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Abstract 

 

Despite recent advances, the dynamics of genome architecture and chromatin function during 

human cell differentiation and its potential reorganization upon neoplastic transformation 

remains poorly characterized. Here, we integrate in situ Hi-C and nine additional omic layers to 

define and biologically characterize the dynamic changes in three-dimensional (3D) genome 

architecture across normal B cell differentiation and in neoplastic cells from different subtypes 

of chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL) patients. Beyond 

conventional active (A) and inactive (B) compartments, an integrative analysis of Hi-C data 

reveals the presence of a highly-dynamic intermediate compartment enriched in poised and 

polycomb-repressed chromatin. During B cell development, we detect that 28% of the 

compartments change at defined maturation stages and mostly involve the intermediate 

compartment. The transition from naive to germinal center B cells is associated with 

widespread chromatin activation, which mostly reverts into the naive state upon further 

maturation of germinal center cells into memory B cells. The analysis of CLL and MCL 

neoplastic cells points both to entity and subtype-specific alterations in chromosome 

organization. Remarkably, we observe that large chromatin blocks containing key disease-

specific genes alter their 3D genome organization. These include the inactivation of a 2Mb 

region containing the EBF1 gene in CLL and the activation of a 6.1Mb region containing the 

SOX11 gene in clinically aggressive MCL. This study indicates that 3D genome interactions are 

extensively modulated during normal B cell differentiation and that the genome of B cell 

neoplasias acquires a tumor-specific 3D genome architecture. 
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Introduction 

Over the last decades, our understanding of higher-order chromosome organization in the 

eukaryotic interphase nucleus and its regulation of cell state, function, specification and fate 

has profoundly increased1,2.  

Chromatin conformation capture techniques have been used to elucidate the genome 

compartmentalization3,4. It is widely accepted that the genome is segregated into two large 

compartments, named A-type and B-type5, which undergo widespread remodeling during cell 

differentiation2,6–9.  These compartments have been associated with different GC content, 

DNAseI hypersensitivity, gene density, gene expression, replication time, and chromatin 

marks5,10. Alternative subdivisions of genome compartmentalization have been proposed, 

including three compartments11 or even five compartment subtypes with distinct genomic and 

epigenomic features12. All of these studies highlight the role of genome three-dimensional (3D) 

organization in the regulatory decisions associated with cell fate.  However, the majority of 

these studies have been performed using cell lines, animal models or cultured human cells7,8,13–

15, and although few analyze sorted cells from healthy human individuals16,17, there is limited 

information regarding 3D genome dynamics across the differentiation program of a single 

human cell lineage16.  

Normal human B cell differentiation is an ideal model to study the dynamic 3D chromatin 

conformation during cell maturation, as these cells show different transcriptional features and 

biological behaviors, and can be accurately isolated due to their distinct surface 

phenotypes18,19. Moreover, how the 3D genome is linked to cancer development using primary 

samples from patients is also widely unknown20. In this context, several types of neoplasms 

can originate from B cells at distinct differentiation stages21. Out of them, chronic lymphocytic 

leukemia (CLL) and mantle cell lymphoma (MCL) are derived from mature B cells and show a 

broad spectrum of partially overlapping biological features and clinical behaviors22. Both 

diseases can be categorized according to the mutational status of the immunoglobulin heavy 

chain variable region (IGHV), a feature that seems to be related to the maturation stage of the 

cellular origin23. CLL cases lacking IGHV somatic hypermutation are derived from germinal 

center-independent B cells whereas CLL with mutated IGHV derive from germinal center-

experienced B cells24. In CLL, this variable is strongly associated with the clinical features of the 

patients, with mutated IGHV (mCLL) cases correlating with good prognosis and those lacking 

IGHV mutation (uCLL) with poorer clinical outcome24. In MCL, although two groups based on 

the IGHV mutational status can be recognized and partially correlate with clinical behavior, 

other markers such as expression of the SOX11 oncogene are used to classify cases into 

clinically-aggressive conventional MCL (cMCL) and clinically-indolent non-nodal leukemic MCL 

(nnMCL)22,25–27.  

From an epigenomic perspective, previous reports have identified that B cell maturation and 

neoplastic transformation to CLL or MCL entails extensive modulation of the DNA methylome 

and histone modifications28–33. However, whether such epigenetic changes are also linked to 

modulation of the higher-order chromosome organization is yet unknown34.  

Here, to decipher the 3D genome architecture of normal and neoplastic B cells, we generated 

in situ high-throughput chromosome conformation capture (Hi-C) maps of cell subpopulations 
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spanning the B cell maturation program as well as of neoplastic cells from MCL and CLL 

patients. Next, we mined the data together with whole-genome maps of six different histone 

modifications, chromatin accessibility, DNA methylation, and gene expression obtained from 

the same human cell subpopulations and patient samples. This multi-omics approach allowed 

us to identify a widespread modulation of the chromosome organization during human B cell 

maturation and neoplastic transformation, including the presence of recurrent aberrations in 

the chromosome organization of regions containing deregulated disease-specific genes. 
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Results 

Multi-omics analysis during human B cell differentiation 

We used in situ Hi-C to generate genome-wide chromosome conformation maps of normal 

human B cells across their maturation program. These included three biological replicates each 

of naive B cells (NBC), germinal center B cells (GCBC), memory B cells (MBC), and plasma cells 

(PC) (Figure 1A-1B and Supplementary Table 1). From the same B cell subpopulations, we 

analyzed nine additional omics layers generated as part of the BLUEPRINT consortium28,35. 

Specifically, we obtained data for chromatin immunoprecipitation with massively parallel 

sequencing (ChIP-seq) of six histone modifications with non-overlapping functions (H3K4me3, 

H3K4me1, H3K27ac, H3K36me3, H3K9me3, H3K27me3), transposase-accessible chromatin 

with high-throughput sequencing (ATAC-seq), whole genome bisulfite sequencing (WGBS), and 

gene expression (RNA-seq). 

We initially explored the intra- and inter-subpopulation variability and observed that the Hi-C 

replicas were concordant, as quantified measuring and clustering the reproducibility score 

(RS)36 (Figure 1C and Extended Data Figure 1A).  Furthermore, the comparison of samples 

suggests that the overall genome architecture of NBC is more similar to MBC, and clearly 

different from GCBC and PC, which belong to a different cluster (Figure 1C). This finding was 

also reflected in the first component of the principal component analysis (PCA) of histone 

modifications, chromatin accessibility and gene expression (Figure 1D). In contrast to other 

omics marks, the first component of DNA methylation data resulted in a division of GCBC, MBC 

and PC separated from the NBC. These analyses suggest fundamental differences between 

chromatin-based epigenetic marks, including chromosome conformation data, and DNA 

methylation. In fact, changes in DNA methylation linearly accumulate throughout B cell 

maturation30,31, which explains the clear differences between NBC and MBC in spite of their 

converging transcriptomes. 

 

Polycomb-associated chromatin defines an intermediate and moldable 3D genome 

compartment 

To study the compartmentalization of the genome during B cell differentiation, we next 

merged all biological replicates per B cell subpopulation resulting in interaction Hi-C maps with 

around 300 million valid reads each. These Hi-C interaction maps were further segmented into 

positive and negative eigenvalues based on the eigenvector decomposition5,37, and regions 

were assigned to the A-type (active) and B-type (inactive) compartments using the association 

with histone modifications (Figure 1E and Extended Data Figure 1B). A pairwise correlation of 

the first eigenvector of each B cell subpopulation showed that NBC and MBC on the one hand, 

and GCBC and PC on the other hand, have similar compartmentalization (Extended Data 

Figure 1C), confirming previous results using the RS (Figure 1C). Unexpectedly, the H3K27me3 

histone mark, which is deposited by the polycomb repressive complex38, was neither 

correlated with positive nor with negative eigenvector coefficients (Extended Data Figure 1B). 

We then speculated that, as H3K27me3 was not related with standard A or B compartments, 

this histone mark may be linked to a different type of chromatin compartmentalization. In this 

context, a visual inspection of the first eigenvector distribution revealed a positive extreme, a 

negative extreme and a long intermediate valley (Figure 1F). Indeed, applying the Bayesian 
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Information Criterion, we observed that a classification into three compartments was the best 

compromise between distribution fitting accuracy and minimum number of compartments 

(Extended Data Figure 1D). Subsequently, we modelled the eigenvector distribution to 

establish the thresholds segmenting the data into an A-type, B-type and intermediate (I)-type 

compartments (Extended data Figure 1E and Figure 1F). Analyzing these three compartments 

together with other omics layers revealed the expected association of A-type compartment 

with active chromatin, B-type compartment with H3K9me3, and a remarkably association 

between the I-type compartment and the presence of H3K27me3 (Figure 1G). Indeed, a 

chromHMM-based chromatin state model specific for B cells28,39 revealed that the regions 

associated with the I-type compartment were enriched for poised-promoter and polycomb-

repressed chromatin states (Figure 2A and Extended Data Figure 2A). 

We next quantified the compartment interactions by computing the compartment score (C-

score) as the ratio of intra-compartment interactions over the total chromosomal interactions 

per compartment (Extended Data Figure 2B). Interestingly, the I-type compartment was 

associated with lower C-score than the A-type and B-type compartments (Extended Data 

Figure 2C). We further explored this phenomenon by dividing the I-type compartment into two 

blocks differentiating positive (IA) and negative (IB) eigenvector components (Extended Data 

Figure 2D). The analysis showed that the I-type compartment, regardless being IA or IB, was 

consistently having lower C-score than the A or B-type compartments. This finding further 

supports the existence of the I-type compartment as an independent chromatin structure 

different from A and B-type compartments. Additionally, it suggests that the I-type 

compartment tends to interact not only with itself but also with A and B-type compartments, 

and as such it may represent an interconnected space between the fully active and inactive 

compartments.  

