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Abstract9

In single-molecule localization based super-resolution microscopy (SMLM), a fluorophore stochastically10

switches between fluorescent- and dark-states, leading to intermittent emission of fluorescence. Inter-11

mittent emissions create multiple localizations belonging to the same molecule, a phenomenon known as12

blinking. Blinking distorts SMLM images and confound quantitative interpretations by forming artificial13

nanoclusters, which are often interpreted as true biological assemblies. Multiple methods have been de-14

veloped to eliminate these artifacts, but they either require additional experiments, arbitrary thresholds,15

or specific photo-kinetic models. Here we present a method, termed Distance Distribution Correction16

(DDC), to eliminate fluorophore blinking in superresolution imaging without any additional calibrations.17

The approach relies on the finding that the true pairwise distance distribution of different fluorophores18

in an SMLM image can be naturally obtained from the imaging sequence by using the distances between19

localizations separated by a time much longer than the average fluorescence survival time. We show that20

using the true pairwise distribution we can define and then maximize the likelihood of obtaining a partic-21

ular set of localizations without blinking and generate an accurate reconstruction of the true underlying22

cellular structure. Using both simulated and experimental data, we show that DDC surpasses all previous23

existing blinking correction methodologies, resulting in drastic improvements in obtaining the closest esti-24

mate of the true spatial organization and number of fluorescent emitters. The simplicity and robustness of25

DDC will enable its wide application in SMLM imaging, providing the most accurate reconstruction and26

quantification of SMLM images to date.27
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Introduction28

In recent years the development of superresolution fluorescence microscopy has enabled the probing of29

macromolecular assemblies in cells with nanometer resolutions. Amongst different superresolution imaging30

techniques, single-molecule localization superresolution microscopy (SMLM) has gained wide popularity31

due to its relatively simple implementation, which is based on post-imaging analysis of single-molecule32

detection.33

34

SMLM reconstructs a superresolution image by stochastic photo-activation of individual fluorophores and35

subsequent accurate post-imaging localization determination (1–3). One major advantage of SMLM is that36

due to its single-molecule detection nature, one can determine the number of molecules in a macromolec-37

ular assembly quantitatively, allowing the investigation of both the molecular composition and spatial38

arrangement at a level unmatched by other ensemble imaging-based superresolution imaging techniques.39

In the past few years SMLM has led to novel discoveries and quantitative characterizations of numerous40

biological assemblies (4, 5) such as those composed of RNA polymerase (6–8), membrane proteins (9), bac-41

terial divisome proteins (10–13), synaptic proteins (14, 15), the cytoskeleton (16), DNA binding proteins42

(17, 18), chromosomal DNA (19), viral proteins (20), and more.43

44

One critical aspect in realizing the full quantitative potential of SMLM relies on the careful handling of45

the blinking behavior of fluorophores. A photo-switchable fluorophore can switch multiple times between46

activated and dark states before it is permanently photobleached, leading to repeated localizations from47

the same molecule. These repeated localizations are often mis-identified as multiple molecules, resulting48

in the appearance of false nanoclusters and counting errors in the number of molecules and stoichiometry49

of complexes (Fig. 1A) (21–25).50

51

Multiple groups have developed different methods to correct for blinking effects in SMLM. These methods52

can be coarsely divided into two categories depending on whether a method provides a blinking-corrected53

image at the single molecule level or a statistical analysis summarizing the properties of the image at the54

ensemble level. Methods in the first category commonly use a variety of threshold values both in time and55

space to group localizations that likely come from the same molecule (1, 2, 21, 23, 25, 26). The advantage56

of using thresholds is that it results in a blinking-corrected image, allowing one to observe the spatial distri-57

bution of fluorophores in cells and apply other quantitative analyses as needed. The disadvantage is that a58

constant threshold value is often insufficient in capturing the stochastic nature of fluorophore blinking and59

heterogeneous molecular assemblies. Furthermore, calibration experiments and/or a priori knowledge of60

the fluorophore’s photochemical properties are often needed to determine the appropriate threshold values61

