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Abstract 

Osteoporosis (OP) is a highly polygenetic disease which is usually characterized by low 
bone mineral density. Genome-wide association studies (GWAS) have identified 
hundreds of genetic loci associated with bone mineral density. However, the biological 
mechanisms of these loci remain elusive. To identify potential causal genes of the 
associated loci, we detected trait-gene expression associations by transcriptome-wide 
association study (TWAS) method. It directly imputes gene expression effects from 
GWAS data, using a statistical prediction model trained on GTEx reference 
transcriptome data, with blood and skeletal tissues data. Then we performed a 
colocalization analysis to evaluate the posterior probability of biological patterns: 
association characterized by a single shared causal variant or two distinct causal 
variants. The ultimate analysis identified 276 candidate genes, including 3 novel loci, 
204 novel candidate genes and 69 replicated from GWAS. The 3 novel loci located at 
chr6: 72417543, chr15: 69601206, chr21: 30530692, mapping to gene RIMS1, SPESP1, 
MAP3K7CL. The results of colocalization analysis indicated that 142 of them showing 
strong evidence of a single shared causal variant and 134 of them showing evidence of 
joint causal variants. Their biological function was directly or indirectly associated with 
the occurrence of OP validated by VarElect tool. Several important OP-associated 
pathways were detected by protein-protein interaction and pathway enrichment analysis. 
Target genes were further enriched for differential expression genes in osteoblasts 
expression profiles, e.g. IBSP, affecting calcium and hydroxyapatite binding, and CD44, 
regulating alternative splicing of gene transcription. Transcriptome fine-mapping 
identifies more disease-related genes and provide additional insight into the 
development of novel targeted therapeutics to treat OP. 
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Background 

Osteoporosis(OP) is a highly polygenetic disease which has been studied intensively 
on the genetic level, resulting in abundant detections associated with gene loci and 
polymorphisms (Peacock et al. 2002; Clark and Duncan 2015). Osteoporosis is defined 
clinically that bone mineral density is 2.5 standard deviations or more below the young 
adult mean and remains the single golden standard predictor of primary osteoporotic 
fractures (Nguyen et al. 2007; Duncan and Brown 2010; Rachner et al. 2011). Bone 
mineral density is highly heritable, with evidence showing that the heritability of bone 
mineral density ranges from 50% to 80% (Duncan and Brown 2010). The recent large 
genome-wide association study (GWAS) to date estimated bone mineral density at the 
heel in 426,824 individuals and identified 1,103 independent genome-wide significant 
associations at 518 loci (Morris et al. 2019). They explain about 20% phenotypic 
variance in estimated bone mineral density. However, the majority of GWAS hits are in 
non-coding regions and their biological methnasims are difficult to understand 
(Moonesinghe et al. 2008; Nicolae et al. 2010). 
The effect of genetic variation on phenotype is complex, where it may alter the 
abundance of one or more proteins by regulating gene expression and then affects the 
trait (SNP-Expression-Phenotype) (Musunuru et al. 2010; Lappalainen et al. 2013; 
Westra et al. 2013; Albert and Kruglyak 2015; Zhang et al. 2015). Gene expression is 
arguably the most impactful and well-studied effect of regulatory genetic variation. 
GWAS loci are enriched for expression quantitative trait loci (eQTL), rendering it a 
potential link between genetic variant and biology of disease (Stranger et al. 2007; 
Gusev et al. 2014; Lee et al. 2015). While most GWAS studies do not concomitantly 
measure gene expression, the influence of genetic variation on gene expression allows 
us to use gene expression reference datasets to predict gene expression given a set of 
genotypes, and subsequently identify new disease-associated genes (Nica et al. 2010; 
Nicolae et al. 2010; Albert and Kruglyak 2015). Transcriptome-wide association study 
(TWAS) approach has been implemented to identify genes with expression associated 
with complex traits by integrating genetic and transcriptional variation (Gusev et al. 
2016; Barbeira et al. 2018). Instead of testing millions of SNPs in GWAS, TWAS 
evaluates the association of predicted expression for thousands of genes, greatly 
reducing the burden of multiple comparisons in statistical inference. This approach has 
been shown to have the potential to identify the genes responsible for GWAS-identified 
associations for complex traits and provide mechanistic insight regarding genes being 
regulated via disease-associated genetic variants (Mancuso et al. 2017; Gusev et al. 
2018; Lu et al. 2018; Wu et al. 2018; Atkins et al. 2019). 
In this paper, we conducted transcriptome-wide association study to identify genes 
associated with OP by integrating gene expression from the Genotype-Tissue 
Expression (GTEx) and GWAS summary data from the Genetic Factors for 
Osteoporosis (GEFOS) Consortium, and then evaluated the biological patterns of 
expression-trait association by COLOC method. Next, we performed VarElect to 
understand the biological function of association between the TWAS-significant genes 
and OP. Comparing with the results of differential analysis of the two mRNA expression 
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profiles for OP, we further verified the causal associations between OP and TWAS-
significant genes. 

