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Abstract 21 

 22 

There is particular interest in transcriptome-wide association studies (TWAS) - gene-level tests based on 23 

multi-SNP predictive models of gene expression - for identifying causal genes at loci associated with 24 

complex traits. However, interpretation of TWAS associations may be complicated by divergent effects 25 

of model SNPs on trait phenotype and gene expression. We developed an iterative modelling scheme for 26 

obtaining multi-SNP models of gene expression and applied this framework to generate expression 27 

models for 43 human tissues from the Genotype-Tissues Expression (GTEx) Project. We characterized 28 

the performance of single- and multi-SNP TWAS models for identifying causal genes in GWAS data for 29 

46 circulating metabolites. We show that: (a) multi-SNP models captured more variation in expression 30 

than the top cis-eQTL (median 2 fold improvement); (b) predicted expression based on multi-SNP models 31 

was associated (FDR<0.01) with metabolite levels for 826 unique gene-metabolite pairs, but, after step-32 

wise conditional analyses, 90% were dominated by a single eQTL SNP; (c) amongst the 35% of 33 

associations where a SNP in the expression model was a significant cis-eQTL and metabolomic-QTL 34 

(met-QTL), 92% demonstrated colocalization between these signals, but interpretation was often 35 

complicated by incomplete overlap of QTLs in multi-SNP models; (d) using a “truth” set of causal genes 36 

at 61 met-QTLs, the sensitivity was high (67%), but the positive predictive value was low, as only 8% of 37 

TWAS associations at met-QTLs involved true causal genes. These results guide the interpretation of 38 

TWAS and highlight the need for corroborative data to provide confident assignment of causality. 39 

 40 

  41 
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Introduction  42 

 43 

Genome wide association studies (GWAS) have been a powerful tool in revealing many loci that 44 

influence complex traits and diseases. However, most SNP associations map to non-coding regions of the 45 

genome, thereby complicating the task of identifying the (causal) genes through which the observed 46 

effects on disease predisposition are mediated1. To address this challenge, researchers have implemented 47 

a variety of approaches to link regulatory variants implicated in disease predisposition to their 48 

downstream effectors. One of the most widely adopted approaches leverages expression quantitative trait 49 

loci (eQTLs) to identify regional genes that are under the direct regulatory influence of the disease risk 50 

variant(s), and which thereby represent candidate mediators of disease predisposition. Empirical support 51 

for this approach is provided by the enrichment of cis-eQTL regulatory variants among significant 52 

GWAS variants and evidence that such variants explain a disproportionate share of trait heritability2-6.  53 

 54 

A range of approaches have been deployed to detect coincident cis-eQTL and trait association signals. 55 

The simplest involves limiting the search space to trait variants that also demonstrate significant eQTL 56 

signals in a disease relevant tissue. In such analyses, it is now widely accepted that it is essential to test 57 

for statistical evidence of colocalization between eQTLs and trait-associated SNPs to avoid assigning 58 

relationships between eQTL and trait signals that map to distinct causal variants, and which cannot 59 

therefore be assumed to have any biological connection7,8. 60 

 61 

Recently, this approach has been supplemented by a suite of methods (collectively, transcriptome-wide 62 

association studies or TWAS), built around a Mendelian randomization framework, which test for 63 

relationships between the genetic components of both complex traits and gene expression5,9-13. For 64 

example, the PrediXcan method generates predictive models of transcript expression from eQTL mapping 65 

data, and then uses these to “impute” estimates of gene expression into case-control or cohort-based 66 
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GWAS datasets: those imputed estimates can then be subjected to trait association testing12. Although 67 

PrediXcan requires individual-level genotype data as input, there are conceptually similar approaches 68 

available that can accept GWAS summary statistics with linkage disequilibrium (LD) estimates from a 69 

reference population (e.g. S-PrediXcan, Fusion)5,13,14. Collectively, these methods have been applied to a 70 

broad range of complex traits and diseases and have spotlighted novel and biologically plausible 71 

candidate genes that had evaded detection in conventional GWAS approaches5,11-13.  72 

 73 

The prediction models generated by these approaches range from those that feature only the single best 74 

(i.e. most strongly associated) eQTL for each gene, to those that support a polygenic model which 75 

comprises all SNPs within a locus (e.g. best linear unbiased predictor; BLUP). However, it has been 76 

shown that more sparse multivariate linear models (such as those generated by LASSO regression or a 77 

Bayesian Sparse Linear Mixed Model (BSLMM)) outperform both single variant and polygenic models in 78 

predicting gene expression5,11-13,15. Unlike single variant models, these sparse multi-SNP models can 79 

capture the effects of allelic heterogeneity (i.e. genes whose transcription is under the influence of 80 

multiple cis-regulatory signals). They also better reflect current understanding of the genetic architecture 81 

of gene expression than do polygenic models5,12,15. 82 

 83 

The fact that multi-SNP models better predict gene expression than single-SNP models might suggest that 84 

trait associations based on these models would themselves involve multiple SNPs with shared effects on 85 

both expression and phenotype. However, the extent to which this is true is unknown. Moreover, if such 86 

models better reflect the number of independent genetic signals acting on a phenotype, are they supported 87 

by evidence of shared identity between the trait-associated and eQTL variants within the model? 88 

Furthermore, the extent to which novel genes implicated by colocalized associations represent genuine 89 

biological relationships, causal for disease, is unclear and inference is further complicated by the shared 90 

regulatory architecture of gene expression and by horizontal pleiotropy16,17. 91 
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 92 