To study the potential role of the I-type compartment during B cell differentiation, we selected 

poised promoters or polycomb repressed regions within this compartment in NBC and studied 

how they change in both compartment and chromatin state upon differentiation into GCBC 

(Figure 2B). The majority of compartment transitions (69.1% of poised promoter and 73.0% of 

polycomb repressed) change into A-type compartment, a consistent fraction (21.9% and 

21.1%) into B-type, and only a small fraction (9% and 5.9%) maintain their intermediate 

definition. This finding indicates that the regions with a most prominent I-type compartment 

character undergo a widespread structural modulation during NBC to GCBC differentiation 

step. Interestingly, transitions from I-type to A-type compartment (activation events) were 

paired with a reduction of poised promoters (56.7% loss) and polycomb repressed states 

(70.2% loss). These reductions were associated with an increase of A-related chromatin states 

(1.31- or 1.33-fold change coming from poised promoter or polycomb-repressed, respectively) 

such as promoter, enhancer and transcription (Figure 2B).  Conversely, poised promoters and 

polycomb-repressed regions associated with I-type compartments in NBC that changed into B 

compartments in GCBC (inactivation events) were related to an increase of B-related 

chromatin states (3.81 or 1.4-fold change coming from poised promoter or polycomb-

repressed, respectively) such as heterochromatin characterized by H3K9me3 (Figure 2B).  

Altogether, these results point to the existence of an intermediate transitional compartment 

with biological significance, enriched in poised and polycomb-repressed chromatin states, 
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interconnected with A and B -type compartments, and amenable to rewire the pattern of 

interactions leading to active or inactive chromatin state transitions upon cell differentiation. 

 

Changes in genome compartmentalization are reversible during B cell differentiation 

Mapping A, I and B-type compartments in NBC, GCBC, MBC and PC Hi-C maps revealed that 

28.1% of the genome dynamically changes compartment during B cell differentiation (Figure 

2A and Extended Data Figure 2A). B cell differentiation is not a linear process, NBC 

differentiate into GCBC, which then branch into long-lived MBC or antibody-producing PC. 

Thus, we studied the 3D genome compartment dynamics along these two main differentiation 

paths (NBC-GCBC-PC and NBC-GCBC-MBC). At each differentiation step, we classified the 

genome into three different dynamics: (i) compartments undergoing activation events (B-type 

to A-type, B-type to I-type, or I-type to A-type), (ii) compartments undergoing inactivation 

events (A-type to B-type, A-type to I-type, or I-type to B-type), and (iii) stable compartments 

(Figure 2C-D). The NBC-GCBC-MBC differentiation path suggests that the extensive remodeling 

taking place from NBC to GCBC is followed by an overall reversion of the compartmentalization 

in MBC, achieving a profile similar to NBC (Figure 2C). To assess the capacity of the genome to 

revert to a past 3D configuration, we analyzed the compartments in NBC as compared to those 

in PC and MBC. Indeed, we globally observed that 72.7% of the regions in MBC re-acquire the 

same compartment type as in NBC. This phenomenon was mostly related to compartments 

undergoing activation in GCBC, as 82.9% of them reverted to inactivation upon differentiation 

into MBC.  This finding is in line with solid evidence showing that NBC and MBC, in spite of 

representing markedly different maturation B cell stages, are phenotypically similar40,41 (Figure 

1D). In the case of PC, the compartment reversibility accounted only for 30.8% of the genome 

(Figure 2D). To determine whether this compartment reversibility was also accompanied by a 

functional change, we analyzed the chromatin state dynamics within the compartments 

becoming uniquely active in GCBC as compared to NBC, MBC and PC (n=937) (Supplementary 

Table 2). We observed that the transient compartment activation from NBC to GCBC is related 

to an increase of A-related chromatin states (1.36-fold change). Conversely, the subsequent 3D 

genome inactivation upon differentiation into MBC and PC was related to an increase in B-

related chromatin states (1.21- and 1.15-fold change, respectively) (Figure 2E left). 

Furthermore, those regions had a significant increase in chromatin accessibility and gene 

expression in GCBC as compared to NBC and MBC, but not in PC (Figure 2E right). These 

findings suggest that structural 3D reversibility in MBC is accompanied by a functional 

reversibility whereas PC partially maintains gene expression levels and chromatin accessibility 

similar to GCBC in spite of the compartment changes. Interestingly, in contrast to chromatin-

based marks, DNA methylation was overall unrelated to compartment or chromatin state 

dynamics of the B cell differentiation (Figure 2E right).  

 

The 3D genome of GCBC undergoes extensive compartment activation  

Our analyses revealed that the NBC and GCBC transition was associated to a large structural 

reconfiguration of compartments involving 96.0% of all dynamic compartments (Figure 2A).  

Interestingly, 61.5% of the changes between NBC and GCBC involved compartment activation 

(Figure 2C-D).  As the germinal center reaction is known to be mediated by specific 

transcription factors (TFs)42,43 and those may be involved in shaping the spatial organization of 
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the genome8,14,16, we further explored the presence of TF binding motifs in the newly activated 

compartments. We identified significantly enriched motifs for MEF2 and POU families (Figure 

2F and Supplementary Table 3), which are essential TFs involved in germinal center 

formation44–47. Furthermore, the newly activated compartments hosted about 100 genes 

significantly upregulated in GCBC as compared to NBC (FDR<0.05) (Supplementary Table 4). 

Remarkably, among them was the Activation Induced Cytidine Deaminase (AICDA) gene, which 

is essential for class-switch recombination and somatic hypermutation in GCBC and is 

specifically expressed in GCBC48. Indeed, the AICDA locus was globally remodeled from an 

inactive state in NBC to a global chromatin activation in GCBC, which included an increase in 

the ratio of GCBC/NBC 3D interactions as well as increased levels of active chromatin states 

(that is, active promoter and enhancers as well as transcriptional elongation), open chromatin, 

and gene expression (Figure 3A-B). This analysis also revealed the presence of possible 

upstream and downstream AICDA-specific enhances that gain interactions with the gene 

promoter in GCBC (Figure 3B).  Interestingly, this multilayer chromatin activation at the AICDA 

locus was reverted to the inactive ground state once GCBC differentiate into MBC or PC. 

 

B cell neoplasms undergo disease-specific 3D genome reorganization 

Next, we analyzed whether the observed 3D genome organization during normal B cell 

differentiation is further altered upon neoplastic transformation. To address this, we 

performed in situ Hi-C in fully characterized tumor cells from patients with chronic lymphocytic 

leukemia (CLL, n=7) or mantle cell lymphoma (MCL, n=5).  Within each neoplasm, we included 

cases of two subtypes, IGVH mutated (m, n=5) and unmutated (u, n=2) CLL as well as 

conventional (c, n=2) and non-nodal leukemic (nn, n=3) MCL (Figure 4A and Supplementary 

Table 5). An initial unsupervised clustering of the RS from the entire Hi-C dataset indicated that 

CLL and MCL, similarly to the PCA from other omic layers generated from the same patient 

samples, clustered separately from each other and within a major cluster that included NBC 

and MBC (Figure 4B-C and Extended Data Figure 4A). Interestingly, NBC and MBC have been 

described as potential cells of origin of these neoplasms22. Furthermore, pairwise eigenvector 

correlation analysis of the cancer samples suggested that the 3D genome configuration of the 

two clinico-biological subtypes of CLL was rather homogeneous (Extended Data Figure 4B-C). 

This was not the case for the two MCL subtypes, which were more heterogeneous (Extended 

Data Figure 4D-E). 

The differential clustering of CLL and MCL samples hint into disease-specific changes of their 

3D genome organization (Figure 4B). To further detect those changes, we took the fraction of 

the genome with stable compartments during normal B cell differentiation and compared 

them to each lymphoid neoplasm. Qualitatively, we observed that roughly one quarter of the 

genome changes compartments in at least one CLL (23.8%) and at least one MCL sample 

(27.3%) as compared to normal B cells (Figure 4D-E left). Using a more stringent quantitative 

approach, we aimed at detecting changes associated with CLL or MCL as whole, which 

revealed a total of 348 and 82 significant compartment changes (absolute difference in the 

eigenvalue>0.4 and FDR<0.05) in CLL and MCL, respectively. The larger number of regions 

changing compartments in CLL correlates with the results of the Hi-C based clustering (Figure 

4B), which indicates that MCL is more similar to NBC/MBC than CLL. Moreover, the observed 

compartment changes tended towards inactivation in CLL (57.5%) (Figure 4D middle) and 
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towards activation in MCL (57.0%) (Figure 4E middle) compared to the normal B cells. These 

3D genome organization changes were associated with the expected changes in chromatin 

function. Inactivation at the 3D genome level in CLL was linked to a shift to poised promoter 

and polycomb-repressed chromatin states, and a significant loss of chromatin accessibility and 

gene expression (Figure 4D right). Activation at the 3D genome level in MCL was accompanied 

with an enrichment of active chromatin states and a significantly increase in chromatin 

accessibility and gene expression (Figure 4E right). Overall, these results point to the presence 

of recurrent and specific changes in the 3D genome organization in CLL and MCL, being the 

former more extensively altered than the latter. 

