 95% ANI, WIMP, Sourmash, and Metamaps can infer 596 

species membership from metagenomic reads relatively easily. However, strains (and any other 597 

group smaller than a species) do not have a standard ANI breadth. Therefore, Sourmash and 598 

MetaMaps would need to be given genomic circumscriptions of strains as part of the reference 599 

library information in order to precisely assign reads to strains. 600 

Since the MinION™ outputs long reads, we were surprisingly successful in assembling 601 

reads into contigs almost as long as entire bacterial genomes, which could then be used for 602 

genome-based identification. We specifically developed the LINbase Web service for identifying 603 

microbes as members of taxa at any genomic breadth below the rank of genus (Tian et al. 604 

2019) and we had circumscribed both Pto strain T1 and X. perforans group 2 as taxa in LINbase 605 

with genomic breadths of 99.75% and 99.9% ANI, respectively. Therefore, we should have been 606 

able to avoid the problem that we had with read-based identification. However, the challenge 607 

that arose with this approach was that because of the high error rate of the MinION™, the ANI 608 

between all query contigs and their best matches in LINbase were below 95%. This was true 609 

even for the longest contig in sample L-K40, which had been inoculated with strain Pto T1 610 
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isolate K40. Therefore, the longest contig in this sample should have had an almost 100% 611 

match in LINbase with the genome of isolate K40 and other isolates that belong to strain T1. 612 

However, the ANI between this contig and the best match in LINbase was only 92.76%. 613 

Therefore, using the metagenome-assembled contigs did not allow us to identify the pathogens 614 

as members of the strains circumscribed in LINbase because the MinION™ error rate lowered 615 

the ANI between the query contig and the best match to below the genomic breath of the 616 

circumscribed taxon. Being aware of the high error rate, we were still able to extrapolate from 617 

the best match in LINbase the identity of the correct strain. However, such a result can only be 618 

considered putative or preliminary. 619 

In conclusion, using either the Sourmash and MetaMaps tools for read-based strain 620 

identification or LINbase for assembly-based strain-level identification, putative strain-level 621 

identification was possible and was confirmed by culture-dependent genome-based 622 

identification. However, it was impossible to reach high-confidence strain-level identification 623 

because of the absence of appropriate strain-level databases for the read-based tools and 624 

because of the high error rate of the MinION™when using assembly-based identification. 625 

Considering the large and active user community of the MinIONTM sequencer and the continued 626 

development of new versions of the MinIONTM, we expect improvements in both, tool 627 

development for read-based identification, and improvements in the precision at which the 628 

MinIONTM can distinguish nucleotides from each other and/or base-calling algorithms, which 629 

should ultimately lower the currently high error rate. At this point, we consider culture-630 

independent metagenomic sequencing with the MinIONTM  an excellent approach to obtain 631 

results when high confidence strain-level identification is not required or when a culture-632 

dependent genome-based identification is used as a follow-up. 633 
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Tables 779 

Table 1. Description of samples used in this study. 780 

 781 

Sample 
Name Short description 

DNA 
concentration 

of samples 
(ng/ul) 

Fraction 
of flow 

cell used 
# reads 

base-called 

Total length of 
reads base-

called 

% of reads 
classified as 

bacteria 
(based on 

WIMP) 