To address these outstanding questions and guide the interpretability of predicted gene expression studies, 93 

we systematically evaluated sparse multi-SNP models underlying significant gene associations for 94 

evidence of independent effects on both phenotype and expression. We did this by generating multi-SNP 95 

gene expression models for 43 human tissues from the GTEx project and evaluating their utility through a 96 

large-scale analysis of GWAS data for 46 metabolites. We focused on metabolomic phenotypes as they 97 

provide a singular opportunity to assess the biological plausibility of multi-SNP gene associations. 98 

Insights from both genetic and experimental studies have led to well-curated sets of effector genes at loci 99 

with cis-associations to the levels of particular metabolites18-21. The subsets of genes so implicated encode 100 

enzymes, transporters, and regulators that can be directly tied to the specific metabolite, based on known 101 

functional relationships. These provide a “truth” gene set that can then be used to assess the performance 102 

(i.e. sensitivity and positive predictive value) of alternative analytical approaches for identifying effector 103 

transcripts, and which can inform the utility of applying TWAS approaches to the interpretation of 104 

GWAS data for other complex traits. 105 

 106 

Material and Methods 107 

 108 

GTEx expression data and Cis-eQTL analysis 109 

Genotype data (variant call format), gene expression (quantified gene-level counts), and sample 110 

phenotype data from GTEx version 7 were obtained through dbGaP accession phs000424.v7.p222. 111 

Genotypes were filtered to keep only bi-allelic variants with minor allele frequency of at least 0.05. 112 

Finally, only remaining SNPs that were tested in all metabolite GWAS were used for analyses to ensure 113 

consistent downstream modelling and testing across metabolites. 114 

Only non-sex-specific tissue types with sample size of n ≥ 50 were analysed. For each tissue, genes 115 

reaching a threshold of > 6 raw reads and >1 count per million in at least 10 individuals were carried 116 
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forward for analysis. Remaining genes were TMM normalised, then log transformed to counts per million 117 

using Voom23. Surrogate variables were calculated after explicitly defining sex in the models, and 118 

residual expression values after regressing out all surrogate variables and sex were used for analyses 24. 119 

Cis-eQTLs analysis was performed using QTLtools (Version 1.1) with a cis-distance limit of 1,000,000 120 

base pair (1 Mb) from each gene25. The top eQTL SNP per gene was defined as the SNP with the lowest 121 

p-value for that gene. 122 

 123 

GWAS summary data 124 

GWAS summary data for 46 metabolites were downloaded from the Metabolomics GWAS Server20,26. 125 

Metabolites for this analysis were selected based on having GWAS significant loci where at least one 126 

gene was identified as having a plausible or established biochemical link to the associated metabolite. 127 

Unknown metabolites and metabolite ratios were excluded from this analysis. 128 

 129 

LASSO regression, model filtering and final model selection 130 

LASSO regression was used to select an optimal set of SNPs for explaining the expression of each gene. 131 

Regression was performed using GLMNET in R on each gene, with all SNPs less than 1MB from any 132 

part of each gene as potential covariates27. To select the optimal penalty factor for each gene, mean 133 

squared error (MSE) was calculated using 10-fold cross-validation across 100 automatically selected 134 

potential penalty factors. Given that data partitioning is random for cross-validation, this process was 135 

repeated 200 times per gene, and the penalty factor that had the mean lowest MSE across all iterations 136 

was selected as recommended in the reference manual for GLMNET. 137 

For genes with multiple SNPs selected by LASSO regression, all selected SNPs were first linearly 138 

modelled against the gene’s expression. For any groups of SNPs in perfect LD, one was randomly 139 

selected and retained. Model R2 was calculated for the full linear model. Iteratively, starting with the SNP 140 

with the lowest p-value in the model, SNPs were added back one-at-a-time, each time calculating the 141 
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subset model’s R2 (i.e. forward regression). Once 95% of the full model’s R2 value was attained; any 142 

SNPs not in the current subset model were eliminated. The final subset of SNPs was then modelled 143 

against expression and smoothed using ridge regression to minimize overfitting; with penalty factors 144 

selected using 25 iterations of 10-fold cross-validated ridge regression. For genes with only one SNP 145 

selected by LASSO, this SNP alone was modelled against gene expression using 25 iterations of 10-fold 146 

cross-validated ridge regression. The final coefficients from ridge regression models were carried forward 147 

for use in S-PrediXcan. Model fit p-values were determined by modelling pre-validated predicted 148 

expression of each gene against the observed expression. Model fit p-values were study wide FDR 149 

corrected (all genes and all tissues simultaneously), and those with adjusted p≥0.01 were excluded from 150 

further analysis due to poor model fit. 151 

 152 

Transcriptome wide association analysis with S-PrediXcan 153 

For each modelled gene, S-PrediXcan (version 0.5.4) was used to calculate a z-score, which is a linear 154 

model of SNP effects for all SNPs in the gene’s final ridge regression model described above14. Each 155 

SNP’s effect is the product of its expression association coefficient, its GWAS z-score, and a SNP 156 

variance term (the SNP’s standard error divided by the standard error of the gene’s predicted expression). 157 

The SNP expression association coefficients used were those resulting from the final filtered gene 158 

expression ridge regression models. GWAS z-scores were calculated manually from effect size and 159 

standard error, since some SNPs had published p-values of 0 due to rounding. 160 

 161 

Conditional analysis  162 

For significant genes identified by S-PrediXcan, we decomposed the z-scores into per-SNP scores. For 163 

each significant gene, for SNPs from the S-PrediXcan model that had the same individual direction of 164 

effect as the overall S-PrediXcan z-score, the SNP that had the highest absolute S-PrediXcan magnitude 165 

was considered the top contributing SNP for conditional analysis. Conditional analysis was performed on 166 
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each significant S-PrediXcan gene using GCTA (version 1. 26.0)28. Each lead SNP effect was conditioned 167 

out of the GWAS summary data. S-PrediXcan was then performed as previously described, excluding the 168 