(21, 23, 25, 27, 28). Statistical analyses such as maximum likelihood or Bayesian approaches have been62

developed to take into account the stochastic behavior of blinking to count the number of fluorophores,63

but have yet to produce a blinking-corrected superresolution image (29–31). Additionally, many of these64

approaches are dependent on specific photokinetic models for the fluorophore, which can be complex and65

difficult to determine (27, 28, 32–35).66

67

The second category of methods analyze raw, uncorrected SMLM images using statistical methods to68

characterize the mean properties of the organization of molecules at the ensemble level. Pair- or auto-69

correlation-based analyses (PCA) have been used extensively within the field (24, 36). The long tail of the70

correlation function can often be fit to a specific model to extract quantitative parameters. This class of71

methods is prone to model-specific errors, especially if the underlying structures of the molecular assemblies72

are heterogeneous and vary throughout the image (37). A recently developed method analyzes the clus-73

tering of a protein with experimentally varied labeling densities, which was robust in determining whether74

membrane proteins form nanoclusters and was insensitive to many imaging artifacts (22). A post-imaging75

computational analysis capitalizing on the same principle has also been developed (38). Although these76
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methods are powerful in determining whether a protein of interest forms clusters or not, they provide a77

quantification at the ensemble level but not a blinking-corrected image, which limits their use in analyzing78

heterogeneously distributed molecular assemblies and their spatial arrangement in cells.79

80

Here, we present an algorithm, termed Distance Distribution Correction (DDC), to enable robust recon-81

struction and quantification of blinking-free SMLM superresolution images without the need of setting82

empirical thresholds or performing experiments to calibrate a fluorophore’s blinking kinetics. We first83

validate our approach using a diverse set of simulated and experimental data and compare DDC to other84

existing methods. In each situation DDC outperformed the existing methods in obtaining the closest rep-85

resentation of the underlying blinking-free image and in determining the accurate number of fluorophores.86

We also applied DDC to experimentally collected SMLM images of two orthologs of a scaffolding protein87

that is important for the organization of membrane microdomains, A-Kinase Anchoring Protein 79/15088

(AKAP79 and AKAP150) (39, 45, 46). Both proteins showed clustered organizations, but with signifi-89

cantly reduced numbers and sizes of clusters when compared to the commonly used thresholding method,90

changing the quantitative properties of membrane microdomains organized by these proteins. Finally, we91

discuss critical considerations of how to apply DDC to experiments successfully.92

93

Results94

Principle of DDC95

DDC is based on the principle that the pairwise distance (∆r) distribution, Pd(∆r|∆n), of the localiza-96

tions separated by a frame difference (∆n) much larger than the average number of frames a molecule’s97

fluorescence lasts (N) approximates the true pairwise distance distribution PT (∆r). Note that N does98

not need to be precisely determined as long as it is in the regime where Pd(∆r|∆n) approaches a steady99

state, as we show below. One intuitive way to understand this principle is that, if one collects an imaging100

stream that is long enough so that all the localizations in the first and last frames of the stream come101

from distinct sets of fluorophores, the pairwise distance distribution between the localizations of the two102

frames will then be devoid of blinking and will reflect the true pairwise distance distribution (PT (∆r)).103

A mathematical justification of this principle is provided in the supplemental material with an in-depth104

discussion and illustration (Fig. S1).105

106

To demonstrate the principle of DDC, we used simulated SMLM images of randomly distributed fluo-107

rophores that followed the photokinetic model shown in Fig. S2A. One representative superresolution108

image and the corresponding scatter plot, colored through time, with and without blinking are shown in109

Fig. 1A. Apparent clustering was observed in images when blinking was not corrected. Using the un-110

corrected images, we computed the pairwise distance distributions at all frame differences ∆n (Fig. 1B).111

As shown in Fig. 1C and Fig. S3, at small ∆n there are large peaks at short distances, indicating that112

there were repeated localizations from the same fluorophores closely spaced in time and space. When ∆n113

is large, the pairwise distance distributions approach a steady state converging upon the true pairwise114

distance distribution (Fig. 1C, dotted curve). This behavior supports the principle that when ∆n is large115

the pairwise distance distribution represents the true pairwise distance distribution. Using simulations,116

we also show that the pairwise distance distributions converge upon the true distributions at large ∆n ir-117

respective of the underlying photokinetics or molecular spatial distributions (Fig. S3, Supporting Material).118

119

Next, we used experimentally obtained SMLM images of three molecular assemblies labeled with dif-120

ferent fluorophores in E. coli cells, the bacterial transcription elongation factor NusA fused with the121

reversibly switching green fluorescent protein Dronpa (40), E. coli RNA Polymerase fused with the122
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photoactivatable red fluorescent protein PAmCherry (41), and precursor ribosomal RNAs (pre-rRNA)123

labeled with organic fluorophore Alexa647-conjugated DNA probes (42) (Fig. S4, Supporting Mate-124

rial). We determined the pairwise distance distribution for each fluorophore and calculated the nor-125

malized, summed differences of the cumulative distributions for each ∆n, relative to that of ∆n = 1,126