Mean 
read 

length in 
bp 

Max read 
length in 

bp 
% reads 
>1000bp 

L-K40 

Tomato inoculated 
with Pto K40 in the 

laboratory 325.2 1 1,377,617 4.18 Gb 89% 3,037 66,015 64% 

L-mix 

Tomato inoculated 
with four P. syringae 

strains in the 
laboratory 450.4 1 1,006,978 4.16 Gb 95% 4,130 67,174 74% 

L-mock 

Non-inoculated 
tomato plant grown 

in the laboratory 33.6 1/7 82,412 103.22 Mb 8% 1,252 19,754 40% 

L-
culture-

mix 

Equal mix of 4 P. 
syringae strains 
grown in liquid 

culture 147.5 1/6 54,124 155.93 Mb 93% 2,880 76,060 39% 

F1-bs 

Tomato field sample 
with symptoms of 

bacterial spot 562 1/7 137,497 588.50 Mb 81% 4,280 55,436 73% 

F2-bs 

Tomato field sample 
with symptoms of 

bacterial spot 500.2 1/7 90,185 498.68 Mb 80% 5,529 65,598 74% 

F3-bs 

Tomato field sample 
with symptoms of 

bacterial spot 332.5 1/7 100,956 423.16 Mb 78% 4,191 59,405 68% 

F4-bs 

Tomato field sample 
with symptoms of 

bacterial spot 319.8 1/7 74,615 289.36 Mb 81% 3,878 51,268 70% 
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F5-
Septoria 

Tomato field sample 
with symptoms of 
Septoria leaf spot 75.8 1/7 73,432 226.721 Mb 50% 3,087 43,967 59% 

F6-
healthy 

Tomato field sample 
with no symptoms 29.1 1/7 35,923 66,58 Mb 31% 1,853 29,617 46% 

F7-bs 

Tomato field sample 
with symptoms of 

bacterial spot 331.8 1/7 118,391 432.08 Mb 75% 3,649 48,335 64% 

F8-bs 

Tomato field sample 
with symptoms of 

bacterial spot 154.2 1/2 106,059 371.84 Mb 70% 3,505 33,472 71% 
 782 
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Table 2. Relative abundance results (top three hits) obtained with MetaMaps and Sourmash 784 

using a custom genome database of bacterial tomato pathogens and closely related isolates. 785 

Sample  rank MetaMaps %  Sourmash % 

L-K40 

1 Pto T1 (Pto strain T1) 70.94 Pto T1 (Pto strain T1) 71.65 
2 Pto NCPPB1108 (Pto strain T1) 15.91 P. syringae pv. actinidiae 3.67 
3 Pto DC3000 (Pto strain DC3000) 7.81 P. syringae 2.44 

L-mix 

1 Pto T1 (Pto strain T1) 69.48 Pto T1 (Pto strain T1) 65.98 
2 Pto NCPPB 1108 (Pto strain T1) 15.23 Pto DC3000 (Pto strain DC3000) 16.01 
3 Pto PT23 6.90 P. syringae pv. actinidiae 2.56 

L-mock 

1 Clavibacter michiganensis1 13.30 *no matches*   

2 Xp 11.39 *no matches*  
3 Ralstonia solanacearum 8.86 *no matches*   

L-
culture-

mix 

1 Pto DC3000 (Pto strain DC3000) 38.90 Pto DC300 (Pto strain DC3000) 75.17 
2 Pto T1 (Pto strain T1) 27.48 Pto T1 (Pto strain T1) 19.63 
3 Pto NCPPB 1108 (Pto strain T1) 9.07 Pto PT23 1.03 

F1-bs 

1 Xp TB9 (Xp group 2) 29.37 Xp TB15 (Xp group 2) 95.18 
2 Xp Xp9-5 (Xp group 2) 28.03 Xp Xp17-12 1.05 
3 Xp Xp7-12 14.97 X. campestris pv. durantae 0.79 

F2-bs 

1 Xp Xp9-5 (Xp group 2) 15.97 Xp strain Xp9-5 (Xp group 2) 90.72 
2 Xp TB9 (Xp group 2) 15.14 Xp strain Xp17-12 4.19 
3 Xp Xp7-12 10.38 X. arboricola pv. pruni  1.83 

F3-bs 

1 Xp Xp17-12 50.59 Xp strain Xp17-12 97.76 
2 Xp 91-118 9.00 Xp strain Xp9-5 (Xp group 2) 1.27 
3 Xp LH3 4.67 X. campestris pv. durantae  0.98 

F4-bs 

1 Xp TB9 (Xp group 2) 22.38 Xp TB15 (Xp group 2) 97.28 
2 Xp Xp9-5 (Xp group 2) 19.30 Xp Xp9-5 (Xp group 2) 2.11 
3 Xp TB15 (Xp group 2) 18.80 X. campestris pv. viticola  0.61 