Results 

TWAS identified candidate genes for OP 
We performed TWAS method. Two gene-expression reference panels in muscle-
skeletal and whole blood were used, with totally 13,416 genes towards GWAS summary 
data from GEFOS consortium to identify novel genes associated with OP. TWAS 
identified 276 significant associated genes at p-value < 3.7E-6, as shown in Figure 1.  

 

Figure 1. A manhattan plot of the results from TWAS analysis and GWAS analysis for OP. The 

transcriptome−wide significance threshold is p-value = 3.7E-6; The genome−wide significance 

threshold is p-value = 6.6E-9. There are 1,103 conditionally independent SNPs at 515 loci passed 

the criteria for genome-wide significance in n = 426,824 UK Biobank participants. 

TWAS method can detect causal genes by introducing the effect prediction of genetic 
variants on the gene expression. There are the following four biological patterns 
identified by TWAS (Figure 2). First, for significantly associated SNPs with OP in the 
coding regions (introns and extons), the causal genes identified by GWAS and TWAS 
are more likely to be consistent, as shown in Figure 2a. The effect size of rs10411210 
(PGWAS = 1.6E-119) on OP in GWAS is corresponding with that of rs10411210 on 
RHPN2 (PTWAS = 4.4E-73 ) gene expression in TWAS. Second, for SNPs in non-coding 
regions, the candidate genes may be close to the significant eQTLs but different from 
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the GWAS hits, as shown in Figure 2b. Variant rs2785197 (PGWAS = 6.5E-44) in 11p13 
mapping to PDHX in GWAS, but the causal gene for rs2785197 is more likely to be 
CD44 (PTWAS = 1.1E-32 ) in our TWAS. The colocalization analysis showed CD44 
(PP4=0.99 in Supplementary Table 3) gene expression was regulated by single variant 
rs2785197, which may be regarded as its expression regulation element. Third, the 
candidate genes may be regulated by relatively distant significant SNP in non-coding 
regions, as shown in 2c. Our TWAS results indicated that rs4792909 (PGWAS = 1.5E-74) 
in 17q21.31 may be associated with G6PC3 (PTWAS = 4.2E-26). The distance between 
rs12478002 and G6PC3 was 349kb, but we did not found gene reported by GWAS near 
rs4792909. Fourth, the candidate genes were discovered in non-significantly associated 
SNPs with OP. There GWAS non-significants regions as novel loci: rs1003260 (PGWAS 
= 3.6E-08) in the 6q13 associated with RIMS1 (PTWAS = 2.1E-8) shown in Figure 2d, 
rs12917011 (PGWAS = 2.1E-06 ) in the 15q23 associated with SPESP1 (PTWAS =3.3E-8) 
shown in Supplementary Figure 6a, rs2251381 (PGWAS = 1.4E-06 ) in the 21q21.3 
associated with MAP3K7CL (PTWAS = 1.1E-9)shown in Supplementary Figure 6b. 
These 3 novel discoveries are firstly reported to be associated with BMD and further 
investigation can be performed. 
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Figure 2. Biological patterns identified by TWAS. a: For significant SNPs in the coding regions, 

rs10411210 (PGWAS = 1.6E-119) in 19q13.11 is associated with RHPN2 (PTWAS = 4.4E-73). b: For 