SNP/s being conditioned on, and using the GWAS z-scores resulting from the conditional GWAS 169 

analysis. 170 

 171 

Establishing biological plausibility of novel genes 172 

Annotated protein information was downloaded from the Human Metabolome Database (version 3.6) on 173 

December 11, 201729. HUGO gene names, metabolism pathways, and gene ontology classifications listed 174 

in this database were referenced to assess membership of significant S-PrediXcan associated genes. 175 

Metabolic pathways and GO classifications annotated to novel genes were compared with those for 176 

putative causal genes associated to the same metabolites to assess shared metabolic processes. 177 

 178 

Results 179 

 180 

Multi-SNP models explain more variance in gene expression than single eQTL models 181 

To investigate gene associations based on multi-SNP models, we first evaluated the extent to which these 182 

models improve prediction of gene expression relative to single variant models. We obtained single 183 

variant models by performing standard univariate eQTL analysis to identify the top associated cis-SNP 184 

for each gene in each of 43 tissues from the GTEx study (version 7) with a sample size exceeding 50 185 

(Methods) 22. The number of expressed genes (defined as genes with >6 raw reads and >1 count per 186 

million in at least 10 individuals), ranged from 15,483 in EBV-transformed lymphocytes to 19,846 in 187 

lung.  188 

 189 

To obtain multi-SNP genetic prediction models of gene expression, we employed LASSO regression - a 190 

multivariate penalized regression procedure that simultaneously performs feature selection along with 191 
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model fitting27 - to select an optimal and sparse set of cis-SNPs to jointly model expression of each gene 192 

in each tissue. We then compared the variation in gene expression explained by these multi-SNP models 193 

to that accounted for by the single eQTL models.  194 

 195 

In Figure 1, we show representative results, in this case for skeletal muscle, the tissue with the largest 196 

sample size (n=385). LASSO regression selected multiple SNPs in the models for the majority of genes 197 

(n=11,210), and for these genes, there was a median of 2.4-fold increase (interquartile range or IQR, 1.7 198 

to 3.9 fold) in expression variation explained by LASSO models versus the top eQTL alone (Figure 1A, 199 

B). There was a 2.0-fold median increase in expression variation explained across all gene models (i.e. 200 

including single-eQTL models) in skeletal muscle. LASSO selected the intercept-only model (i.e. model 201 

without any SNPs) for 2,667 genes out of 15,780 expressed genes, and the top-eQTL-only model (or a 202 

perfect proxy SNP) for 1,903 genes in skeletal muscle. The impact of multi-SNP selection seen for 203 

skeletal muscle was typical of that seen across all tissues and all genes (Table S1).  204 

 205 

Despite the sparse nature of LASSO selection, for those genes with at least two modelled variants, 7,406 206 

genes (66%) in skeletal muscle retained at least one pair of SNPs with LD r2 >0.8. Moreover, LASSO 207 

expression models contained up to 159 SNPs and a median of 9 SNPs (IQR, 4 to 18 SNPs) for models 208 

with >1 SNP. Since correlated SNPs can result in invalid inference for summarised Mendelian 209 

randomisation (MR) analyses 30, we performed additional filtering of SNPs based on LD and proportion 210 

of variation explained (R2), iteratively adding SNPs into the model until 95% of the full model’s R2 was 211 

achieved. For groups of SNPs in perfect LD (r2 = 1), one SNP was randomly selected and retained 212 

(Methods). This reduced the median number of SNPs per gene in the model in skeletal muscle to six 213 

(IQR, 3 to 12 SNPs, Table S1). Moreover, 18% of gene models (2,015 out of 11,210 models that 214 

included multiple SNPs in the unfiltered analysis) contained only the top eQTL (or a perfect proxy). This 215 

further round of filtering had little impact on model performance; the mean reduction in model R2 was 216 
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only 1.6% (calculated as percentages of the full LASSO models’ R2 values; Figure 1C,D). Similar to the 217 

unfiltered LASSO models in skeletal muscle, there was still a 2.0-fold median increase in expression 218 

variation explained across all gene models and across all tissues. Overall, these results demonstrate that 219 

multi-SNP models should generally be optimised and explained more variation in gene expression 220 

relative to the single top eQTL for the majority of genes across tissues. 221 

 222 

Transcriptome-wide association analysis of 46 metabolites across 43 tissues  223 

Given these estimates of the extent to which multi-SNP models enhance the prediction of gene 224 

expression, we next sought to assess their utility in understanding genetic variation associated with 225 

complex diseases and traits. Metabolites offer a singular opportunity for such analyses as recent GWAS 226 

have identified strongly associated loci that regulate metabolite levels (met-QTLs) 18-21. 227 

 At some of these loci, extensive genetic and experimental evidence have identified nearby genes for 228 

which the biological evidence for a causal role in mediating the metabolomics association is 229 

overwhelming, providing a “truth” set for causal gene localization not available in most other trait GWAS 230 

settings.  231 

 232 

We focused on 46 metabolites with publicly available GWAS data for which at least one gene mapped 233 

near a significant met-QTL signal with high confidence biochemical links to the associated metabolite 234 