(Z(∆n) =
∑
|cdf(Pd(∆r|∆n))− cdf(Pd(∆r|∆n = 1))|). As shown in Fig. 1D, in all cases the correspond-127

ing normalized Z reach plateaus at large ∆n despite different photokinetics and spatial distributions. The128

rate at which each fluorophore reaches the plateau for the normalized Z reflects the photokinetics of the129

fluorophore; the longer a fluorophore blinked (such as Alexa647 compared to Dronpa), the longer the time130

until Z plateaued. These experimental results further verify the principle of DDC by showing that the131

pairwise distance distributions converge upon a steady state distribution as ∆n increases.132

133

It is important to note that the determination of PT (∆r) is not dependent upon a particular photokinetic134

model of the fluorophore nor does it require experimental characterizations of the fluorophore. PT (∆r)135

can be determined solely from the SMLM image stream as long as it is long enough so that a steady state136

of Pd(∆r|∆n) can be reached (Fig. 1C, Fig. S3).137

138

Once determined, PT (∆r) can then be used to calculate the likelihood to have a particular subset of true139

localizations (Fig. S5-S9, Supporting Material) using the following equation:140

L({B, T}|r,n) =
∏

i,j∈{T}

PT (∆ri,j)×
∏

i∈{B},j∈{B,T}

PB1(∆ri,j|∆ni,j), (1)

where {B, T} are sets that contain the indices of the localizations that are considered blinks {B} and the141

true localizations {T} given the coordinates r and associated frame numbers n obtained from experiment.142

The first term on the right of the equation is the probability of observing all distances ∆r between every143

pair of true localizations (i & j ∈ {T}). Here the probability distribution PT (∆ri,j) is the true pairwise144

distance distribution. The second term is the probability of observing all distances between pairs of lo-145

calizations with at least one being a blink (i ∈ {B} and j ∈ {B, T}). Here, the probability distribution146

PB1(∆ri,j|∆ni,j) gives the probability of observing a distance between a pair of localizations with a frame147

difference ∆ni,j if at least one of the localizations is a blink. This probability distribution can be easily148

determined once PT (∆r) is known (Supporting Material). Here, maximizing the likelihood with respect149

to {B, T} results in a subset of true localizations where the pairwise distance distributions Pd(∆r|∆n) are150

equal to PT (∆r) (Fig. S6). DDC maximizes the likelihood with respect to the two sets ({B, T}) using a151

Markov Chain Monte Carlo (MCMC) (43, 44), to result in the blinking corrected image (Fig. S8 and S9,152

Supporting Material).153

154

To validate Equation 1, we show that only when greater than 97% of the final localizations are the true155

localizations does the likelihood reach its maximum (Fig. S7). This result was observed regardless of156

distinct spatial distribution or photo-kinetics of the fluorophore in six different simulations (Fig. S7).157

158

DDC outperforms existing methods in both image reconstruction and count-159

ing the number of molecules160

To compare the performance of DDC with commonly used thresholding methods, we simulated four161

systems, random distribution (no clustering), small clusters, dense clusters, and filamentous structures162

(Fig. 2, Supporting Material). In these simulations the fluorophore had two dark states and followed163

the photokinetic model shown in Fig. S2A. The raw images without any blinking-correction for each164

simulation are shown in Fig. 2A. We applied DDC, three published thresholding methods (T1 to T3165

(21, 23, 25))(Supporting Material, Fig. S10 and S11) and a customized thresholding method (T4, Sup-166