SNPs in the non-coding regions, rs2785197 (PGWAS =6.5E-44) in 11p13 associated with PDHX 

marked green in GWAS, but The causal gene for rs2785197 is more likely to be CD44 marked red 

(PTWAS = 1.1E-32) in our TWAS. c: rs4792909 (PGWAS = 1.5E-74) in 17q21.31 may be associated 

with G6PC3 (PTWAS = 4.2E-26). The distance between rs4792909 and G6PC3 was 387kb, but there 

is not found gene reported by GWAS near rs4792909. d: rs1003260 (PGWAS = 3.6E-08) in the 6q13 

associated with RIMS1 (PTWAS = 2.1E-8). rs1003260 is not significant in GWAS. 

Genes expression difference identified by TWAS may be causally associated with the 
phenotype of interest, but also can be due to variants LD or co-expressions (Huang et 
al. 2015; Hormozdiari et al. 2016). To pinpoint causal relationship between the target 
gene of an eQTL and the complex trait, we performed colocalization analysis by using 
COLOC method; see Methods section. The results showed that 134 TWAS associations 
have strong evidence of joint causal variants with PP3 > 0.9 shown in Figure 3a and 
Supple mentary Figure 1 and Table 1, and 142 have evidence of a single shared causal 
variant with PP4 > 0.8 shown in Figure 3a and Supplementary Figure 1 and Table 2. 
Comparing with previous GWAS studies, we observed that 3 genes located in novel 

loci and 204 genes have not been reported to be associated with OP risk in previous 
GWAS loci, 69 genes were previously implicated to be OP risky by literature using 
either GWAS or functional studies shown in Figure 3a-3b. We also found that 117 
(117/276) genes were expressed in skeletal tissue and 71 (71/276) genes were expressed 
in blood tissue, and 88 (88/276) genes were expressed in both tissues as shown in Figure 
3a. For 69 genes found in previous GWAS studies, our results provided additional 
evidence to support these previous findings. For the rest genes, 79 in blood tissue and 
128 in skeletal tissue were considered as novel candidates shown in Figure 3c-3d. 
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Figure 3. TWAS−significant genes and novel candidate genes in blood and skeletal tissue. PP3: 

represents trait−gene expression associations are caused by two distinct causal variants. PP4: 

represents trait−gene expression associations are caused by a signale causal variants. a: Heatmap of 

top 50 TWAS−significant genes, whether discovered in previous GWAS study, blood tissue or 

skeletal tissue, whether passed the criteria for colocalization analysis in PP3 > 0.9 or PP4 > 0.8 (full 

lists can be found in Supplementary Figure 1, Supplementary Table 2 and 3). b: Comparison of 

associated genes found by TWAS and GWAS methods. c and d: Top 20 novel candidate genes were 

found in blood and skeletal tissues respectively, the red bars represent gene expression up-regulated, 

and blue bars indicate down-regulated (full lists can be found in Supplementary Figure 2 and 3, 

Supplementary Table 2 and 3).  
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Assessment of the candidate gene−OP association 
For 207 novel candidate genes, we evaluated the associations between the candidate 
genes and OP by implementing VarElect analysis. The analytical results showed that 24 
genes (Supplementary Table 3) were ’direct’ associations and 129 genes were ’indirect’ 
associations (Supplementary Table 4); the rest were unclassified yet. The direct 
associations indicated the target genes were supported by rich evidences (the relevant 
literature, gene function annotation, etc.). The score in Supplementary Table 3 indicated 
the strength of the association between the gene and OP: the higher score, the stronger 
evidence. Indirectly associated genes may interact with intermediary to influence the 
development of OP, though protein interaction netorks and pathways (Supplementary 
Table 5). The remaining uncharacterized genes are mainly lncRNA, transcripts as the 
potential disease factors without available evidence requiring further investigations. 
Functional pathways of the candidate genes 
In order to further verify the associations between the TWAS−significant genes and OP, 
we explored the biological function pathways of these genes by applying STRING and 
CluePedia tool. We found the majority of pathways were easy understanding to the 
occurrence of OP and some of them interact with each other (e.g. focal adhesion and 
ECM-receptor interaction, PI3K-Akt signaling), as shown in Figure 3a and 
Supplementary Table 5. We further enriched the functional pathways for the categorized 
gene lists (direct, indirect, in blood, in skeletal). We found all significant pathways 
(p−value < 0.5) were enriched in the skeletal tissue while part enriched in blood. ’Direct’ 
genes can be enriched in the critical pathway such as mineral absorption and calcium 
signaling pathway. These results showed that TWAS−significant genes involved many 
biological mechanisms in developing OP. 
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Figure 4. The functional pathways of TWAS−significant genes. They are enriched by applying 