(Table S2)20. We performed transcriptome-wide association analysis with S-PrediXcan14 to test for 235 

associations between predicted gene expression across 43 tissues and these 46 metabolite levels. Analysis 236 

was restricted to filtered LASSO prediction models with a strict significant expression model fit (model 237 

q<0.01; n=568,185 total gene models).  238 

 239 

A total of 2,834 associations between predicted gene expression values and metabolite levels reached 240 

significance at study wide FDR <0.01, corresponding to 826 unique gene-metabolite pairs (i.e. some pairs 241 
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were significantly associated in multiple tissues) (Figure 2A). The largest number of associations 242 

identified for any tissue was 100 (tibial nerve). There were only 66 associations arising from predictive 243 

models generated from liver expression data (8% of 826 unique associations), even though liver could be 244 

considered the most biologically relevant tissue for most of these metabolites. This is likely due to the 245 

relatively small sample size for liver in GTEx (153 samples compared to 361 in tibial nerve) (Figure 2B, 246 

Table S3).  247 

 248 

For these 826 unique gene-metabolite pairs, we next sought to understand the extent to which multiple 249 

independent SNPs selected by the model were contributing to these metabolite associations. To do this, 250 

we performed conditional analyses for each of the 2,593 (from the total of 2,834) significant S-PrediXcan 251 

associations where the gene model had more than one SNP. We conditioned the metabolite GWAS on the 252 

SNP with the greatest effect on each gene’s S-PrediXcan score and re-ran the S-PrediXcan association 253 

test using the conditioned GWAS summary statistics. After correcting for the number of genes, tissues, 254 

and metabolites tested after conditional analysis (p-value conditional <= 1.93x10-5), 2,320 of the 2,593 255 

associations (89.5%) were no longer significant. This proportion was similar if we instead analysed only 256 

the most significant tissue for each gene; 684 out of 758 gene-metabolite pairs (90.2%) were no longer 257 

significant (p-value conditional <= 6.61x10-5). Thus, for over 90% of significant S-PrediXcan associations, 258 

evidence for mediation of metabolite levels was dominated by a single SNP within the multi-SNP 259 

prediction models. Of the 273 still significant associations, over half (148) involved genes within 1 Mb of 260 

the highly complex ACADS gene region, which features multiple independent met-QTLs significantly 261 

associated with butyrylcarnitine levels (Figure 3, Table S4). 262 

 263 

Colocalization analysis of model SNPs reveals the distinct relationships between cis-eQTL and met-264 

QTL signals 265 

 266 
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It is possible that overlaps between GWAS met-QTLs and cis-eQTL variants in multi-SNP models could 267 

be due to chance, rather than representing true colocalization of causal signals. Consider, for example, a 268 

multi-SNP model with two SNPs where one SNP is a strong eQTL but weakly associated with metabolite 269 

levels, and the other SNP displays the converse arrangement: this configuration could still yield a 270 

significant association between gene expression and metabolite levels. We therefore questioned to what 271 

extent multi-SNP S-PrediXcan associations were driven by cis-eQTL and met-QTL signals that shared 272 

the same identity (i.e. the associations were attributable to SNPs that influence metabolite levels through 273 

their effects on gene expression).  274 

 275 

We addressed this by performing colocalization analysis using eCAVIAR to obtain colocalization 276 

posterior probability (CLPP) values as evidence of shared causal signals, benefiting from the fact that 277 

eCAVIAR allows for multiple causal variants within a locus8. To increase our power to detect genuine 278 

colocalisation, we restricted this analysis to those SNPs in the prediction models that were significant cis-279 

eQTLs (per tissue FDR<0.01) and met-QTLs (p-value<=5.0x10-8). 280 

 281 

We found that, among the 2,834 significant S-PrediXcan associations, about 35% of associations (990 of 282 

2,834 total; 214 unique gene-metabolite pairs) contained at least one SNP in the prediction model that 283 

influenced both metabolite levels at genome-wide significance and expression levels at FDR<0.05. Of 284 

these, 907 associations (92% of 990 associations tested; 202 unique gene-metabolite pairs) had at least 285 

one significant cis-eQTL with a CLPP > 0.01, evidence of a shared causal signal between met-QTL and 286 

cis-eQTL, in at least one tissue8 (Table S5). Therefore, for the SNPs that corresponded to gene models 287 

and that were amenable to colocalization analysis, there was strong evidence of shared eQTL and met-288 

QTL signals. 289 

 290 
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We then analysed the context within which cis-eQTL SNPs in the multi-SNP models colocalized with 291 

met-QTLs. For the 907 associations with evidence of colocalization, we observed instances of a one-to-292 

one overlap whereby the significant cis-eQTL in the multi-SNP model colocalized with the corresponding 293 

met-QTL. An example of this arrangement is displayed in Figure 4A. However, determining the evidence 294 

for or against colocalization of the met-QTL and cis-eQTLs was not always as simple, since many loci 295 

had a more complex topography. For example, expression of SLC16A9 was significantly associated with 296 

carnitine levels in S-PrediXcan analyses in tibial nerve. Two significant cis-eQTLs with low LD 297 

(r2=0.002) were selected in the prediction model, but, as the locus plot shows, only one of these signals 298 

colocalized with the met-QTL (Figure 4B).  299 

 300 

In contrast, we observed significant TWAS associations where model SNPs had divergent effects on 301 

expression and metabolite levels and were thereby excluded from colocalization analysis (i.e. associations 302 

not included in the 907 associations with evidence of colocalized QTL signals). For example, the 303 

expression of FNDC1 in skeletal muscle was significantly associated with circulating isobutyrylcarnitine 304 

levels. However, the met-QTL and cis-eQTL were clearly not colocalized even though the genetically 305 

predicted expression of FNDC1 was significantly associated with metabolite levels. This is because the 306 

set of SNPs in the FNDC1 prediction model includes both the SNP driving the strong met-QTL (which 307 

explains a small portion of the variance in FNDC1 expression) and a strong cis-eQTL that is only weakly 308 

associated with metabolite levels (Figure 4C).  309 

 310 

Determining the sensitivity and positive predictive value of multi-SNP prediction models  311 