 

EBF1 downregulation in CLL is linked to extensive 3D genome reorganization 

To further characterize the compartmentalization of neoplastic B cells, we classified the 

changing compartments as common (between CLL and MCL) or entity-specific (either in CLL or 

MCL).  We detected 31 compartments commonly altered in both malignancies, revealing the 

existence of a core of regions that distinguish normal and neoplastic B cells (Figure 5A-B).  A 

targeted analysis of CLL and MCL revealed 89 CLL-specific (41 and 48 inactivated and activated, 

respectively) and only 3 MCL-specific compartment changes (Figure 5C, Figure 6A and 

Extended Data Figure 5A).  Interestingly, the set of 41 compartments inactivated in CLL were 

significantly enriched (p-value=0.0060) in downregulated genes (n=11) as compared to normal 

B cells and MCL samples, being the Early B cell Factor 1 (EBF1) a remarkable example (Figure 

5C-D and Supplementary Table 6).  EBF1 downregulation has been described to be a 

diagnostic marker in CLL49, and its low expression may lead to reduced levels of numerous B 

cell signaling factors contributing to the anergic signature of CLL cells50,51 and low susceptibility 

to host immunorecognition52,53. To obtain insights into the mechanisms underlying EBF1 

silencing in CLL, we analyzed in detail a 2Mb region hosting the gene, which also contains two 

nearby protein coding genes, RNF145 and UBLCP1, and a lncRNA, LINC02202. We observed 

that a large fraction of 3D interactions involving the EBF1 region in normal B cells were lost in 

CLL resulting in a change from A-type to I-type compartment and a sharp inactivation of the 

gene, as shown by the analysis of chromatin states (Figure 5E). Remarkably, in spite of the 

global reduction of 3D interactions, the two adjacent genes (RNF145 and UBLCP1) were 

located in the only region (spanning 200Kb) that remained as A-type compartment in the 

entire 2Mb region, maintaining thus an active state. To obtain further insights into the EBF1 

genome structure, we modeled its spatial organization in NBC and CLL by using the restraint-

based modeling approach implemented in TADbit54,55 (Figure 5F and Extended Data Figure 5B-

C). The EBF1 domain in CLL resulted in larger structural variability as compared with the 

models in NBC due to the depletion of interactions in neoplastic cells (Extended Data Figure 

5B). The 3D models revealed that the EBF1 gene is located in a topological domain, isolated 

from the rest of the region in NBC, hosting active enhancer elements (Figure 5F). Remarkably, 

the active enhancer elements together with the interactions are lost in CLL (Figure 5F), 

resulting in more collapsed conformations (Figure 5G). Overall, these analyses suggest that 

EBF1 silencing in CLL is linked to a compartment shift of a large genomic region leading to the 

abrogation of interactions and regulatory elements. 

Our analysis also detected 48 regions that changed towards more active compartment 

exclusively in CLL (Figure 6A). As expected, these regions were significantly enriched in 
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upregulated genes (p-value=0.0038) and harbored 9 genes with increased expression (Figure 

6B and Supplementary Table 7). As previously shown for regions gaining activity in GCBC 

(Figure 2E), we evaluated whether particular TFs were related to the CLL-specific increase in 

3D interactions. Indeed, we found an enrichment in TF binding motifs of the TCF (p-

value=0.00004) and NFAT (p-value=0.00647) families, which have been described to be 

relevant for CLL pathogenesis28,56,57 (Figure 6C and Supplementary Table 8). One of the nine 

upregulated genes in CLL-specific active compartments was KSR2, a gene whose upregulation 

has a strong diagnostic value in CLL49. Importantly, this gene contained several motifs for the 

TCF4 transcription factor (Figure 6D), which itself is overexpressed in CLL as compared to 

normal B cells28, suggesting in this particular example that TCF4 overexpression may lead to 

aberrant binding to KSR2 regulatory elements and a global remodeling of its 3D interactions. 

 

Increased 3D interactions across a 6.1Mb region including the SOX11 oncogene in aggressive 

MCL 

In addition to entity-specific 3D genome changes, our initial analyses also suggested that 

different clinico-biological subtypes may have a different 3D genome organization, especially 

in MCL (Figure 4B). To identify subtype differences within each B cell neoplasia, we selected 

regions with homogeneous compartments within each disease subtype and classified them as 

distinct if the difference between the Hi-C matrices cross-correlation eigenvalues was greater 

than 0.4. Applying this criterion, we defined 47 compartment changes between uCLL and 

mCLL, and 673 compartment changes between nnMCL and cMCL (Figure 7A). This finding 

confirmed the previous analyses (Extended Data Figure 4B-E), and indicated that the two MCL 

subtypes have a markedly different 3D genome organization. Two thirds of the compartments 

changing in the MCL subtypes (n=435, 64.6%) gained activity in the clinically aggressive cMCL, 

and one third gained activity in nnMCL. We then characterized the chromosomal distribution 

of these compartment shifts, which, surprisingly, was significantly biased towards specific 

chromosomes (Figure 7B). In particular, those regions gaining 3D interactions in aggressive 

cMCL were highly enriched in chromosome 2, being 22.3% (n=97) of all 100Kb compartments 

located in that chromosome (Figure 7B). We next analyzed chromosome 2 of cMCL in detail 

and we observed a de novo gain of A-type and I-type compartments accumulated at band 2p25 

as compared to both normal B cells and nnMCL (Figure 7C). The entire region of about 6.1Mb 

had a dramatic increase of interactions and active chromatin states in cMCL as compared to 

nnMCL (Figure 7D and Extended Data Figure 7A). Most interestingly, this region contains 

SOX11, whose overexpression in cMCL represents the main molecular marker to differentiate 

these two MCL subtypes58, and has been shown to play multiple oncogenic functions in cMCL 

pathogenesis59–61.  However, as SOX11 is embedded into a large block of 6.1Mb gaining 

activation in cMCL, we wondered whether additional genes could also become upregulated as 

a consequence of the large-scale spatial organization of chromosomal band 2p25. Indeed, 

mining the expression data from the 5 MCL cases studied herein as well as two additional 

published cohorts49,62, we observed that 13 (43%) of the 30 expressed genes within the 6.1Mb 

region were over-expressed in cMCL as compared to nnMCL in at least one cohort (Figure 7D 

and Extended Data Figure 7B-C), which may also contribute to cMCL pathogenesis and clinical 

aggressiveness.  
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Discussion 

We present a comprehensive analysis of the dynamic genome architecture reorganization 

during normal human B cell differentiation and upon neoplastic transformation into CLL and 

MCL. The integration of 3D genome data with nine additional omics layers including DNA 

methylation, chromatin accessibility, six histone modifications and gene expression, has 

allowed us to obtain new insights into 3D genome functional compartmentalization, cellular 

transitions across B cell differentiation and 3D genome aberrations in neoplastic B cells. We 

initially explored the distribution of Hi-C eigenvector coefficients and identified that a 

categorization into three components seemed to be more appropriate than the well-

established dichotomous separation of the genome into A and B compartments5.  Between the 

active (A) and repressed (B) compartments, we revealed the presence of an intermediate (I) 

component which contained more inter-compartment interactions than fully active or inactive 

chromatin, and is enriched in H3K27me3 located within poised promoters and polycomb-

repressive chromatin states.  Thus, this I-type compartment may represent a labile state of the 

high-order chromatin organization that may evolve either into active or inactive chromatin 

compartments. The existence of an intermediate compartment may be supported by several 

lines of published evidence. For example, during T cell commitment, a correlation between 

intermediate compartment scores with intermediate levels of gene expression was observed15. 

Recently, using super-resolution imaging, it was found that some compartments could belong 

to active or inactive states depending on the observed cell63, which could resemble an 

intermediate compartment in a population-based analysis such as Hi-C.  Finally, these 

evidences are also in line with the observation that the polycomb repressive complex forms 

discrete subnuclear chromatin domains64–66 that can be dynamically modulated during cell 

differentiation67,68. 

The three compartments had extensive modulation during human B cell differentiation, a 

process whose 3D genome architecture has been previously studied in cell lines and primary 

mouse cells8,14,69–72 or during the human germinal center reaction16. We observed that 28.1% 

of the genome is dynamically altered in particular B cell maturation transitions, a magnitude 

that is in line with compartment transitions observed during the differentiation of human 

embryonic stem cells into four cell lineages7 or the reprogramming of mouse somatic cells into 

induced pluripotent stem cells8,73, but lower than an analysis of compartment transitions 

across 21 human cells and tissues, which reached 60% of the genome13. The compartment 

modulation linked to B cell maturation was mainly related to two phenomena, a large-scale 

activation from NCB to GCBC and a reversion of the 3D genome organization of MBC back to 

the one observed in less mature NBC.  As the number of mid-range 3D interactions upon 

activation has been suggested to decrease74, our result on the GCBC structural activation 

supports a previous study in which the chromatin structure of GCBC undergoes global de-

compaction16. In this context, TFs have been described to act as the architects instructing 

structural changes in the genome75 and a recent report has described that TFs are able to drive 

topological genome reorganizations even before detectable changes in gene expression8. A 

detailed analysis of regions that become exclusively active in GCBC as compared to any other B 

cell subpopulation under study revealed an enrichment in TF binding motifs of MEF2 and POU 

families, which have been described to play a key role in the germinal center formation43. In 

line with this important role of TFs in activating chromatin in GCBC, we also identified that 
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NFAT and TCF binding motifs are enriched in those compartments specifically activated in CLL, 

and these TFs have also been previously linked to de novo active regulatory elements in CLL 

and its pathobiology28. All these results are concordant with studies in which lineage-restricted 

transcription factors have been proposed to establish and maintain genome architecture of 

specific lineages14,75–77. The outcome of the germinal center reaction are PC and MBC, which 

are phenotypically and functionally distinct subpopulations. GCBC and PC show an overall high 

level of conservation of their 3D genome organization, but the differentiation into MBC is 

related to extensive changes. Remarkably, we observed roughly three quarters of the changes 

in MBC compartments reverted back to the compartment profile observed in NBC. This 

reversibility of the higher-order chromatin structure is very much in line with the previously 

observed similarity of histone modifications, chromatin accessibility and gene expression 

profiles in NBC and MBC. In sharp contrast to this congruent behavior of chromatin-based 

traits, DNA methylation is rather different between NBC and MBC, as this mark follows an 

accumulative pattern during cell differentiation30,78 and can be used to faithfully track the 

lineage trajectory of the cells79. 