STRING and CluePedia tool. Significance of pathways is determined by the hypergeometric test 

(one−sided) followed by Fisher’s combined probability test (one−sided) to determine combined 

pathway significance (p−value < 0.5). a: The functional pathways of TWAS−significant genes, the 

circles represent functional pathways, and the line represents the interactions between pathways. b: 

Classification of functional pathways according to the categorized gene lists. Genes in skeletal tissue 

are enriched in all significant pathways. The genes list for each pathway are found in Supplementary 

Table 5. 

Functional validation for the candidate genes 
Previous research, utilizing expression profiling with gene signatures of cellular models 
to characterize the gene’s involvement in bone metabolism and disease processes, found 
that impaired osteoblastic differentiation reduces bone formation and causes severe OP 
in animals (Stein et al. 1990; Wu et al. 2003; Misof et al. 2012). We analyzed two gene 
expression profiles GSE35956 and GSE35959 from GEO, containing two groups 
people: the primary OP and normal. Based on the cut-off criteria of p < 0.05 and logFC > 
1 to select DEGs, a total of 156 and 265 DEGs were identified from GSE35956 and 
GSE35959 datasets. Comparing DEGs with TWAS-significant genes, 5 up-regulated 
and 2 down-regulated genes overlapped in two type datasets shown in Supplementary 
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Figure 4. We observed that these genes were quite significant in TWAS, and their 
expression differences were also consistent with COLOC analysis results, as shown in 
Figure 4a-4d. Therefore, we inferred that these genes are very likely to be the causal 
pathogenic gene of OP. The results of functional pathway analysis also supported our 
findings, as shown in Figure 4e-4g, IBSP and CD44 included in the ECM-receptor 
interaction pathway, which is a branch of the focal adhesion pathway and acts on PI3K-
AKT signaling pathway. Owning to the small samples size of gene expression datasets, 
more experiments are needed in the future.  
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Figure 5. Biological function verification for genes. TWAS−significant gene CD44 (PTWAS =1.1E-

32) and IBSP (PTWAS =1.8E-32) are validated by COLOC method, gene expression profiles, and 

biological function pathways. a and c: The colocalization analysis results for gene CD44 and IBSP, 

showing a single shared causal variant rs2785197 and joint causal variants rs1471403 and 

rs1054627 respecively. b and d: Gene expression for CD44 and IBSP in the GSE35956 and 

GSE35959 datasets. e-g: IBSP and CD44 are enriched in the ECM-receptor interaction pathway, 

which is a branch of the focal adhesion pathway and acts on PI3K-AKT signaling pathway, also see 

Figure 4a. 

 
TWAS for OP identifies new loci  
We found 3 genes in novel loci. RIMS1 (PTWAS = 2.1E-8) associated with rs1003260 
(PGWAS = 1.8E-8, MAF = 0.125) and is a RAS gene superfamily member in 6q13 that 
regulates synaptic vesicle exocytosis; SPESP1 ( PTWAS =3.3E-8) in 15q23 associated 
with rs12917011 (PGWAS = 2.1E-06, MAF = 0.438) code a human alloantigen involved 
in spermegg binding and fusion; MAP3K7CL (PTWAS = 1.1E-9) associated with 
rs2251381 (PGWAS = 1.4E-06, MAF = 0.367) and is a protein coding gene in 21q21.3. 
VarElect analysis showed that the biological function of three genes were indirectly 
associated with OP and provided evidence for causality for OP shown in Supplementary 
Table 4. However, we did not enrich significant functional pathways for three genes, 
the causal effect of them on OP needs to be verified by advanced biological experiments. 
As shown in Figure 2d and Supplementary Figure 6a-6b, we observed that the distance 
between the three causal SNPs and causal genes is within 500kb, and other significant 
GWAS SNPs were not found, the results indicated one of the advantage of TWAS 
method, which can find causal genes in the non-significant GWAS regions. 
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Discussion 