 312 

Across the 46 metabolite GWAS that we used as the substrate for our analyses, Shin et al. previously 313 

reported 61 SNP-metabolite associations at which the associated met-QTL SNP mapped near a gene that 314 

was highly likely to be causal for the association. This assessment was based on either experimental 315 
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validation or a strong biological plausibility that the encoded protein was involved in the synthesis or 316 

degradation of the metabolite concerned20. These 61 SNP-gene-metabolite groupings provide a “truth” set 317 

of causal genes that can be used to explore the performance of expression QTL based mapping strategies, 318 

information relevant to more common applications (e.g. in a disease GWAS) where the causal gene is 319 

typically not known with equivalent certainty. 320 

 321 

Of these 61 gene-metabolite pairs in the “truth” set, we were able to detect 41 through significant S-322 

PrediXcan associations in at least one GTEx tissue (Table 1), indicating a sensitivity for cis-eQTL 323 

validation of the causal gene of 67%. Thirty-three of these gene-metabolite assignments were supported 324 

in more than one tissue with the GCDH-glutarylcarnitine association being the most widely represented 325 

(detected in 38 tissues, Table 1). Only eight of the 41 were detected in liver, though this may in part 326 

reflect the relatively small sample size of liver in GTEx. We assessed the extent to which overlaps 327 

between eQTLs and GWAS at these truth set genes represented true colocalization of signals. Of these 41 328 

genes, 23 were amenable to colocalization analysis (i.e. at least one of the SNPs in the model was a 329 

significant cis-eQTL and a significant met-QTL) and all of these 23 genes showed evidence of 330 

colocalization, where at least one SNP in the multi-SNP model colocalised with the met-QTL in at least 331 

one tissue.  332 

 333 

As described earlier, our genome-wide trawl for associations between metabolite levels and predicted 334 

expression levels across GTEx tissues had implicated 826 unique gene-metabolite pairs. Of these, more 335 

than half (514; 62%) involved genes that mapped within 1Mb of the 61 truth set genes (including the 41 336 

detected truth set genes). At only four of the truth set loci did these analyses identify the true causal gene 337 

only with no nearby bystander gene. This indicates that, at many of these loci, there are multiple 338 

“bystander” genes, other than the truth set genes, that are also being detected through predicted 339 

expression. From this analysis of TWAS associations at metabolite-associated loci, we estimate that the 340 
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positive predictive value (PPV; i.e. number of true positives divided by the sum of true and false 341 

positives) for detecting true positive associations is only 8% (41/514 gene-metabolite pairs).  342 

 343 

There were 20 of the 61 gene-metabolite pairs in the truth set that did not yield significant S-PrediXcan 344 

associations in any tissue. However, for 15 of these, significant S-PrediXcan associations (from the set of 345 

514 gene-metabolite pairs described above) were seen for nearby bystander genes in at least one tissue, 346 

with eight of these showing significant bystander gene colocalization (Table S4). Taken together with the 347 

results for the 41 true positive signals, these analyses indicate substantial pleiotropy at the level of cis-348 

eQTLs, with many met-QTL loci harbouring a substantial excess of “bystander” genes alongside the true 349 

causal gene (or at some loci, only “bystander” genes). 350 

 351 

To illustrate these concepts, consider SNP rs8012, which is a significant met-QTL for glutarylcarnitine 352 

levels (p-valueGWAS=1.24x10-43), and maps 8kb from the GCDH gene that encodes the enzyme glutaryl-353 

CoA dehydrogenase. This enzyme catalyses the conversion of glutaryl-CoA to crotonyl-CoA, making 354 

GCDH a highly plausible effector gene mediating the effects of rs8012 on glutarylcarnitine levels31. In 355 

GTEx, whilst rs8012 is a cis-eQTL for GCDH in 31 tissues, the same SNP is also associated with the 356 

expression of other nearby genes including HOOK2, SYCE2, FARSA, AD000092.3 and CALR. For all 357 

these genes, the cis-eQTL and the met-QTL signal clearly colocalized in at least one tissue (Figure S1). 358 

In the absence of the strong biological prior favouring GCDH at this locus, there would be at least five 359 

other genes that could be equally plausible candidates.  360 

We next asked whether there were any features of the 473 bystander genes that might allow them to be 361 

distinguished from truth set genes. We found that bystander genes did not differ with respect to the 362 

strength of association with the metabolite, distance to transcription start site, the effect sizes of the 363 

individual eQTLs included in the multi-SNP models, or the CLPP values for model SNPs (Figure 5). 364 
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However, we did find that causal genes tended to be significant in more tissues than bystander genes at 365 

the same locus (Figure S2). 366 

 367 

In addition to the 61 SNP-metabolite pairs in the truth set, Shin et al. reported 18 SNP-metabolite pairs 368 

that reached genome-wide significance in their analysis, but for which it was not possible to assign a 369 

causal gene with high confidence, as none of the genes could be implicated based on known biology20. In 370 

this setting, the authors assigned each associated SNP to the nearest gene at the locus (Table S2). The 371 

results of our analyses for these 18 signals recapitulated those we saw for the 61 genes in the “truth set”. 372 