We describe that B cell neoplasms show tumor-specific changes in the 3D genome 

organization that can span over large DNA stretches and contain genes linked to their 

pathogenesis. Of particular interest was the observation of the structural activation of 6.1Mb 

affecting the entire chromosome band 2p25.2 in aggressive cMCL, which contains the SOX11 

oncogene, a biomarker whose expression defines this MCL subtype58 and plays key functional 

roles in its pathogenesis80. Although the SOX11 oncogene expression is related to the presence 

of active histone modifications in the promoter region81 and the establishment of novel 3D 

loops with a distant enhancer element32, our finding indicates that such looping is embedded 

into long-range alterations in the 3D genome structure. This change is not only linked to SOX11 

overexpression, but seems to be related to the simultaneous overexpression of multiple genes 

within the target region. This phenomenon of long-range epigenetic changes has been 

observed at the DNA methylation level, as the hypermethylation over one chromosomal band 

of 4Mb that has been linked to silencing of several genes in colorectal cancer82. Additionally, in 

prostate cancer, long-range chromatin activation or inactivation analyzed by histone 

modifications has been shown to target oncogenes, microRNAs and cancer biomarker genes83. 

The presence of large-range epigenetic remodeling in cancer82–91 shall support a more 

generalized use of genome-wide chromosome conformation capture techniques as part of the 

global characterization of primary human tumors. Beyond the identification of a concerted 

deregulation of multiple contiguous genes with a potential role in cancer biology, targeting 

long-range aberrations in the 3D genome structure may itself represent a therapeutic target. 

In conclusion, we provide an integrative and functional view of the 3D genome topology during 

human B cell differentiation and neoplastic transformation. Beyond revealing the presence of 

a novel compartment related to the polycomb-repressive complex, our analysis points to a 

highly dynamic 3D genome organization in normal B cells, including extensive activation from 

NBC to GCBC and a reversibility in MBC. In neoplastic cells from CLL and MCL, we identify 

disease and subtype-specific change in the 3D genome organization, which include large 

chromatin blocks containing genes playing key roles in their pathogenesis and clinical behavior. 
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Methods 

Isolation of B cell subpopulations for in situ Hi-C experiment 

Four B cell subpopulations spanning mature normal B cell differentiation were sorted for in 

situ Hi-C as previously described30. Briefly, peripheral blood B cell subpopulations i.e. naive B 

cells (NBC) and memory B cells (MBC) were obtained from buffy coats for healthy adult male 

donors from 56 to 61 years of age, obtained from Banc de Sang i Teixits (Catalunya, Spain). 

Germinal center B cells (GCBC) and plasma cells (PC) were isolated from tonsils of male 

children undergoing tonsillectomy (from 2 to 12 years of age), obtained from the Clínica 

Universidad de Navarra (Pamplona, Spain). Samples were cross-linked before FACS sorting, to 

separate each of the B cell subpopulations, and afterwards were snap frozen and kept at -

80°C. Three replicates per B cell subpopulation were processed and each replicate was derived 

from individual donors with the exception of plasma cells, for which two of the three replicates 

proceeded from the pool of four different donors. The use of the samples analyzed in the 

present study was approved by the ethics committee of the Hospital Clínic de Barcelona and 

Clínica Universidad de Navarra. 

 

Patient Samples 

The samples from CLL (n=7)28 and MCL (n=5) patients were obtained from cryopreserved 

mononuclear cells from the Hematopathology collection registered at the Biobank (Hospital 

Clínic-IDIBAPS; R121004-094). All samples were >85% tumor content. Clinical and biological 

characteristics of the patients are shown in Supplementary Table 5.  

The enrolled patients gave informed consent for scientific study following the ICGC guidelines 

and the ICGC Ethics and Policy committee92. This study was approved by the clinical research 

ethics committee of the Hospital Clínic of Barcelona.  

 

In situ Hi-C  

In situ Hi-C was performed based on the previously described protocol12. Two million of cross-

linked cells per sample were used as starting material. Chromatin was digested adding 100U 

DpnII (New England BioLabs) on overnight incubation. After the fill-in with bio-dCTP (Life-

Technologies, 19518-018), nuclei were centrifuged 5 minutes, 3000rpm at 4°C and ligation was 

performed for 4 hours at 16°C adding 2µl of 2000U/µl T4 DNA ligase on total 1.2mL of ligation 

mix (120µl of 10X T4 DNA ligase buffer; 100µl of 10% Triton X-100; 12µl of 10mg/ml BSA; 966µl 

of H20). Following ligation, nuclei were pelleted and resuspended with 400µl 1X NEBuffer2 

(New England BioLabs). Then, 10µl of RNAseA (10mg/ml) was added to the nuclei and 

incubated during 15 minutes at 37°C while shaking (300rpm), and after that 20µl of 

proteinakse K (10mg/mL) was added and incubated overnight at 65°C while shaking (600rpm). 

After reversion of the cross-link, DNA was purified by phenol/chloroform/isoamyl alcohol and 

DNA was precipitated by adding to the upper aqueous phase: 0.1X of 3M sodium acetate pH 

5.2, 2.5X of pure ethanol and 50µg/ml glycogen. Samples were mixed and incubated overnight 

at -80°C. Next, samples were centrifuged 30 minutes at 13,000rpm at 4°C and pellet was 

washed with 1mL of EtOH 70% followed by a 15 minutes centrifugation at 13,000rpm at 4°C. 
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The supernatant was discarded and the pellet air-dried for 5 minutes and resuspended in 

130µl of 1X Tris buffer (10 mM TrisHCl, pH 8.0), which to be fully dissolved was incubated at 

37°C for 15 minutes. Purified DNA was sonicated using Covaris S220, and then the final volume 

was adjusted to 300µl with 1X Tris buffer. Sonicated DNA was mixed with washed magnetic 

streptavidin T1 beads (total of 100µl 10mg/ml beads), split in two tubes (150µl each), and 

incubated for 30 minutes at room temperature (RT) under rotation. Subsequently, beads were 

separated on the magnet, the supernatant discarded and the DNA was washed with 400µl of 

BB 1X, twice. Sonicated DNA conjugated with beads was washed with 100µl of 1X T4 DNA 

ligase buffer, pooling the two tubes per condition. After that, beads were reclaimed in end-

repair mix. Once incubated during 30 minutes at RT the beads were washed twice with 400µl 

of BB 1X. Then, beads were washed with 100µl of NEBuffer2 and reclaimed in A-tailing mix, 

incubated during 30 minutes at 37°C and washed twice with 400µl of BB 1X, followed by a 

wash in 100µl of 1X T4 DNA ligase buffer. Afterwards, the beads were resuspended in 50µl of 

1X Quick ligation buffer, 2.5µl of Illumina adaptors and 4,000U of T4 DNA ligase and incubated 

during 15 minutes at RT. Then, beads were washed twice with 400µl BB 1X and resuspended in 

30µl of 1X Tris buffer. In the end, libraries were amplified by eight cycle of PCR using 8.3µl of 

beads and pooling a total of 4 PCRs per sample. The PCR products were mixed by pipetting 

with an equal volume of AMPure XP beads and incubated at RT for 5 minutes. Beads were 

washed with 700µl of EtOH 70%, without mixing, twice, and left the EtOH evaporate at RT 

without over-drying the beads (aprox. 4 minutes). Finally, the beads were resuspended with 

30µl 1X Tris buffer, incubated during 5 minutes and supernatant containing the purified library 

was transferred in a new tube and stored at -20°C. DNA was quantified by Qubit dsDNA High 

Sensitivity Assay, the library profile was evaluated on the Bioanalayzer 2100 and the ligation 

was assessed. Libraries were sequenced on HiSeq 2500. Supplementary Table 1 summarizes 

the number of reads sequenced and quality metrics for each B cell subpopulation replicate and 

B cell neoplasm. 

 

Hi-C data pre-processing, normalization and interaction calling 

The sequencing reads of Hi-C experiments were processed with TADbit55. Briefly, sequencing 

reads were aligned to the reference genome (GRCh38) applying a fragment-based strategy; 

dependent on GEM mapper93. The mapped reads were filtered to remove those resulting from 

unspecified ligations, errors or experimental artefacts. Specifically, we applied seven different 

filters using the default parameters in TADbit: self-circles, dangling ends, errors, extra 

dangling-ends, over-represented, duplicated and random breaks55. Hi-C data were normalized 

using the OneD correction94 at 100Kb of resolution to remove known experimental biases. The 

significant Hi-C interactions were called with the analyzeHiC function of the HOMER software 

suite76, binned at 10Kb of resolution and with the default p-value threshold of 0.001. 

 

Reproducibility of Hi-C replicas 

The agreement between Hi-C replicates was assessed using the reproducibility score36. The RS 

is a measure of matrix similarity ranging between 0 (totally different matrices) and 1 (identical 

matrices). A genome-wide RS was defined for each experiment as the average RS between 

pairs of corresponding normalized chromosome matrix (Extended Data Figure 1A and 
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Extended Data 4B and 4D). Then, the matrix representing all the genome-wide RSs was 

analyzed using a hierarchical clustering algorithm with the Ward's agglomeration method using 

hclust function from R stats package. 

 

ChIP-seq and ATAC-seq data generation and processing 

ChIP-seq of the six different histone marks and ATAC-seq data were generated as described in 

(http://www.blueprint-epigenome.eu/index.cfm?p=7BF8A4B6-F4FE-861A-

2AD57A08D63D0B58)28. Briefly, fastq files of ChIP-seq data were aligned to the GRCh38 

reference genome using bwa 0.7.795, PICARD (http://broadinstitute.github.io/picard/) and 

SAMTOOLS96, and wiggle plots were generated (using PhantomPeakQualTools R package) as 

described (http://dcc.blueprint-epigenome.eu/#/md/methods). Peaks of the histone marks 

were called as described in http://dcc.blueprint-epigenome.eu/#/md/methods using MACS2 

(version 2.0.10.20131216)97 with input control. ATAC-seq fastq files were aligned to genome 

build GRCh38 using bwa 0.7.7 (parameters: -q 5 –P -a 480)95 and SAMTOOLS v1.3.1 (default 

settings)96. BAM files were sorted and duplicates were masked using PICARD tools v2.8.1 with 

default settings (http://broadinstitute.github.io/picard/). Finally, low quality and duplicate 

reads were removed using SAMTOOLS v1.3.1 (parameters: -b -F 4 -q 5,-b, -F 1024)96. ATAC-seq 

peaks were determined using MACS2 (version 2.1.1.20160309, parameters: -g hs q 0.05 -f BAM 

–nomodel - shift -96 extsize 200 - keep -dup all) without input97. 