F5-
Septoria 

1 X. campestris 30.45 X. arboricola  57.08 
2 X. arboricola 25.60 X. arboricola  14.76 
3 X. pisi 2.78 Xp TB9 9.59 

F6-
healthy 

1 Xp Xp9-5 (Xp group 2) 11.70 Xp TB15 (Xp group 2) 98.13 
2 Xp TB9 (Xp group 2) 11.47 Xp LH3 1.87 
3 Xp Xp7-12 10.82 *no matches  

F7-bs 

1 Xp TB9 (Xp group 2) 23.40 Xp TB15 (Xp group 2) 89.80 
2 Xp Xp9-5 (Xp group 2) 19.15 X. arboricola 5.47 
3 Xp TB15 (Xp group 2) 17.28 X. campestris 1.54 

F8-bs 

1 Xp Xp9-5 (Xp group 2) 26.51 Xp Xp9-5 (Xp group 2) 94.17 
2 Xp TB9 (Xp group 2) 17.48 Xp TB15 (Xp group 2) 1.62 
3 Xp Xp17-12 15.23 Xp Xp17-12 1.05 

1 for non-tomato pathogens only the species is reported 786 
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TabTable 3. Description of metagenomic assemblies. 787 

Sample 
name 

Total number of 
contigs 

Total assembly 
length in bp 

Mean contig 
length in bp 

Longest contig  
in bp 

2nd longest 
contig in bp 

L-K40 24 6,619,207 275,800 6,081,137 139,929 

L-mix 73 8,669,208 118,756 6,126,095 118,770 

L-mock 8 117,647 14,705 63,177 12,037 

L-culture-
mix 20 5,827,276 291,363 764,727 622,920 

F1-bs 92 12,529,321 136,188 4,974,348 881,066 

F2-bs 131 8,513,800 64,990 4,345,732 276,399 

F3-bs 49 11,872,268 242,291 2,275,239 1,170,971 

F4-bs 18 5,216,728 289,818 1,172,667 925,913 

F5-
Septoria 9 122,956 13,661 37,948 25,805 

F6-
healthy 4 21,390 5,347 8,488 7,900 

F7-bs 35 5,666,575 161,902 5,038,472 56,441 

F8-bs 10 5,319,638 531,963 2,680,062 2,212,039 

 788 

  789 
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Table 4. LINbase results for two longest contigs 790 

Sample 
Longest contig 

(ANI %) 
Taxon membership 

of longest contig 
Second longest 
contig (ANI %) 

Taxon membership 
of second longest 

Two longest contigs 
merged (ANI %) 

Taxon membership 
of merged contigs 

L-K40 
Pto BAV1020 

(92.766) Pto strain T1 NA NA Pto BAV1020 (92.761)  Pto strain T1 

L-mix 
Pto BAV1020 

(92.731) Pto strain T1 NA NA Pto NYS-T1 (92.769) Pto strain T1 

L-culture-
mix Ps 642 (93.368) Ps 

Ps UB0390 
(93.408) Ps Pc ICMP19117 (93.315) Pseudomonas 

F1-bs Xp Xp10-13 (94.625) Xp group 2 NA NA Xp GEV1063 (94.613) Xp group 2 

F2-bs 
Xp GEV2117 

(94.236) Xp group 2 
Xp 91-118 
(94.478) Xp Xp GEV2117 (94.255) Xp group 2 

F3-bs Pf Pf0-1 (89.669) Pseudomonas Pf Pf0-1 (89.710) Pseudomonas Pf Pf0-1 (89.675) Pseudomonas 