We could recover 10 of these “nearest gene” candidates (a sensitivity of 56%) using S-PrediXcan applied 373 

to GTEx (Table S6), of which seven colocalized in at least one tissue. However, a further 92 bystander 374 

associations at these loci were also significant.  375 

 376 

We also used a complementary approach to quantify the performance of the predicted expression analysis 377 

for identifying novel, plausible gene candidates. We focused on the 312 gene-metabolite pairs that 378 

involved genes that did not map to known met-QTL regions and evaluated metabolite and gene 379 

annotations in the Human Metabolome Database (version 4.0)29. We found that 96 of these pairs - 380 

corresponding to 83 genes - involved genes annotated to metabolic pathways. These included two genes 381 

involved in uridine metabolism - CDA and UPP1. Notably, SNPs in at these two loci were sub-genome-382 

wide significant in the GWAS but were implicated from our S-PrediXcan analysis and subsequent 383 

studies17 (Table S7). We expanded the search further by querying a recently curated dataset17 and found 384 

an additional 18 genes annotated to at least one metabolic pathway. Thus, as many as 37% (114/312 gene-385 

metabolite pairs) of novel TWAS gene associations can be considered biologically plausible albeit based 386 

on the rather permissive overlap between “metabolic pathway” and met-QTL. 387 

  388 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 19, 2019. ; https://doi.org/10.1101/773630doi: bioRxiv preprint 

https://doi.org/10.1101/773630
http://creativecommons.org/licenses/by-nd/4.0/


We then performed a more stringent evaluation by determining the number of novel gene-metabolite 389 

associations (again excluding “bystander” genes) where the novel gene either shared at least one 390 

metabolic pathway with a reported truth set gene for the associated metabolite or has been curated as a 391 

high confidence causal gene with the associated metabolite in recent publications17. We found that 16 392 

(5%) of the 312 novel gene-metabolite pairs met this criterion (Table S8). Taking this as a lower limit 393 

and the previous less stringent estimate as an upper limit, we estimate that 5-37% of novel gene-394 

metabolite relationships are biologically plausible. Notably, this range encompasses our PPV estimate of 395 

8% obtained from evaluating the true positive rate at met-QTLs with known causal genes. Therefore, 396 

most novel gene associations based on multi-SNP models represented either false positives or “bystander” 397 

genes that are not biologically relevant per se but rather driven by variants with pleiotropic effects on 398 

gene expression. Overall, these findings emphasize that, whilst the multi-SNP cis-eQTL approach has 399 

respectable sensitivity in detecting the causal gene in these data, performance in terms of PPV is poor and 400 

additional lines of evidence will be needed at most loci to establish causality.  401 

 402 

Discussion 403 

 404 

In this study, we have assessed the utility of multi-SNP prediction models for explaining variation in gene 405 

expression and their application in transcriptome-wide association analysis (TWAS). We quantified the 406 

extent to which these models outperform expression models based on a single eQTL, demonstrating, 407 

across all evaluated tissues, a median 2-fold improvement in variance explained. When applied in a 408 

TWAS of genome-wide data for 46 metabolites across 43 human tissues, these multi-SNP models 409 

identified 826 significant gene-metabolite associations. By leveraging knowledge of genes highly likely 410 

to be causally involved in the regulation of metabolite levels, we were able to quantify the accuracy with 411 

which multi-SNP TWAS detects such high-confidence effectors. The results from these analyses offer 412 

several key insights relevant to the interpretation of TWAS results.  413 
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 414 

We found that, notwithstanding the use of LASSO regression as a sparse form of variable selection, it is 415 

still prone to select sets of SNPs that are highly correlated, introducing multicollinearity into resulting 416 

regression models. This notion has been described before in real and simulated GWAS data32. We showed 417 

that a simple iterative approach to LASSO modelling that involved LD-based filtering resulted in 418 

increased model sparsity and decreased multicollinearity, leading to more confident genetic instruments 419 

for gene expression. 420 

 421 

Despite the improved performance in predicting gene expression attributable to models with multiple, 422 

independent SNPs, we found that, using available GTEx data, TWAS associations based on these models 423 

were, in most instances, driven by a single SNP within each trait-associated locus: 90% of associations 424 

were no longer significant after stepwise conditional analysis. Although this proportion is likely to fall as 425 

eQTL sample sizes increase (increasing the power to detect the additional impact of conditioned variants), 426 

these results indicate that, for many genes, the increment in power gained by moving from single to multi-427 

SNP analyses is modest.  428 

 429 

The genetic architecture underlying metabolite traits provides a unique opportunity to quantify the 430 

performance of gene associations based on multi-SNP models. By leveraging a “truth” set of 431 

experimentally validated genes linked to metabolites, we have shown, using GTEx, that TWAS has 432 

reasonable sensitivity (67%) at identifying causal genes. However, the PPV is low (8%), as a great 433 

majority of associations in the vicinity of a known causal gene involved nearby “bystander” genes. 434 