Multiple GWAS studies have been performed with considerable sample sizes to detect 
OP heredity, yet progress towards understanding disease mechanisms has been limited. 
Most GWAS hits are in non-coding regions and difficult to understand the downstream 
biological inference. In most cases, the nearest genes were uaually reported (Smemo et 
al. 2014; Claussnitzer et al. 2015; Spain and Barrett 2015). In fact, SNPs in the non-
coding region did not have to regulate gene based on the distance between SNPs and 
genes. Intergreting GWAS data and transcriptome data will empower novel discovery 
and possibly pinpoint the causality. TWAS method calculated local SNPs−gene 
expression correlations, and further calculated likelihood of genes causality. Therefore, 
for a significant SNPs in the coding region, the causal genes identified by GWAS and 
TWAS should be and indeed are consistent, as shown in Figure 2a. For SNPs in non-
coding regions, the causal genes may be close to the significant eQTLs but different 
from the GWAS hits as shown in Figure 2b. TWAS method can even discover causal 
genes non-significantly associated SNPs with OP shown in Figure 2c, and relatively 
distant significant SNP shown in Figure 2d. More valuable region plots can be found in 
Supplementary Figure 5-6. 
 We totally found 276 candidate genes, of which 69 were replicated in GWAS, and the 
rest 207 were novel candidates. Among them, 142 target genes are regulated by two 
distinct causal variants, and 134 target genes share one causal variant. By analyzing the 
biological functions behind, we found that 24 novel candidate genes directly affect the 
pathways closely related to the development of osteoporosis in our results: IBSP, 
EIF2B2, CD44, FEN1, UBA7, MARCO, ATF1,CBFB, G6PC3, SLC11A2, GAL, CCR3, 
MST1R, PLEKHM1, ATRIP, CCDC36, AKAP7, EPRS, CTSB, ASB16-AS1, CRHR1, 
FADS1, MAP1LC3A, MAEA. For example, SLC11A2 enriched in mineral absorption 
pathway regulates the fine-tuned balance between bone resorption and bone formation 
and thus affects bone density (Xu et al. 2017), shown in Supplementary Figure 7. In the 
other hand, 129 novel candidate genes seem exerting their biological functions to affect 
the development of osteoporosis through protein-protein interaction networks. As 
shown in Supplementary Figure 8, RAC3 and NFATC4 were enriched in the MAPK 
signaling pathway through interacting with genes (ESR1, FOS, IGF1, TGFB1, JUN, 
NFATC1, IGF1, LRP5, TNF, PRKACA) known to be associated with osteoporosis. 
MAPK signaling pathway is involved in the regulation of many cellular physiological 
functions such as proliferation, differentiation, inflammation, and apoptosis, and affect 
bone formation (Peng et al. 2009; Wanachewin et al. 2012). More information on gene 
interactions can be found in Supplementary Table 5. 
We found RIMS1, MAP3K7CL, SPESP1 located in new loci and their causal SNPs 

were non-significantly associated with OP in GWAS. RIMS1, regulating synaptic 
membrane exocytosis 1, is a RAS gene superfamily member and plays a role in the 
regulation of voltage-gated calcium channels during neurotransmitter and insulin 
release. MAP3K7CL, MAP3K7 C-terminal like, is a protein coding gene. The GO 
annotation (GO:0005515) showed MAP3K7CL interact selectively and non-covalently 
with any protein or protein complex. But there is little research on its biological function. 
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SPESP1 code sperm equatorial segment protein 1 involved in fertilization ability of 
sperm. The current studies have not supported evidence for the causal association 
between three genes and OP, so we hope to have follow-up experiments to verify them. 
Furthermore, we provided additional evidence by comparing with differential 