F4-bs Xp 91-118 (94.263) Xp 
Xp 91-118 
(94.501) Xp Xp 91-118 (94.369) Xp 

F7-bs Xp Xp8-16 (94.464) Xp group 2 NA NA Xp GEV2116 (94.360) Xp group 2 

F8-bs Xp Xp10-13 (93.322) Xp group 2 
Xp GEV2117 

(93.271) Xp group 2 Xp Xp10-13 (93.352) Xp group 2 

BAV6163 
Xp GEV1063 

(99.976) Xp group 2 
    

BAV6164 Xp GEV1063 (99.98) Xp group 2 
   

 

Ps = Pseudomonas syringae Pf = Pseudomonas fluorescens Pc = Pseudomonas congelans  Xp = Xanthomonas. perforans   791 

NA – Not available, second contig too short for identification792 
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Supplementary Tables 793 

Supplementary Table 1. List of genomes used in the custom database. 794 

Supplementary Table 2. Relative abundance values at the species level for all samples 795 

obtained with WIMP, Sourmash, and MetaMaps. 796 

Supplementary Table 3. Example run times for WIMP, Sourmash, and MetaMaps. 797 

 798 

Figure legends 799 

Figure 1. Diseased tomato plants (A) Symptoms caused by Pseudomonas syringae pv tomato 800 

isolate K40 (strain Pto T1) in a laboratory-inoculation assay and (B) Bacterial spot symptoms in 801 

naturally infected plants during a disease outbreak on the Eastern Shore of Virginia. 802 

Figure 2. Screenshot of the WIMP taxonomy assignment for sample L-K40. 803 

Figure 3. Bar graph showing the comparison of results at the species level using the read-804 

based programs WIMP, Sourmash and MetaMaps. Each barplot corresponds to individual lab 805 

samples used in the study. A = L-K40, B = L-mix, C = L-mock, and D = L-culture-mix. Relative 806 

abundance values are expressed as percentages of all sequences classified as bacteria. 807 

Figure 4. Bar graph showing the comparison of results at the species level using the read-808 

based programs WIMP, Sourmash and MetaMaps. Each barplot corresponds to individual field 809 

samples used in the study.  A = F1-bs, B = F2-bs, C = F3-bs, D = F4-bs, E = F5-Septoria, F = 810 

F6-healthy, G = F7-bs and H= F8-bs. Relative abundance values are expressed as percentages 811 

of all sequences classified as bacteria. 812 

Figure 5. Relative genome percentage abundance for each sample based on BLASTN using 813 

contigs as query against a custom genome database. All hits were filtered to e-values less than 814 

or equal to 0.01 and the longest hit for each contig was considered to be the best hit. 815 

 816 
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A B
Figure 1. Diseased tomato plants (A) Symptoms caused by Pseudomonas syringae pv tomato isolate 
K40 (strain Pto T1) in a laboratory-inoculation assay and (B) Bacterial spot symptoms in naturally 
infected plants during a disease outbreak on the Eastern Shore of Virginia.
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Figure 2. Screenshot of the WIMP taxonomy assignment for sample L-K40.
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Figure 3. Bar graph showing the comparison of results at the species level using the read-based 
programs WIMP, Sourmash and MetaMaps. Each barplot corresponds to individual lab samples used in 
the study. A = L-K40, B = L-mix, C = L-mock, and D = L-culture-mix. Relative abundance values are 
expressed as percentages of all sequences classified as bacteria.
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Figure 4. Bar graph showing the comparison of results at the species level using the read-based programs WIMP, Sourmash and MetaMaps. Each 
barplot corresponds to individual field samples used in the study.  A = F1-bs, B = F2-bs, C = F3-bs, D = F4-bs, E = F5-Septoria, F = F6-healthy, G = 
F7-bs and H= F8-bs. Relative abundance values are expressed as percentages of all sequences classified as bacteria.
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Figure 5. Relative genome percentage abundance for each sample based on BLASTN using contigs as query against a custom 
genome database. All hits were filtered to e-values less than or equal to 0.01 and the longest hit for each contig was considered to 
be the best hit.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 23, 2019. ; https://doi.org/10.1101/777706doi: bioRxiv preprint 

https://doi.org/10.1101/777706
http://creativecommons.org/licenses/by-nc-nd/4.0/