Furthermore, the process of resolving true causal from false-positive associations is complicated by the 435 

fact that these types of associations were indistinguishable in their model SNP effect sizes (GWAS and 436 

eQTL), colocalization probabilities, and distance to transcription start sites. In the case of the metabolite 437 

glutarylcarnitine, for example, the met-QTL rs8012 not only regulates the expression of the causal GCDH 438 
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gene but also five other genes at the same locus, all of which are associated with glutarylcarnitine levels 439 

in TWAS. These insights temper the extent to which it can be assumed that genes implicated by 440 

significant TWAS associations are causal.  441 

 442 

These “bystander” effects reflect their shared regulatory architecture with known causal genes, and our 443 

observations around met-QTLs mirror recent findings at the SORT1 and NOD2 loci (associated with LDL 444 

cholesterol and Crohn’s disease, respectively)33. By anchoring our analysis on a wide range of 445 

metabolomic phenotypes, we have been able to extend those observations, and to develop more 446 

generalizable estimates of the sensitivity and PPV of TWAS. Recent analyses from Stacey and colleagues 447 

using an alternative gene prioritisation method (ProGeM) are also instructive17. Using ProGEM to address 448 

a similar problem (the detection of causal effector genes at met-QTL loci), the performance was 449 

appreciably better than that we observed with a sensitivity of 98%, and a specificity ranging from 38.4% 450 

to 84.6% (PPV was not measured, and the true negatives needed for estimation of specificity were 451 

derived using different criteria for delineating sets of candidate causal genes). However, in contrast to 452 

TWAS, ProGeM explicitly integrates SNP-level annotations (i.e. eQTLs) with functional gene and 453 

pathway annotations across five databases to prioritize causal genes. That is to say, ProGem directly 454 

leverages molecular pathway annotations whereas TWAS is agnostic to this information. Accordingly, 455 

ProGeM is intended for a specific trait class - molecular QTLs (e.g. metabolites, lipids, proteins) - and the 456 

incorporation of additional information relevant to metabolites is likely to have contributed to the better 457 

performance in this specific task. In addition, the sensitivity of ProGeM may be inflated by the fact that 458 

shared database features were used to both prioritise genes and benchmark performance. For these 459 

reasons, ProGEM might be expected not to achieve comparable performance when used to prioritise 460 

effectors at disease GWAS loci, with performance more resembling that of the more agnostic approach 461 

we achieve with TWAS. 462 

 463 
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Our analyses were focused on the use of expression QTLs to map causal genes at metabolomic-QTL 464 

signals: the extent to which similar observations apply to other molecular QTLs remains to be 465 

determined. Previous studies have shown that the genetic architecture of protein-QTLs (pQTLs) is 466 

distinct from that of eQTLs: only half of pQTLs identified in lymphoblastoid cell lines (LCLs) were also 467 

eQTLs, and pQTL effect sizes were typically lower than those for eQTLs34. However, these apparently 468 

distinct architectures are likely in part the consequence of disparities in sample sizes and differences in 469 

the technologies used to profile these features. Further work is required to assess if the confounding effect 470 

of co-regulation observed in TWAS based on predicted gene expression will be present to the same extent 471 

for other molecular features.  472 

 473 

TWAS approaches provide an attractive option for prioritizing candidate genes at trait-associated loci. 474 

Here, we have demonstrated the potential for these approaches to identify associations that are not causal, 475 

through a combination of incomplete colocalization and pleiotropy in gene expression regulation. 476 

Ultimately, the process of identifying causal genes at GWAS signals represents an integrative enterprise 477 

that is dependent on combining results from multiple complementary approaches, including, in addition to 478 

QTL-mapping, epigenome profiling (e.g. chromatin co-accessibility or conformation capture methods), 479 

functional screens (e.g. high-throughput gene knock-out CRISPR screens) and the detection of coding 480 

variant associations. All of these prioritization approaches – including TWAS – will become more 481 

accurate, as the data sets available encompass a wider range of tissues and cell types captured in 482 

circumstances (e.g. developmental stages, physiological states, environmental exposures) that better 483 

reflect the underlying pathophysiology of the particular traits and diseases under investigation.  484 

 485 

Supplemental Data 486 

Supplemental Figures. Figures S1 and S2 487 

Supplemental Tables. Tables S1-S8 488 
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 606 

Figure Titles and Legends 607 

 608 

Figure 1. Model R2 comparison of LASSO regression models.  609 

(A) Scatterplot comparing variation in gene expression explained by the top eQTL alone and by the 610 

multi-SNP LASSO model in skeletal muscle. (B) Violin plot showing the fold increase in gene expression 611 
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variation explained by LASSO models in skeletal muscle. The asterisks in the violin plots denote that the 612 

y-axis is abrogated at a fold change of 10. (C) Comparison of LASSO regression models before and after 613 

contribution based filtering of collinear SNPs. The mean model R2was reduced by only 1.6%. (D) Violin 614 

plot showing the fold increase in gene expression variation explained by filtered LASSO models across 615 

all 43 tissues. The asterisks in the violin plots denote that the y-axis is abrogated at a fold change of 10. 616 

  617 

Figure 2. Transcriptome-wide association analysis of 46 metabolites across 43 tissues.  618 

(A) Manhattan plot showing all S-PrediXcan associations across 46 metabolites in all 43 tissues analysed 619 

with each point representing a gene-metabolite association. Labels indicate loci where TWAS 620 

associations involve high confidence causal genes. (B) Bar plot of the number of significant gene-621 

metabolite associations observed per tissue. 622 

  623 

Figure 3. Step-wise conditional analysis of significant associations.  624 

(A) Plot showing results from the conditional analysis of S-PrediXcan associations involving multi-SNP 625 

prediction models. The vertical line denotes the significance threshold used for conditional analysis. Only 626 