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 12, 2019. ; https://doi.org/10.1101/768051doi: bioRxiv preprint 

https://doi.org/10.1101/768051
http://creativecommons.org/licenses/by/4.0/


Bohrer 4

porting Material) to all the images. Method T1 links together localizations using a time threshold that167

is determined using an empirical estimation of the photokinetics of the fluorophore (21) (Fig. S10, Sup-168

porting Material). Method T2 uses the experimentally quantified photo-kinetics of the fluorophore to set169

extreme thresholds so that the possibility of overcounting is extremely low (25). Method T3 uses the170

experimentally determined number of blinks per fluorophore to choose thresholds that result in the correct171

number of localizations within each image (23)(Fig. S11, Supporting Material). T2 and T3, but not T1,172

require additional experiments to characterize fluorophore photo properties. Method T4 is a customized,173

ideal thresholding method that scans all possible thresholds and uses the thresholds that result in the174

least Image Error for each system (Supporting Material). T4 cannot be applied in real experiments since175

the true, blink-free image is unknown, and we included it here to illustrate the best scenario of what a176

thresholding method could achieve. To quantitatively compare the ability of these methods in producing a177

blinking-corrected image we calculated two metrics, the Image Error and Counting Error ( Fig. 2B, Sup-178

porting Material). The Image Error was calculated by first summing the squared difference of each pixel’s179

normalized intensity between the blinking-corrected images and the true image, and then dividing this180

squared difference by the error between the uncorrected image and the true image (Supporting Material).181

The Image Error quantifies the amount of error in determining the distribution of localizations without182

being penalized for the error in the number of localizations. The Counting Error was calculated as the183

difference between the true number of fluorophores and that determined from the blinking-corrected image184

divided by the actual number of fluorophores (Supporting Material).185

186

As shown in Fig. 2B, DDC outperforms all four methods by having the lowest Image Errors and lowest187

(or close-to-lowest) Counting Errors. Interestingly, even with the best possible thresholds (T4), DDC still188

outperforms T4 in determining the correct spatial distribution and numbers of localizations. This result189

suggests that thresholds cannot adequately account for the stochastic nature of blinking. Similar results190

are shown in Fig. S12 for a fluorophore with one dark state (Fig. S2B). When counting the number191

of localizations is the main concern, T3 performs equally or slightly better than DDC because T3 was192

applied with an experimental calibration that provides the average number of blinks per fluorophore (Fig.193

2, Supporting Material). Nonetheless, DDC outperforms T3 by having lower Image Errors across all four194

different simulation systems, especially for the dense cluster system, where the average Image Error of T3195

is seven times that of DDC (Fig. 2B). In conclusion, these results indicate that DDC can be used to obtain196

the correct number of true localizations and at the same time produce the most accurate SMLM images.197

198

DDC identifies differential clustering properties of membrane microdomain199

proteins AKAP79 and AKAP150200

Membrane microdomains formed by membrane proteins have been commonly observed in super-resolution201

imaging studies and have raised significant interest in their molecular compositions and associated bio-202

logical functions (9). However, concerns remain as of whether the characterizations of these microdomain203

protein clusters were impacted by blinking (22). Here we used DDC to investigate a membrane scaf-204

folding protein, A-Kinase Anchoring Protein (AKAP), which plays an important role in the formation of205

membrane microdomains (39, 45, 46). The two orthologs AKAP79 (human) and AKAP150 (rodent) were206

previously shown to form dense membrane clusters, which are likely important for regulating anchored207

kinase signaling.208

209

We performed SMLM imaging on AKAP150 in murine pancreatic beta cells using an anti-AKAP150210

antibody and analyzed the resulting SMLM data using DDC (Supporting Material). For AKAP79, we211

applied DDC to previously acquired SMLM data from HeLa cells (39). For comparison, we also applied212

the T1 method to both scaffolding proteins as it was used in the previous study of the AKAP79 (21, 39) (Fig.213
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S13, S14). We found that the images from DDC still showed significant deviations from what was expected214

from simulated random distributions, indicating the presence of clustering. We also observed that DDC215

images exhibited dramatically reduced clustering when compared to the uncorrected and T1-corrected216

images for both proteins (Fig. 3A). To quantitatively compare these images, we used a tree-clustering217

algorithm (Supporting Material) to group localizations in individual clusters and show the corresponding218

cumulative distributions in Fig. 3B. The cumulative distributions show that the degrees of clustering219

for both proteins are significantly reduced when DDC was applied. Interestingly, AKAP150 shows a220

higher degree of clustering when compared to AKAP79, with more than 50% of the localizations within221

clusters containing greater than 15 localizations, twice that of AKAP79. Nevertheless, DDC-corrected222