For each mark a set of consensus peaks (chr1-22) present in the normal B cells (n=12 

biologically independent samples for histone marks and n=15 biologically independent 

samples for ATAC-seq) was generated by merging the locations of the separate peaks per 

individual sample. Also, a second set of consensus peaks was generated taking into account 

normal B cells, CLL (n=7 biologically independent samples) and MCL (n=5 biologically 

independent samples). For the histone marks, the number of reads per sample per consensus 

peak was calculated using the genomecov function of bedtools suite98. For ATAC-seq, the 

number of insertions of the TN5 transposase per sample per consensus peaks was calculated 

determining the estimated insertion sites (shifting the start of the first mate 4bp downstream), 

followed by the genomecov function of bedtools suite98. The number of consensus peaks for 

normal B cell samples were 46,184 (H3K4me3), 44,201 (H3K4me1), 72,222 (H3K27ac), 25,945 

(H3K36me3), 40,704 (H3K9me3), 20,994 (H3K27me3), 99,327 (ATAC-seq), while the number of 

consensus peaks for normal B cells, CLL and MCL samples were 53,241 (H3K4me3), 54,653 

(H3K4me1), 106,457 (H3K27ac), 50,530 (H3K36me3), 137,933 (H3K9me3), 117,560 

(H3K27me3), 140,187 (ATAC-seq). Using DESeq2 R package99, counts for all consensus peaks 

were transformed by means of the variance stabilizing transformation (VST) with blind 

dispersion estimation. Principal component analysis (PCAs) were generated with the prcomp 

function from the stats package in R using the VST values. 

 

RNA-seq data generation and processing 

Single-stranded RNA-seq data were generated as previously described100. Briefly, RNA was 

extracted using TRIZOL (Life Technologies) and libraries were prepared using TruSeq Stranded 

Total RNA kit with Ribo-Zero Gold (Illumina). Adapter-ligated libraries were amplified and 
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sequenced using 100bp single-end reads. RNA-seq data of the 24 samples, some (n=19) mined 

from a previous study28, were aligned to the reference human genome build GRCh38 

(Supplementary Table 5). Signal files were produced and gene quantifications (gencode 22, 

60,483 genes) were calculated as described (http://dcc.blueprint-

epigenome.eu/#/md/methods) using the GRAPE2 pipeline with STAR-RSEM profile (adapted 

from the ENCODE Long RNA-Seq pipeline). The expected counts and fragments per kilobase 

million (FPKM) estimates were used for downstream analysis. The PCA of the RNA-seq data 

was generated with the prcomp function from the stats package in R in the 12 analyzed normal 

B cell samples or 24 analyzed normal and neoplastic B cell samples. 

 

WGBS data generation and processing 

WGBS was generated as previously described30. Mapping and determination of methylation 

estimates were performed as described (http://dcc.blueprint-epigenome.eu/#/md/methods) 

using GEM3.0. Per sample, only methylation estimates of CpGs with ten or more reads were 

used for downstream analysis. The principal component analysis (PCA) of the DNA methylation 

data was generated with the prcomp function from the stats package in R using methylation 

estimates of 15,089,887 CpGs (chr1-22) with available methylation estimates in all 12 analyzed 

normal B cell samples or 14,088,025 CpGs (chr1-22) in all 24 analyzed normal and neoplastic B 

cell samples. 

 

Definition of sub-nuclear genome compartmentalization 

The segmentation of the genome into compartments was determined as previously 

described5. In short, normalized chromosome-wide interaction matrices at 100Kb resolution 

were transformed into Pearson correlation matrices. These correlation matrices were then 

used to perform PCA for which the first eigenvector (EV) normally delineates genome 

segregation. All EVs were visually inspected to ensure that the EV selected corresponded to 

genomic compartments5. Since the sign of the EV is arbitrary, a rotation factor based on the 

histone mark H3K4me1 signal and ATAC-seq signal were applied to correctly call the identity of 

the compartments. A Pearson correlation coefficient was computed between the EVs for each 

pair of merged B cell subpopulation (Extended Data Figure 1C). Each merged sample was also 

correlated with its replica (Extended Data Figure 1C). The multi-modal distribution of the EV 

coefficients from the B cells dataset was modelled as a Gaussian mixture with three 

components (k = 3). To estimate the mixture distribution parameters, an Expectation 

Maximization algorithm using the normalmixEM function from the mixtools R package was 

applied101.  

A Bayesian Information Criterion (BIC) was computed for the specified mixture models of 

clusters (from 1 to 10) using mclustBIC function from mclust package in R102 (Extended Data 

Figure 1D). Three underlying structures were defined; an alternative compartmentalization 

into A-type (with the most positive EV values), B-type (with the most negative EV values) and I-

type (an intermediate-valued region with a distinct distribution) compartments. Two 

intersection values (IV1, IV2) were defined at the intersection points between two 

components. The mean IV1 and IV2 values across all the B cell replicas (n=12) were then used 
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as standard thresholds to categorize the data into the three different components (that is, A-

type compartment was defined for EV values between +1.00 and +0.63, I-type compartment as 

of “Intermediate” was defined for EV values between +0.63 and -0.43, and B-type 

compartment was defined for EV values between -0.43 and -1.00) (Extended Data Figure 1E).  

 

Characterizing compartment types in B cells by integrating nine omics layers 

Given a set of peaks as previous defined by Beekman et al28 from nine different omic layers 

including six histone marks (H3K4me3, H3K4me1, H3K27ac, H3K36me3, H3K9me3, 

H3K27me3), gene accessibility (ATAC-seq), gene expression (RNA-seq) and DNA methylation 

(WGBS), a bedmap function from BEDOPS software103 was applied  to get the mean scoring 

peak over the 100Kb intervals genome-wide. Next, Pearson correlation coefficients were 

computed between the EV coefficients and the mean scoring value of each epigenetic mark at 

100Kb intervals (Extended Data Figure 1B). Finally, the mean scoring values were normalized 

by the total sum of the values for each mark and grouped by the three defined genomic 

compartments (A, I, B-type; Figure 1G). A Wilcoxon test was used to compute the significance 

between all the possible pairwise comparisons of the signal distribution. 

 

Compartment Interaction Score (C-Score) 

The compartment score is defined as the ratio of contacts between regions within the same 

compartment (intra-compartment contacts) over the total chromosomal contacts per 

compartment (intra-compartment + inter-compartment). To compute the compartment score, 

all the compartments that shared the same genomic segmentation were merged.  

 

Chromatin states enrichment by genomic compartments 

The genome was segmented into 12 different chromatin states at 200bp interval as previously 

described28. The active promoter and strong enhancer1 were merged as a unique state, giving 

a total of 11 chromatin states.  The genome compartmentalization was next split into 4 groups; 

3 conserved groups, in which the B cells samples shared A-type compartment (n=6,409), B-

type compartment (n=6,267) or I-type compartment (n=5,467) and a dynamic group (n=7,099) 

of non-conserved compartmentalization among B cells subpopulation. Each group was 

correlated with the defined 11 chromatin states using foverlaps function from data.table R 

package. The frequency of each chromatin state (corrected by the total frequency in the 

genome) was computed per each genomic compartment. The chromatin state score is thus the 

median frequency of the three replicas scaled by the columns and the rows using scale 

function from baseR package. 

 

 

Description of chromatin states in the intermediate (I)-type compartment 

200bp-windows containing poised promoter (n=547) or polycomb repressed (n=11,665) 

chromatin states were extracted from the NBC intermediate compartments (n=1,885). From 
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those regions, two main sub-groups were distinguished according to the chromatin state 

shown in the next state of differentiation (GCBC): (1) those regions that maintained their 

chromatin state (poised promoter or polycomb repressed), and (2) those regions that changed 

their chromatin state; which were further classified into three categories: (i) I-related 

chromatin states (poised promoter or polycomb repressed), (ii) B-related chromatin states 

(repressive heterochromatin and low signal heterochromatin), (iii) A-related chromatin states 

(active promoter/strong enhancer1, weak promoter, strong enhancer2, transcription 

transition, transcription elongation and weak transcription). Finally, the fold-change of related 

chromatin states between GCBC and NBC was computed. 

 

Analysis of chromatin state dynamics upon B cell differentiation 

B cell differentiation axis was divided into two main branches: (i) NBC-GCBC-PC, (ii) NBC-GCBC-

MBC. Both branches presented a common step from NBC to GCBC and then a divergence step 

in PC or MBC. The 5,445 common compartments from both branches were considered for the 

analysis. The general modulation of chromatin structure was drawn using the alluvial function 

from alluvial R package. 

 

Transcription factor analyses 

From GCBC-specific 937 active compartments (B to A-type, n =18; B to I-type, n=512 and I to A-

type, n=407) were narrowed down to 171 peaks due to the following filtering steps: (i) only the 

200bp-windows contain active promoter, strong enhancer1 and strong enhancer2 chromatin 

states were retained (n=1,907 regions). (ii) Regions where H3K27ac peaks were differentially 

enriched in GCBC replicates compared to the rest of normal B cell subpopulations (FDR<0.05) 

computed using DEseq2 R package99 were retained. (iii) Regions with a presence of ATAC-seq 

peaks in at least two GCBC replicates were retained (n=171 peaks). The background considered 

was the rest of the ATAC-seq peaks (n=268) presented at the 1,907 regions in at least two 

GCBC replicates. 