expression genes by analyzing two gene expression profiles in OP and non-OP groups. 
We found seven significant differential expression genes in our results: IBSP, CD44, 
SPTBN1, PAPSS2, TRAM1, PPP1CB, NCKAP1, shown in Supplementary Figure 4. 
IBSP is remarkably downregulated and associates with OP significantly (TWAS p-
value=1.8E-32). SNP rs1471403 and rs1054627 may co-regulate gene expression of 
IBSP (PP3=1, Figure 4c-4d). Previous studies showed that IBSP is expressed in all 
major bone cells including osteoblasts, osteocytes and osteoclasts (Trošt et al. 2010) 
and encodes a major non-collagenous bone matrix protein binding to calcium and 
hydroxyapatite via its acidic amino acid clusters (Mafi Golchin et al. 2016). Another 
discovery CD44 is remarkably upregulated. Previous research argued that a linkage 
synonymous mutation in exon 9 of the CD44 gene through a cell experiment, may 
increase the susceptibility of the family to OP by influencing alternative splicing of 
gene transcription (Vidal et al. 2009). Information about other genes can be found in 
Supplementary Table 6. 
This is as yet largest study integrating GWAS and TWAS to identify susceptibility genes 
of OP. We used data from the 426,824 individuals GWAS of OP and 860 samples TWAS 
in our analyses. Many findings were discovered, although there still exist limitations of 
this research. First, TWAS method cannot explain the variants influencing disease that 
are independent of cis expression, as it was only trained on cis-eQTL analysis. Second, 
there may be bias using normal blood and skeletal tissues from GTEx to make 
predictions. Third, tissue sensitivity and tissue specificity are important issues when 
running TWAS. Prediction models built on gene expression data from osteoblasts cells 
in OP patients will help identifying additional candidate genes associated with OP 
(Orlic et al. 2007). 
In summary, we integrated data from GWAS and transcripome expression to identify 

276 candidate genes associated with OP; 69 of them were replicated from GWAS, and 
204 novel candidate genes in loci reported by GWAS and 3 novel candidate genes in 
new loci. We analyzed biological patterns of those loci and explained their pathway 
interactions. We hope that our findings will provide novel insights into the future 
pathogenetic studies of OP. 

Methods 

GWAS summary datasets of OP 
The GWAS summary statistics for OP was derived from GEFOS Consortium website 
(URL) in December 2018. The phenotype feature of OP was measured by bone mineral 
density estimated from quantitative heel ultrasounds. The large scale GWAS analysis 
for OP were performed in a cohort of 426,824 participants (55% female) from UK 
Biobank (Morris et al. 2019). Briefly, GWAS analysis was performed based on the HRC 
imputation panel (hg19) including about 14,000,000 SNPs with MAF ≥ 0.05% and 
acceptable imputation quality (info score > 0.3). A detailed description of sample 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 16, 2019. ; https://doi.org/10.1101/771543doi: bioRxiv preprint 

https://doi.org/10.1101/771543


characteristics, experimental design, and statistical analysis can be found in the 
published study (Sudlow et al. 2015). 
 
Integration of GWAS and gene expression 
To integrate GWAS results and gene expression, we used TWAS method. We included 
two relevant reference transcriptome datasets in our analysis: whole blood and muscle-
skeletal from GTEx v7. TWAS method integrated information from expression 
reference panels (SNP−gene expression correlation), GWAS summary statistics 
(SNP−OP correlation), and linkage disequilibrium (LD) reference panels (SNP−SNP 
correlation) to assess the association between the cis−genetic component of expression 
and trait (expression−OP correlation) (Gusev et al. 2016; Gusev et al. 2018), In practice, 
the effect sizes of cis-SNP−expression in the 500kb loci region were estimated with a 
sparse mixed linear model (Zhou et al. 2013). TWAS used pre−computed gene 
expression weights combined with GWAS summary statistics to calculate the 
association effect for each gene to disease. In this study, the gene expression weights of 
whole blood and muscle−skeletal were derived from the FUSION website (URL). The 
genes with significant association signals were identified at p-value < 3.7E-6 after strict 
Bonferroni correcting. 
 