AKAP79/150 images show significant deviations from the simulated random distributions, indicating the223

presence of clustering (Fig. 3B, compare yellow and purple curves). These results suggest that the224

clustering of the AKAP scaffolds are differentially regulated and the context dependence is likely important225

in considering the microdomain-specific signaling functions of the clusters.226

Considerations in the application of DDC227

As with any method, successful application of DDC to SMLM images requires an understanding of critical228

factors that could influence the performance of DDC. In this section, we evaluate the impact of localization229

density and activation rate on the performance of DDC using simulations. We also demonstrate that the230

commonly used practice of ramping the UV activation power in SMLM imaging should be avoided when231

applying DDC.232

233

To quantify the influence of localization density on the performance of DDC, we simulated random distri-234

butions of fluorophores with different densities ranging from 1000 raw localizations to 15000 localizations235

per 1µm2. Note that a density greater than 5000 localizations/µm2 corresponds to a Nyquist resolution of236

30 nm or better. As shown in Fig. 4A, the Image Error increases as the localization density increases and237

reaches a plateau at ∼ .35. We found that the increase in Image Error at high localization densities was238

mostly due to the decreased raw Image Error of the uncorrected images at high localization densities (Fig.239

S15A). The decreasing improvement of DDC at increasing sampling rate suggests that a high sampling rate240

of the underlying structure reduces the image distortion caused by blinking, although very high labeling241

densities (> 10,000 localizations/µm2) is usually difficult to achieve for protein assemblies.242

243

Next, to quantify the influence of the activation rate, we varied the activation probability of each simulated244

fluorophore from .025 to .15 per frame, with 1000 fluorophores randomly distributed throughout a 1µm2
245

area. Fig. 4B shows that the Image Error of DDC steadily increases with the activation rate. This increase246

was because at high activation rates, the temporal overlaps of individual fluorophores that were spatially247

close to each other increased, which made it difficult to distinguish blinks from different fluorophores. Thus,248

as with all the other blinking methodologies, DDC obtains the best images when the activation rate is slow.249

250

Finally, we illustrate one critical requirement for the successful application of DDC, that is, the photoki-251

netics (blinking behavior) of the fluorophore, must be kept constant throughout the acquisition of the252

SMLM imaging stream (Supporting Material). Note that this requirement is also needed for all other253

blinking correction methods (21, 23, 25). One common practice in SMLM imaging is to ramp the acti-254

vation power gradually throughout the SMLM imaging sequence in order to speed up the acquisition at255

later times when the number of fluorophores in the view field gradually deplete. The assumption is that256

activation power only changes the activation rate of a fluorophore (i.e. the probability of a fluorophore257

being activated per frame), but not the photokinetics of its blinking behavior (i.e. number of blinks, dark258

time and fluorescence-on time). Such a scenario indeed was shown for the photoactivatable fluorescent259

protein Dendra (28), but there are also reports showing that the photokinetics of mEos2 and PAmCherry260

are sensitive to the activation intensity (27, 28).261
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262

We further investigated the activation dependence of the blinking behaviors of two commonly used fluo-263

rophores for SMLM imaging, the photoactivatable fluorescent protein mEos3.2 and the organic fluorophore264

Alexa647 with different activation (405nm) intensities. We quantified three parameters, number of blinks,265

off-times (Toff ) and on-times (Ton), and report the mean value for each parameter as a function of activation266

intensity (Fig. 4C and Fig. S16.) We define one blink event as one continuous emission event that could267

span multiple fluorescence on-frames, the number of blinks as the number of repeated emissions separated268

by dark frames from the same fluorophore, Toff as the time between each blink and Ton as the time that269

the fluorophore remained fluorescent at each blink-on event (Fig. 4C). We observed that both fluorophores270

had a similar dependence of Ton with UV intensity, where Ton initially increased and then decreased at271

higher UV intensities (Fig. 4D, top), suggesting that UV also participates in the fluorescence emission272

cycle of the fluorophores. Next, we found that Toff decreased non-linearly as the UV intensity increased273

for both fluorophores (Fig. 4D, middle). Finally, we observed that the average number of blinks for the274

Alexa647 molecule increased dramatically with UV intensity while that of mEos3.2 remained largely con-275

stant (Fig. 4D, bottom), suggesting a differential influence of UV in changing the photokinetics of different276

fluorophores. Thus, varying the activation intensity during the acquisition of a SMLM image can indeed277

change the blinking characteristics of the fluorophores, which would affect the performance of DDC. These278

results suggest that changing the activation intensity should only be done when a quantitative approach279

is not needed, or the proper controls have been performed to show that the fluorophore is insensitive to280

variations in the activation intensity.281

282

Discussion283

In this work we provided a blinking-correction methodology, DDC, that does not depend upon exact284

thresholds, additional experiments, or a specific photo-kinetic model of the fluorophore to obtain an ac-285

curate reconstruction and quantification of SMLM superresolution images. DDC works by determining a286