From CLL-specific 48 active compartments (in normal B cells defined as I-type: n=28 and B-

type: n=20), were narrowed down to 25 peaks due to the following filtering steps: (i) Regions 

where H3K27ac peaks were differentially enriched (FDR<0.05) comparing CLL from all normal B 

cells and MCL using DEseq2 package99, (ii) Regions where ATAC-seq peaks were presented in at 

least five CLL (n=25). The background considered was all the resting ATAC-seq peaks (n=28) on 

the 48 compartments presented in at least five CLL.  

On both analysis, FASTA sequences of targeted regions (GCBC-specific regions and CLL-specific 

regions) were extracted using getfasta function from bedtools suite98 using GRCh38 as 

reference assembly.  An analysis of motif enrichment was done by the AME-MEME suite104 

using non-redundant transcription factor (TF) binding profiles of Homo sapiens Jaspar 2018 

database105 as a reference motif database. The database contained a set of 537 DNA motifs. 

Maximum odd scores were used as a scoring method and one-tailed Wilcoxon rank-sum as 

motif enrichment test. Only TF genes that were expressed (FPKM median values>1) were 

included. 
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TCF4 binding motif example from KSR2 gene 

A FASTA sequences of 25 ATAC-seq peaks detected in CLL-specific active compartments were 

extracted using GRCh38 as reference assembly. A search of individual motif occurrences 

analysis was done using AME-FIMO suite106 library(BSgenome.Hsapiens.UCSC.hg38,masked) 

with a custom random model (letter frequencies: A, 0.262: C, 0.238: G, 0.238 and T, 0.262). A 

p-value<0.0001 was established as a threshold to determine 23 significant motif occurrences 

where TCF4 binding motif (MA0830.1) was one of the top candidates. 

 

Log-ratio of normalized interactions in the AICDA regulatory landscape 

Normalized Hi-C maps were analyzed at 50Kb of resolution at the specific genomic region, 

chr12:8,550,000-9,050,000 (GRCh38), from the four B cell subpopulations. A logarithmic ratio 

of the contact maps was computed between NBC and GCBC and GCBC with PC and MBC. The 

result array was convolved with a 1-dimensional Gaussian filter of standard deviation (sigma) 

of 1.0 using and interpolated with a nearest-neighbor approach using scipyndimage Python 

package. 

 

Statistical testing for detecting significant changed compartment regions 

Briefly, 100Kb regions that had at least one missing value among the compared samples were 

removed from the analysis. Then, two different groups were defined, case and control, 

according to the case-control pair analyzed. A T-test was computed to compare each case-

control pair, and the resulting p-values were adjusted using the false discovery rate (FDR)107. 

The regions with significantly different means and fold changes were selected based on two 

specific thresholds: a p-adjustment value less than 0.05 and a fold change greater than 0.4. The 

results were then generated for a total of 4 different case-control pairs. 

(I) control: all regions conserved across all B cell samples without missing values in CLL (A-type, 

n=3,967, I-type, n=4,301 and B-type, n=5,226), case: all CLL regions non-conserved in B cell 

samples (n=3,217). The analysis resulted in 348 B cell_CLL significantly changed regions. 

(II) control: all regions conserved across all B cell samples without missing values in MCL (A-

type n=6,167, I-type n=5,299, B-type n=5,812), case: all MCL regions non-conserved in B cell 

samples (n=4,716). The analysis resulted in 82 B cell_MCL significantly changed regions. 

(III) control: B cell-CLL significantly changed regions (n=348) - MCL-CLL overlapping (n=31) = B 

cell-CLL specific regions (n=317), case: MCL regions (A-type n=97, I-type n=154, B-type n=61; 

total n=312). The analysis resulted in 89 B cell_CLL-specific regions. 

(IV) control: B cell-MCL significantly changed regions (n=82) - MCL-CLL overlapping (n=31) = B 

cell-MCL specific regions (n=51), case: CLL regions (n=41). The analysis resulted in 3 B 

cell_MCL-specific regions. 
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Integrative 3D modelling of EBF1 and structural analysis 

Hi-C interactions matrices from the merging of three replicas of NBC and the seven cases of 

CLL were used to model chr5:158,000,000:160,000,000 (GRCh38) at 5Kb of resolution. For NBC 

and CLL merged Hi-C interaction maps, a MMP score was calculated to assess the modeling 

potential of the region, resulting in 0.79 for NBC and 0.84 for CLL indicative of good quality Hi-

C contact maps for accurate 3D reconstruction108. Next, this region was modelled using a 

restraint-based modelling approach as implemented in TADbit55, where the experimental 

frequencies of interaction are transformed into a set of spatial restraints54. Briefly, each 5Kb 

bin of the interaction Hi-C map was represented as a spherical particle in the model, which 

resulted in 400 particles each of radius equal to 25nm. All the particles in the models were 

restrained in the space based on the frequency of the Hi-C contacts, the chain connectivity and 

the excluded volume. The TADbit optimal parameters (maxdist=-1.0; lowfreq=1.0; upfreq=200; 

and dcutoff=150) resulted in the best Spearman correlations of 0.61 (NBC) and 0.63 (CLL) 

between the Hi-C interaction map and the models contact map. Next, a total of 5,000 models 

per cell type were generated, and the top 1,000 models that best satisfied the imposed 

restraints were retained for the analysis. To assess the structural similarities among the 3D 

models, the distance root-mean-square deviations (dRMSD) value was computed for all the 

possible pairs of top models (1,000 in NBC and 1,000 in CLL) and a hierarchical clustering 

algorithm was applied on the resulting dRMSD matrix using ward.D method from stats package 

in R (Extended Data Figure 5C). The convex hull volume spanned by the 81 particles of the 

EBF1 gene (chr5:158,695,000-159,000,000, GRCh38) was computed in each model using the 

convexhull function from the scipy.spatial Python package (Figure 5G). 

 

Differential Gene expression analyses 

Differentially expressed genes were defined using the DEseq2 R package99, nbinomWaldTest, 

on all the genes. Then, the genes present on the compartments of interest were selected and 

Benjamini y Hochberg (BH) test (FDR<0.05) was applied. In detail, expected counts were used 

on the following considered comparisons: (i) for GCBC-specific activate compartments, GCBC 

samples (n=3) versus the rest of normal B cells samples (NBC, PC, MBC; n=9); (ii) for CLL-

specific active compartments, CLL samples (n=7) versus the rest of the samples (normal B cells 

and MCL, n=17); (iii) for CLL-specific inactive compartments, all normal B cells and MCL 

samples (total n=17) versus CLL samples (n=7) and (iv) for cMCL, cMCL (n=2) versus nnMCL 

(n=3) samples were studied. Then, the expression of the genes differentially expressed on each 

comparison of interest was assessed. Only genes that were expressed (FPKM median values>1) 

were included.  

The findOverlaps function from GenomicRanges R package109 was used to annotated genes 

that overlapped with these defined regions. One tailed Monte-Carlo method was applied to 

evaluate the significant number of differentially expressed genes in CLL-specific compartments 

(this process was randomly repeated 10,000 times).   
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Defining de novo (in)active regions in sub-type specific neoplastic group 

MCL and CLL patient samples were grouped according to their biological and clinical 

characteristics. This classification resulted in two conventional (c) and three leukemic non-

nodal (nn) MCL cases and two IGVH-unmutated (u) and five IGVH-mutated (m) CLL cases.  

First, the non-assigned neoplasia compartments were removed from the analysis. A sample 

homogenization was applied to reduce the intra-subtype variance; the samples that presented 

a difference of EV smaller than 0.4 were retained (91.29% in MCL, 87.1% CLL).  Next, to study 

the inter-subtype variance, the mean of the EV from each subtype of B cell malignancy was 

computed. Significant regions were determined if the difference between the two subtypes 

(cMCL vs nnMCL and uCLL vs mCLL) was equal or higher than 0.4, which resulted in 673 regions 

in MCL and 47 in CLL. MCL-subtype specific regions where split into two groups according to 

the value of its EV coefficient (n=435 region called cMCL gain, n=238 regions called nnMCL 

gain). The distribution and the frequency of the significantly changed regions were studied per 

chromosome and compared with the probability of finding them by chance in each 

chromosome. N-subsamples of 100Kb size were selected from the GRCh38 genome and their 

frequency was calculated per chromosome (this process was randomly repeated 10,000 

times). One tailed Monte-Carlo method was applied to compute p-values. The findOverlaps 

function from GenomicRanges R package (Lawrence et al. 2013) was next used to annotate 

protein coding genes that overlapped with these defined regions. Differentially expressed 

genes among cMCL and nnMCL on chr2:2,700,000-8,800,000 (GRCh38) was compute using 

Deseq2 (Love et al. 2014) (using a FDR<0.05). The expression analysis was validated on two 

independent published cohorts, i.e.: a series with 30 conventional and 24 leukemic non-nodal 

mantle cell lymphoma (GEO GSE79196) from peripheral blood49 and a second series from the 

lymphoma/leukemia molecular profiling project (LLMPP) (GEO GSE93291)62. The microarrays 

were normalized using the R frma
110 method and limma R package111 was used to identify 

differentially expressed genes with adjusted p-value<0.05. Standardized expression matrices 

were used to do the heatmaps using pheatmap R package. Gene differentially expressed on 

the identified cohort: [1] RNAseq from BLUEPRINT data, [2] peripheral blood and [3] LLMPP. 

The magnitude of the compartmentalization change was calculated subtracting the EV of 

cMCL1 and nnMCL2. The karyotype and the chromosome 2 were designed using the 

karyoploteR library112. 
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Figures legend 

Figure 1. Multi-omics view of B cell differentiation and identification of an intermediate 

compartment. 

A - Schematic overview of mature B cell differentiation showing the four B cell subpopulations 

considered in this study. 

B - Sample description and in situ Hi-C sequencing experimental design for normal B cell 

differentiation subpopulations. NBC, naive B cells; GCBC, germinal center B cells; MBC, 

memory B cells and PC, plasma cells. 