Evaluation of trait−gene expression associations 
To evaluate the reliability of TWAS analysis results and understand the biological 
mechanisms of trait−gene expression associations, we performed COLOC method 
(Giambartolomei et al. 2014). COLOC method uses asymptotic Bayes factors with 
summary statistics and regional LD structure to estimate five posterior probabilities: no 
association with either GWAS or eQTL (PP0), association with GWAS only (PP1), 
association with eQTL only (PP2), association with GWAS and eQTL but two 
independent SNPs (PP3), and association with GWAS and eQTL having one shared 
SNP (PP4). For each of the GWAS hits, we defined a 500kb region at either side of the 
index variant and tested for colocalization within the entire cis−region of any 
overlapping eQTLs (transcription start and end position of an eQTL gene plus and 
minus 500kb, as defined by GTEx) in two human tissues from GTEx v7. A signal with 
PP3 > 0.9 was considered the evidence for trait − gene expression associations caused 
by two distinct causal variants from GWAS and eQTL. A signal with PP4 > 0.8 was 
considered the evidence for trait−gene expression associations caused by a joint signal 
from GWAS and eQTL. 
Assessment of gene-disease associations 
To assess the likelihood of functional genes which are more likely to be causal, VarElect 
(Stelzer et al. 2016a; Stelzer et al. 2016b), a cutting-edge Variant Election application 
for disease/phenotype-dependent gene variant prioritization, were used to assess the 
associations of biological function between the candidate genes and OP. VarElect 
provides a robust algorithm for ranking genes within a short list, and pointing out their 
likelihood associated with disease, and produces a list of prioritized, scored, and 
contextually annotated genes and direct links to supporting evidence and additional 
information. VarElect utilizes the deep LifeMap Knowledgebase to infer the ’direct’ 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 16, 2019. ; https://doi.org/10.1101/771543doi: bioRxiv preprint 

https://doi.org/10.1101/771543


or ’indirect’ association of biological function between genes and phenotypes. ’Direct’ 
association between genes and disease has been supported by many studies that genes 
can directly affect the development of disease. ’Indirect’ association between genes and 
disease are based on shared pathways, protein-protein interaction networks, paralogy 
relations, domain-sharing, and mutual publications. 
PPI network and pathway enrichment analysis 
The functional networks of TWAS−significant genes with OP were further validated by 
STRING and CluePedia tool. STRING (Search Tool for the Retrieval of Interacting 
Genes, URL) is an online tool designed to evaluate the protein−protein interaction (PPI) 
networks (Szklarczyk et al. 2015; Szklarczyk et al. 2017). The CluePedia is a plugin of 
Cytoscape software and search for potential genes associated with the certain signaling 
pathway by calculating linear and nonlinear statistical dependencies from experimental 
data (Shannon et al. 2003; Bindea et al. 2013). The PPI networks of TWAS-significant 
genes was constructed by STRING. The functioal pathways were detected and 
visualized by CluePedia. The pathways were identified at p-value < 0.5 (Bindea et al. 
2013). 
Differential analysis of gene expression  
To further validate the functional causslity of candidate genes, we compared the 
candidate genes with differential expression genes (DEGs) in osteoblasts for 
osteoporosis sufferer. The original datasets comparing the gene expression profiles 
between OP and normal controls were downloaded from NCBI GEO databases (URL). 
Two gene expression profiles GSE35956 and GSE35959 were based on GPL570 
(Affymetrix Human Genome U133 Plus2.0 Array, Affymetrix, SantaClara, CA, U.S.A). 
We performed robust multi−array average approach (Hochreiter et al. 2006) for back-
ground correction and normalization. The original GEO data were then converted into 
expression measures. Limma package (Smyth 2005) was used for determining DEGs 
between OP samples and non-OP samples (p < 0.05 and log2FC > 1 as the cut-
offcriterion). 
 
Data access 
GWAS summary data are available in the Genetic Factors for Osteoporosis (GEFOS) 
Consortium (http://www.gefos.org/); gene expression weights of whole blood and 
muscle−skeletal were derived from the FUSION website 
(https://gusevlab.org/projects/fusion/); Two gene expression profiles are available in 
NCBI GEO databases under der accession number GSE35956 and GSE35959. 
 
URL 
GEFOS: http://www.gefos.org/ 
Fusion: https://gusevlab.org/projects/fusion/ 
GEO: https://www.ncbi.nlm.nih.gov/geo/ 
STRING: https://www.string−db.org/cgi/ 
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