“ground truth” about the underlying organization of fluorophores, the true pairwise distance distribution.287

We verified by simulations and experiments that such a true pairwise distance distribution can be obtained288

by taking the distances between localizations that are separated by a frame difference much longer than the289

average lifetime of the fluorophore. Using the true pairwise distribution, the likelihood can be calculated,290

where upon maximization of the likelihood one obtains an accurate representation of the true underlying291

structure.292

293

We compared the performance of DDC with four different thresholding methods using simulated data with294

various spatial distributions and on fluorophores with different photokinetic models. DDC outperformed295

these methods by providing the “best” blinking-corrected images as well as excellent estimates of the num-296

ber of molecules in each image.297

298

We also used DDC to investigate the spatial organizations of two scaffolding proteins AKAP79 and299

AKAP150, which have been shown to form microdomain-like structures (39, 46). DDC resulted in signifi-300

cantly less degrees of clustering for the two proteins when compared to that resulted from the thresholding301

method. Most interestingly, DDC’s ability to count the number of true localizations in SMLM images302

allowed quantitative comparison between the clusters formed by the two proteins: AKAP150 was about303

2-fold more clustered than AKAP79. Such a difference in clustering could indicate that the two proteins304

are differentially regulated in separate cell types and this context dependence could be important for the305

signaling functions of the clusters. Further experiments are required to explore these possibilities. An306

additional note is that DDC only counts the number of emitters, which does not necessarily equal to the307

number of molecules that are labeled using dye-conjugated antibodies (47).308

309
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Finally, we demonstrated that the higher the activation rate and the density of fluorophores, the smaller310

the relative improvement of DDC. We also showed that in order to use DDC, the common practice of ramp-311

ing the UV should be avoided in certain cases (depending upon the particular fluorophore), as we verified312

that mEos3.2 and Alexa647 exhibited activation power-dependent photokinetics. In essence, DDC is best313

suited for SMLM imaging when quantitative characterizations of heterogenous cellular structures are re-314

quired. The complete package of DDC is available for download at https://github.com/XiaoLabJHU/DDC.315

316
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Figure 1: A. Simulated SMLM superresolution images (top panel) of randomly distributed molecules
without blinking (Truth) and with blinking (No correction). The corresponding scatter plots (colored
through time) are displayed in the bottom panel. B. Schematics of how the pairwise distance distributions
at different frame differences (∆n) were calculated. C. Pairwise distance distributions at different ∆n (black
to gray curves) converge to the true pairwise distribution (black dots) when ∆n is large. D. Normalized
Z values measured for three commonly used fluorophores and a simulated fluorophore as that used in A.
All Z values reach plateaus at large ∆n, indicating that at large ∆n, the pairwise distance distributions
converge to a steady state. The normalized Z value was calculated by taking the difference between the
cumulative pairwise distance distribution at a ∆n and that at ∆n = 1: (Z(∆n) =

∑
|cdf(Pd(∆r|∆n))−

cdf(Pd(∆r|∆n = 1))| ).
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Figure 2: Comparison of four different thresholding methods with DDC on four spatial distributions
(randomly distributed, small clusters, dense clusters and filaments). A. True, uncorrected and DDC-
corrected images for each spatial distribution. B. Image Error and Counting Error calculated from T1
to T4 and DDC for each spatial distribution. The whiskers extend to the most extreme data points not
considered outliers, and the red pluses are the outliers (greater than 2.7 std).
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Figure 3: Application of DDC to experimentally measured spatial distributions of AKAP79 and AKAP150.
A. SMLM images of the two scaffold proteins without correction, corrected using the thresholding method
T1 and DDC, and that of a simulated random distribution using the same number of localizations of
DDC-corrected images. B. Cumulative distributions for the number of localizations within each cluster for
each protein. (Scale bar, 1µm)
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Figure 4: Image Error at different densities of localizations (A) and activation probability per frame (B).
The raw data points are shown as gray points and the moving average is shown in black (Supporting
Material). C. An intensity trajectory of a single mEos3.2 molecule with labels showing the definitions of
Ton and Toff . D. The average Ton, Toff , and number of blinks for Alexa647 and mEos3.2 at different UV
activation intensities (405 Power, error bars are standard deviation of mean using two repeats).
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