C - Dendrogram of the reproducibility score of B cell subpopulation replicates for normalized 

Hi-C contact maps at 100Kb resolution. 

D - Unsupervised principal component analysis (PCA) for nine omics layers: chromatin 

immunoprecipitation followed by sequencing (ChIP-seq) of six histone marks (H3K4me3 

n=46,184 genomic regions, H3K4me1 n=44,201 genomic regions, H3K27ac n=72,222 genomic 

regions, H3K36me3 n=25,945 genomic regions, H3K9me3 n=40,704 genomic regions, and 

H3K27me3 n=20,994 genomic regions), chromatin accessibility measured by ATAC-seq 

(n=99,327 genomic regions), DNA methylation measured by whole-genome bisulfite 

sequencing (WGBS, n=15,089,887 CpGs) and gene expression measured by RNA-seq (n=57,376 

transcripts). Three independent biological replicates of NBC, GCBC, PC, and MBC were studied 

for all omic layers, with the exception of ATAC-seq for which six biological replicates of MBC 

were used. 

E - Example on chromosome 12 (chr12) comparing the profile of three-dimensional (3D) data 

(in situ Hi-C), H3K4me1 ChIP-seq signal, chromatin accessibility (ATAC-seq) and gene density. 

The red and blue rectangles highlight the features of A and B compartments, respectively.  

F - Distribution of the first eigenvector of each B cell subpopulation (three replicates and 

merge). The relative abundance of A-type, B-type and intermediate (I)-type compartments per 

merged B cell subpopulations are indicated below each distribution. Compartment definition 

based on eigenvalue thresholds: A-type, 1 to 0.43; I-type, 0.43 to -0.63; B-type, -0.63 to -1. 

G – Boxplots showing the association between the three compartments (A-type, I-type and B-

type) and each of the nine additional omics layers under study. 

 

Figure 2. Chromatin dynamics across B cell differentiation 

A - Functional association of the conserved and dynamic compartments during B cell 

maturation using eleven chromatin states (normalized by sample and chromatin state). 

Conserved compartments were segmented into A-type, I-type and B-type compartments. The 

percentage of each conserved or dynamic compartment is indicated for all B cell 

subpopulations. ActProm-StrEnh1, Active Promoter-Strong Enhancer 1; WkProm, Weak 

Promoter; StrEnh2, Strong Enhancer 2; WkEnh, Weak Enhancer; TxnTrans, Transcription 

Transition; TxnElong, Transcription Elongation; WkTxn, Weak Transcription; PoisProm, Poised 

promoter; PolycombRepr, Polycomb repressed; Het;Repr, Heterochromatin;Repressed; 

Het;LowSign, Heterochromatin;Low Signal. 
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B - Intermediate compartment dynamics. Pie charts represent poised promoters (top, violet 

color) or polycomb-repressed (bottom, light gray color) within the I-type compartment in NBC 

which shifts to A-type and B-type compartments in GCBC. The pie charts under GCBC represent 

the fraction that maintains the previous chromatin state (colored as previously defined) or 

changed chromatin states (not colored). Bar graphs represent the fold change between GCBC 

and NBC of each three groups of chromatin states (arranged by their relationship to the A-

type, I-type and B-type compartments). Active Promoter, Weak Promoter, Strong Enhancer 1, 

Strong Enhancer 2, Weak Enhancer, Transcription Transition, Transcription Elongation, Weak 

Transcription were A-type compartment-related states. Heterochromatin/Repressed and 

Heterochromatin/Low signal were B-type compartment-related states. Poised Promoter or 

Polycomb repressed chromatin states were I-type compartment-related states. 

C/D -  Alluvial diagrams showing the compartment dynamics in the two branches of mature B 

cell differentiation: NBC-GCBC-MBC (C) and NBC-GCBC-PC (D). Activation, in red, represents 

changes from compartment B-type to A-type, B-type to I-type and I-type to A-type. 

Inactivation, in blue, represents changes from A-type to B-type, A-type to I-type and I-type to 

B-type compartments. The non-changed compartments are represented in gray. On the top, 

the bar plots between B cell subpopulations represent the total percentage of regions 

changing to active or inactive, and regions that conserve its previous compartment definition. 

E – Multi-omics characterization of the 937 regions (of 100Kb resolution) gaining activity 

exclusively in GCBC. Left: Scheme of B cell differentiation and chromatin state dynamics, in 

which the barplots indicate the log2 fold change of active, intermediate or inactive -related 

chromatin state groups. Right: Boxplots of chromatin accessibility (ATAC-seq signal), DNA 

methylation (5-mC signal) and gene expression (RNA-seq signal) per B cell subpopulations 

compared using the Wilcoxon’s test. *p-value<0.05, **p-value<0.001, ***p-value<0.0001, 

****p-value<0.00001. 

F - Enrichment analysis of transcription factor binding motifs. Top: Schematic representation of 

the analytic strategy. Bottom: Binding motifs of MEF2 and POU TF families are highly enriched 

in active and accessible loci in the GCBC specific regions gaining activity (n=171 independent 

genomic loci) versus the background (n=268 independent genomic loci). p-values were 

calculated using the AME-MEME suite. Out of the list of all enriched transcription factor 

binding motifs, we considered only those expressed in the three GCBC replicates. 

 

Figure 3. Chromatin organization at the AICDA locus. 

A - Normalized Hi-C contact map of the domain structure surrounding the AICDA gene in NBC. 

The log fold change interaction ratio between GCBC, MBC or PC as compared to NBC was 

computed. Below each interaction map, chromatin state tracks of three biological replicates 

per B cell subpopulation are shown. The coordinates of the represented region are 

chr12:8,550,000-9,050,000, GRCh38. 

B – Multi-layer epigenomic characterization of AICDA gene region (chr12:8,598,290-8,615,591, 

GRCh38) in four B cell subpopulations. Arc diagrams indicate the Hi-C significant interactions 

(continuous red lines involve the region of interest, while dashed red lines involve other 

regions of chromosome 12). Below them, we show compartment definition (red, compartment 
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A-type: green, compartment I-type), chromatin states, chromatin accessibility (ATAC-seq, y-

axis signal from 0 to 105) and gene expression (RNA-seq, y-axis signal from 0 to 4 for the 

positive strand and from 0 to -0.1 for the negative strand). Tracks of Hi-C interactions and 

compartment definition are based on merged replicates whereas chromatin states, chromatin 

accessibility and gene expression tracks of each replicate is shown separately. The coordinates 

of the represented region are chr12:8,570,000-8,670,000, GRCh38. 

 

Figure 4. Characterization of the chromatin architecture of human B cell neoplasms. 

A - Sample description and in situ Hi-C experimental design in CLL and MCL cases. 

B - Dendrogram of the reproducibility score for normalized Hi-C contact maps at 100Kb for B 

cell subpopulations replicates and samples from B cell neoplasia patients. IGVH unmutated 

(u)CLL; IGVH mutated (m)CLL; conventional (c)MCL and non-nodal (nn)MCL. 

C - Unsupervised principal component analysis (PCA) for nine omic layers generated in the 

same patient samples as Hi-C: chromatin immunoprecipitation followed by sequencing (ChIP-

seq) of six histone marks (H3K4me3 n=53,241 genomic regions, H3K4me1 n=54,653 genomic 

regions, H3K27Ac n=106,457 genomic regions, H3K36me3 n=50,530 genomic regions, 

H3K9me3 n=137,933 genomic regions, and H3K27me3 n=117,560 genomic regions), chromatin 

accessibility measured by ATAC-seq (n=140,187 genomic regions), DNA methylation measured 

by whole-genome bisulfite sequencing (WGBS, n=14,088,025 CpGs) and gene expression 

measured by RNA-seq (n=57,376 transcripts). In addition to the normal B cell subpopulations 

explained in figure 1D, we studied 7 CLL patient samples (2 uCLL and 5 mCLL) and 5 MCL 

patient samples (2 cMCL and 3 nnMCL). 

D – Compartment changes upon CLL transformation. Left: First bar graph represents the 

percentage of conserved and dynamic compartments during normal B cell differentiation. 

Second bar graph shows the percentage of compartments stable and differential in CLL as 

compared to normal B cells. A total of 23.8% of the compartments change in at least one CLL 

sample. Middle: Heatmaps showing eigenvector coefficients of the 348 compartments 

significantly losing (n=200) or gaining activation (n=148) between all CLL samples and normal B 

cells. Right: Multi-omics characterization of the 200 regions losing activity in CLL. We show 

chromatin states, chromatin accessibility (ATAC-seq signal), DNA methylation (5-mC signal) and 

gene expression (RNA-seq signal) in CLL and normal B cells. Comparisons were performed 

using the Wilcoxon’s test. ****p-value<0.00001. 

E – Compartment changes upon MCL transformation. Left: First bar graph represents the 

percentage of conserved and dynamic compartments in B cells. Second bar graph shows the 

percentage of conserved compartments between B cells and MCL, being 27.29% non-

conserved compartment in MCL. Middle: Heatmaps showing eigenvector coefficients of 

significant dynamic compartments (n=82) between MCL and B cells. Regions were split in two 

groups (MCL activation, n=35 or inactivation, n=47) according to the structural modulation of 

the MCL compared to B cells. Right: Example of the MCL activation subset (mostly those B-

type compartments in B cells which significantly increase eigenvector coefficients in MCL) 

showing the chromatin states pattern, chromatin accessibility (ATAC-seq signal), DNA 

methylation (5-mC signal) and gene expression (RNA-seq signal). Comparisons were performed 
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using the Wilcoxon’s test. *p-value<0.05, **p-value<0.001, ***p-value<0.0001, ****p-

value<0.00001. 

 

Figure 5. EBF1 silencing in CLL is accompanied by structural changes affecting a 2Mb region 

A - Venn diagram showing the significant number of dynamic compartments in CLL and MCL as 

compared to normal B cell differentiation and the regions shared between both B cell 

neoplasms (n=31). 