273 associations remained significant after conditioning on the lead met-QTL SNP, of which, 148 627 

mapped to the ACADS locus and influence butyrylcarnitine levels (yellow triangles). (B) Locus Zoom 628 

plot showing met-QTLs associating with butyrylcarnitine levels at the ACADS locus and their LD relative 629 

to the top met-QTL. 630 

  631 

Figure 4. Colocalization analysis of eQTL and met-QTL signals in multi-SNP models for 632 

metabolite-associated genes.  633 
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(A) Colocalization of the single met-QTL and single cis-eQTL signal at the FADS1 gene in esophagus 634 

mucosa.(B) Partial colocalization at the SLC16A9 gene in tibial nerve where only one of the two 635 

independent cis-eQTLs in the multi-SNP model is colocalized with the met-QTL at this gene (C) No 636 

colocalization of cis-eQTL and met-QTL for the FNDC1 gene in skeletal muscle. The red triangles 637 

denote the SNPs present in the genes’ multi-SNP prediction models.  638 

  639 

Figure 5. Comparison of features of multi-SNP models for bystander genes to those for true causal 640 

genes. 641 

 (A) Comparison of the effect sizes of model SNPs for bystander genes and model SNPs for true causal 642 

genes on metabolite levels in GWAS. (B) Distribution of effects on gene expression for individual SNPs 643 

in models for bystander and known causal genes. (C) Comparison of the distance from TSS for model 644 

SNPs in bystander and causal genes. (D) The distribution of colocalization posterior probabilities (CLPP) 645 

scores for model SNPs in bystander and causal genes. 646 

 647 

Tables 648 

Metabolite ID Metabolite Name Causal Gene 
Number of 

Associations Most Significant Tissue q-value 

M35439 glutarylcarnitine GCDH 38 Whole-Blood 1.88E-39 

M01110 arachidonate (20:4n6) FADS1 a 27 Thyroid 1.09E-78 

M32412 butyrylcarnitine ACADS a 26 Lung 5.64E-202 

M01110 arachidonate (20:4n6) FADS2 26 Esophagus-Gastroesophageal-Junction 1.76E-48 

M37058 succinylcarnitine CRAT a 23 Cells-EBV-Transformed-Lymphocytes 5.78E-13 

M00606 uridine TYMP 20 Cells-Transformed-Fibroblasts 1.36E-11 

M35433 hydroxyisovaleroyl carnitine MCCC1 16 Skin-Sun-Exposed 1.29E-09 

M01604 urate SLC2A9 14 Muscle-Skeletal 3.57E-34 

M03141 betaine BHMT 11 Brain-Frontal-Cortex 3.21E-12 

M32338 glycine CPS1 10 Brain-Putamen 3.15E-10 

M32654 3-dehydrocarnitine SLC22A5 a 10 Skin-Not-Sun-Exposed 5.64E-14 

M01123 inosine NT5E a 8 Spleen 3.19E-09 

M15500 carnitine SLC16A9 8 Esophagus-Mucosa 1.28E-44 

M15140 kynurenine SLC7A5 8 Adipose-Visceral 1.58E-12 

M22138 homocitrulline SLC7A9 7 Colon-Transverse 0.000202 
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M01110 arachidonate (20:4n6) FADS3 a 6 Liver 9.96E-55 

M35159 cysteine-glutathione disulfide GGT1 6 Esophagus-Mucosa 1.88E-08 

M35439 glutarylcarnitine SLC7A6 6 Spleen 4.24E-14 

M35439 glutarylcarnitine CPT2 5 Colon-Sigmoid 8.48E-08 

M01494 5-oxoproline OPLAH 4 Skin-Sun-Exposed 5.08E-98 

M02137 biliverdin UGT1A1 a 4 Skin-Not-Sun-Exposed 1.16E-49 

M32315 serine PHGDH 3 Colon-Sigmoid 2.73E-13 

M33441 isobutyrylcarnitine SLC22A1-2 3 Skin-Not-Sun-Exposed 3.20E-05 

M32654 3-dehydrocarnitine SLC22A4 3 Skin-Sun-Exposed 1.06E-17 

M15500 carnitine SLC22A4 3 Artery-Tibial 2.01E-07 

M15500 carnitine SLC22A5 3 Brain-Cerebellum 0.00104 

M37097 tryptophan betaine SLC22A5 3 Brain-Putamen 2.35E-05 

M18349 indolelactate CCBL1 2 Brain-Cortex 0.000201 

M03127 hypoxanthine GMPR 2 Brain-Cerebellar-Hemisphere 0.00228 

M22130 phenyllactate (PLA) GOT2 2 Brain-Frontal-Cortex 1.05E-08 

M35631 1-palmitoylglycerophosphoethanolamine LIPC a 2 Pancreas 3.96E-06 

M03141 betaine SLC6A12 2 Lung 0.00148 

M02132 citrulline ALDH18A1 1 Skin-Sun-Exposed 0.00807 

M33937 alpha-hydroxyisovalerate HAO2 1 Adrenal-Gland 1.53E-06 

M32315 serine PSPH 1 Esophagus-Mucosa 0.000534 

M00054 tryptophan SLC16A10 1 Brain-Frontal-Cortex 0.00671 

M01299 tyrosine SLC16A10 1 Brain-Frontal-Cortex 0.00058 

M32412 butyrylcarnitine SLC16A9 1 Esophagus-Mucosa 0.000185 

M32348 2-aminobutyrate SLC1A4 1 Muscle-Skeletal 1.96E-12 

M37097 tryptophan betaine SLC22A4 1 Artery-Tibial 3.28E-07 
M32379 scyllo-inositol SLC5A11 1 Brain-Hippocampus 0.00474 

 649 

Table 1. Causal genes from the truth set that significantly associated with metabolite levels in a 650 

TWAS. Of the 61 high confidence truth set genes, 41 had significant S-PrediXcan associations in at least 651 

one tissue. a Eight gene-metabolite pairs that had a significant association in liver.  652 
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