B - Heatmaps showing eigenvector coefficients of compartments significantly losing or gaining 

activation between B cell neoplasms (MCL and CLL together) and B cells.  

C - Heatmap showing the eigenvector coefficients of the compartments losing activation 

specifically in CLL (n=41). Significantly downregulated genes (FDR<0.05) associated to each 

compartment are shown on the right of the heatmap (p-value=0.0038, calculated from the 

total number of genes picked on 48 random compartments per 10,000 times).  

D - FPKM values of all the CLL-specific significantly downregulated genes within compartments 

losing activation. *adjusted p-value<0.05, **adjusted p-value<0.005, ***adjusted p-

value<0.0005. 

E - Map of the EBF1 regulatory landscape. Significant Hi-C interactions (p-value=0.001) and 

compartment type from merged NBC and a representative CLL sample, followed by chromatin 

state tracks from each NBC (n=3) and CLL (n=7). The coordinates of the represented region are 

chr5:158,000,000-160,000,000, GRCh38. 

F - Restraint-based model at 5Kb resolution of the 2Mb region containing EBF1 (total 400 

particles, EBF1 locus localized from 139 to 220 particle). Data from merged NBC (top) and CLL 

(bottom) was used. Surface represents the ensemble of 1,000 models and is color-coded 

based on the compartment definition (A-type, B-type and I-type in red, blue and green, 

respectively). The top-scoring model is shown as trace, where protein-coding genes are 

colored in blue and long non-coding RNAs in yellow. Spheres represents enhancer regions.  

G - Violinplot of the convex hull volume involving the 81 particles from the EBF1 region. 

Comparison was performed using Wilcoxon’s test. ****p-value=0.00001. 

 

Figure 6. Transcription factors associated to CLL-specific activated compartments 

A - Heatmap showing the first eigenvector coefficients of the compartments gaining activation 

specifically in CLL (n=48). Significantly upregulated genes (FDR=0.05) associated to each 

compartment are shown on the right of the heatmap (p-value=0.006).  

B - FPKM values of all the CLL-specific significantly upregulated genes within compartments 

gaining activation.  *adjusted p-value<0.05, **adjusted p-value<0.005, ***adjusted p-

value<0.0005. 

C - Enrichment analysis of transcription factor binding motifs. We show the most significant TF 

binding motifs enriched in active and accessible loci within the CLL-specific regions gaining 

activity (n=25 independent genomic loci) versus the background (n=28 independent genomic 

loci). p-values were calculated using the AME-MEME suite. Out of the list of all enriched 
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transcription factor binding motifs, we considered only those expressed in all CLL samples 

(n=7).  

D - Example of TCF4 binding motifs at the KSR2 promoter region in CLL and NBC. We show the 

following tracks: H3K27ac, chromatin accessibility (ATAC-seq) and chromatin states of a 

representative NBC replicate and CLL sample. The coordinates of the represented region are 

chr12:117,856,977-117,975,164, GRCh38. 

 

Figure 7. Long-range chromatin remodeling of a 6.1Mb involving SOX11 in cMCL  

A - Heatmaps showing eigenvector coefficients of compartments significantly changing in 

cMCL versus nnMCL (n=673) and in uCLL versus mCLL (n=47). 

B - Left: Genome-wide distribution of compartments changing in MCL subtypes. The vertical 

orange lines point to the chromosome location of the regions. Right: Relative abundance of 

the compartments significantly gaining activity in cMCL or nnMCL as compared with a random 

probability. A gain in compartment activation was defined as an increase of eigenvector 

coefficient of at least 0.4. *p-value<0.05, **p-value<0.005, ***p-value<0.0005. 

C - Heatmap showing eigenvector coefficients of the chromosome 2 compartments specifically 

gaining activation in cMCL (n=93). On the top of the heatmap, we show the 6.1Mb genomic 

block gaining activation in 2p25. 

D - Top: Differentially expressed genes between cMCL and nnMCL in each of the three cohorts 

of transcriptional data of MCL patients. Bottom: Compartment type tracks on all the MCL 

samples under study. Eigenvalue subtraction between representative cMCL and nnMCL 

samples highlighting the 6.1Mb region gaining activity in the former. 

 

 

Extended Data Figure 1 

Extended Data Figure 1A. Average genome-wide reproducibility score matrix of each B cell 

subpopulation replicate at 100Kb resolution. The reproducibility score ranging between 0 

(totally different matrices) and 1 (identical matrices). 

Extended Data Figure 1B. Pearson correlation between the eigenvector coefficients, which 

defines 3D compartments per B cell subpopulation, with six histone marks, chromatin 

accessibility (ATAC-seq), gene expression (RNA-seq) and DNA methylation (WGBS). Positive 

values of the eigenvector show higher correlation with H3K4me1 (enhancer mark) and 

chromatin accessibility.  

Extended Data Figure 1C. Genome-wide scatterplots of coefficients from the first eigenvector 

showing the correlation between pairs of B cell subpopulations at 100Kb resolution. The 

squared correlation coefficient (R2) is indicated.  

Extended Data Figure 1D. Bayesian Information Criterion (BIC) plot for the equal (E) and 

unequal (V) variance model parameterization ranged from 1 to 10 clusters. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 10, 2019. ; https://doi.org/10.1101/764910doi: bioRxiv preprint 

https://doi.org/10.1101/764910


Vilarrasa-Blasi & Soler-Vila et al., submitted to BioRxiv in September 2019 

 
 

28

Extended Data Figure 1E. Compartment definition model. The x-axis shows the distribution of 

the eigenvector coefficients and the y-axis indicates the density. The fitting model proposed is 

highlighted using solid black line. The red lines mark the intersection points (EV1 = -0.63 and 

EV2 = 0.43) used to distinguish the three different compartments (A-type, I-type, B-type). 

 

Extended Data Figure  2. 

Extended Data Figure 2A. Functional validation of the conserved (A-type, I-type and B-type) 

and dynamic compartments in all B cell subpopulations replicates using eleven different 

chromatin states. The chromatin state score is normalized by sample and chromatin state. 

Extended Data Figure 2B. C-score. Method defined by the ratio of contacts betwwen regios 

within the same compartment (intra-compartment contacts) over the total chromosomal 

contacts per compartments (intra- and inter-chromosomal interactions). 

Extended Data Figure 2C. C-score distributions on the three defined compartments A-type, I-

type and B-type. 

Extended Data Figure 2D. C-score distributions segmenting the I-type compartment onto 

positive (IA) or negative (IB) eigenvector coefficients. 

 

Extended Data Figure 4. 

Extended Data Figure 4A. Average genome-wide reproducibility score matrix of each B cell 

subpopulation replicate and B cell neoplasia at 100Kb. The reproducibility score ranging 

between 0 (totally different matrices) and 1 (identical matrices). 

Extended Data Figure 4B/4D. Genome-wide scatterplots of the first eigenvector showing the 

correlation between pairs of each B cell malignancy samples at 100Kb resolution. CLL (B). MCL 

(D). The squared correlation coefficient (R2) is indicated. 

Extended Data Figure 4C/4E.  Mean and standard deviation of the squared correlation 

coefficients calculated intra- or inter- each neoplasia subtype. CLL (C). MCL (E). 

Extended Data Figure 5. 

Extended Data Figure 5A.  Heatmap showing the eigenvector coefficients of the 

compartments losing (top) or gaining (bottom) activation specifically in MCL. 

Extended Data Figure 5B. Correlation between normalized Hi-C and modeled contact maps in 

EBF1 regulatory landscape. Left: Contact map computed from the restrained-based model. 

Middle: Scatterplot of Hi-C normalized map versus modeled contact data with linear 

regression. Right: Normalized Hi-C data. Top: NBC. Bottom: CLL. The position of EBF1 is 

indicated in blue at the bottom of the matrix plots. 

Extended Data Figure 5C. Heatmap of the hierarchical clustering of the dRMSD values 

computed for all the possible pairs of generated models (1,000 in NBC and 1,000 in CLL). 

 

Extended Data Figure 7. 
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Extended Data Figure 7A. Bar graphs represent the fold change between cMCL and nnMCL of 

each three groups of chromatin states (arranged by their relationship to the A-type, I-type and 

B-type compartments). Active Promoter, Weak Promoter, Strong Enhancer 1, Strong Enhancer 

2, Weak Enhancer, Transcription Transition, Transcription Elongation, Weak Transcription were 

A-type compartment-related states. Heterochromatin;Repressed and Heterochromatin;Low 

signal were B-type compartment-related states. Poised Promoter or Polycomb repressed 

chromatin states were I-type compartment-related states. 

Extended Data Figure 7B/7C. Heatmaps of the differentially expressed gens between MCL 

samples classified as cMCL (light yellow) and nnMCL (dark yellow) subtypes. Peripheral blood 

(B) and LLMPP (C) cohorts. The VST values were normalized by genes.  

 

Supplementary Tables 

Supplementary Table 1.  In situ Hi-C experimental quality metrics. 

Supplementary Table 2. GCBC specific 3D active compartments on a three-column bed file 

format (chromosome, start position and end position). 

Supplementary Table 3. List of the identified enriched binding motifs expressed on GCBC. 

Supplementary Table 4. Genes differentially upregulated (FDR<0.05) in GCBC specific regions. 

The coordinates of the compartment or compartments each gene belongs to is indicated 

Supplementary Table 5.  Patient characteristics and general overview of the omic layers 

analyzed. 

Supplementary Table 6. Genes differentially expressed (FDR<0.05) at CLL-specific inactive 

compartments. The coordinates of the compartment or compartments each gene belongs to is 

indicated 

Supplementary Table 7. Genes differentially expressed (FDR<0.05) at CLL-specific active 

compartments. The coordinates of the compartment or compartments each gene belongs to is 

indicated 

Supplementary Table 8. List of the identified enriched binding motifs expressed on CLL-specific 

active compartments. 
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