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Abstract 
Transcriptional profiling of hematopoietic cell subpopulations has helped 
characterize the developmental stages of the hematopoietic system and the 
molecular basis of malignant and non-malignant blood diseases for the past three 
decades. The introduction of high-throughput RNA sequencing has increased 
knowledge of the full repertoire of RNA molecules in hematopoietic cells of different 
types, without relying on prior gene annotation. Here, we introduce the analysis of 
the BLUEPRINT consortium gene expression data for mature hematopoietic cells, 
comprising 90 total RNA and 32 small RNA sequencing experiments, from 27 
different cell types. We used these data to describe the transcriptional profile of each 
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we used guided transcriptome assembly to extend the annotation of the transcribed 
genome, which led to the identification of hundreds of novel non-coding RNA genes, 
which display a high degree of cell type specificity. We also characterized the 
expression of circular RNAs and found that these are also highly cell type specific. 
This resource refines the active transcriptional landscape of mature hematopoietic 
cells, highlights abundant genes and transcriptional isoforms for each cell type, and 
provides valuable data and visualisation tools for the scientific community working on 
hematological development and diseases.                                                                                                                                                                                                                                                                                                                                                                                                                            
 
Introduction 
Knowledge of the transcriptional programs underpinning the diverse functions of 
hematopoietic cells is essential to understand how and when these functions are 
performed and to aid the identification of the underlying causes of hematological 
diseases. Thanks to its accessibility, blood is the tissue of choice for the 
implementation of novel technologies in primary samples. Indeed, several studies 
aiming to characterise gene expression profiles have been performed on 
increasingly purified primary hematopoietic populations in the post genome era1-3. 
These studies used expression arrays and thus required prior specification of the 
sequences to be interrogated. The probed sequences were often derived from the 
analysis of a very limited number of tissues and cell types4, despite the early 
discovery that transcription is widespread throughout the human genome5. The 
introduction of high-throughput nucleic acids sequencing technologies6 has improved 
the  assembly of the human genome and the annotation of transcriptomes therein, 
and it has enabled a much more comprehensive analysis of gene expression using 
transcriptomic assembly approaches7. The BLUEPRINT consortium8 was 
established to characterize the epigenetic state, including the transcriptional profile, 
of the different hematopoietic cell types. Reference datasets for DNA methylation, 
histone modifications and gene expression were generated using state-of-the-art 
technologies from highly purified cells, in accordance with quality standards set by 
the International Human Epigenome Consortium9. RNA sequencing (RNA-seq) data 
from over 270 samples encompassing 55 cell types have been made publicly 
available (http://dcc.blueprint-epigenome.eu), a subset of which has been described 
in other studies 10-12. Here, we present the analysis of 90 total RNA samples from 27 
mature cell types from both cord and adult peripheral blood, together with 32 small 
RNA samples from 8 mature cell types. We used a Bayesian differential expression 
analysis approach13 to determine changes in the expression levels of genes and 
transcripts at lineage commitment events and to identify cell type specific 
transcriptional signatures. We performed guided transcriptome reconstruction14 using 
total RNA-seq reads, identifying 645 multi exonic transcripts originating from 400 
intergenic novel genes. The majority of the novel transcripts have low protein coding 
potential and high cell type specificity. Additionally, we identified 55,187 circular 
RNAs (circRNAs), which also displayed very high cell type specificity, highlighting 
the emerging role of non-coding transcripts in hematopoiesis. To facilitate the 
exploration and reuse of the data by the biomedical community, we also provide an 
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internet-based interface that allows to plot the expression patterns of genes and 
transcripts and to download normalised expression data 
(https://blueprint.haem.cam.ac.uk/bloodatlas/). 
 
Results 
The complexity of the hematopoietic transcriptomes. 
We isolated 90 samples (Table S1) from 72 whole blood and cord blood donations, 
either by magnetic beads separation or flow activated cell sorting (FACS; see M&M). 
We generated a mean of 91M 75bp paired-end reads for all total ribo-depleted RNA 
samples, except for platelets (PLT), basophils (BAS) and eosinophils (EOS), which 
we sequenced by 150bp paired-end sequencing at a comparable depth (Table S1). 
We also generated a mean of 4.5M 50bp single-end reads per small RNA sample 
(Table S2). Principal component analysis (PCA) of the log expression estimates for 
both long and short RNAs show distinct clustering by cell type according to their 
ontology along the first two principal components, which explain approximately 40% 
of the variance (Fig. 1A, 1B, S1A and S1B). This correspondence is also obtained 
by hierarchical clustering of samples using Spearman's rank correlation across the 
samples (Fig. S1C and S1D). 
 
A fraction of the expressed genes typically dominates the transcriptome of any given 
tissue or cell type in terms of amount of RNA molecules. The GTEx project15 has 
shown that whole blood, considered as a single tissue, has a very low gene 
expression complexity, with three hemoglobin genes contributing more than 60% of 
total reads16. We refined this analysis by studying transcriptome complexity in 
different cell types of blood. After excluding mitochondrial genes due to their 
considerable variation in steady-state expression across individuals17, the number of 
protein-coding genes accounting for 50% of expression ranged from only 14 in PLT 
to 600 in BAS. The number of protein-coding genes accounting for 75% of total 
expression ranged from 168 in PLT to 2,422 in resting human umbilical vein 
endothelial cells (HUVEC (R); Fig. 2A, Table S3, Supplementary File 1). For all cell 
types in this study, with the exception of PLT, the sets of genes yielding 75% of total 
reads showed gene ontology (GO) terms enrichment only for functional categories 
related to general biological processes, such as translation or transcription18. Thus, 
cellular integrity and basic cellular functions are supported at the transcriptional level 
even in mature cell types, some of which have short half-lives. In PLT, however, we 
found a GO terms enrichment for functional categories related to their core functions 
(i.e. hemostasis, wound healing, coagulation, platelet degranulation) while more 
general processes featured less prominently (Table S4). The small RNA landscape 
showed a very low complexity, with 50% of the reads in the 7 cell types originating 
from between 1 and 7 miRNAs (Fig. 2B, Supplementary File 2) and with fewer than 
10 genes accounting for 75% of the RNA content in any cell type.  
 
Transcriptional signatures define hematopoietic cell functions. 
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As the most highly transcribed genes in each cell type do not encode for the cell 
type's specific functions, we reasoned that these functions must be encoded by 
genes which may not be highly expressed but which, nonetheless, have variable 
levels of expression across the hematopoietic tree. We identified heterogeneously 
expressed genes by comparing a statistical model having a global expression 
parameter across all cell types with one in which each cell type has its own 
expression parameter. Using this approach, we found 19,861 genes, representing 
59.5% of all HGNC-annotated genes in Ensembl, that had a posterior probability of 
differential expression >0.8. The mean log expression across samples was >0 for 
over half of differentially expressed genes but only for 3.5% of non-differentially 
expressed genes, indicating that ubiquitously expressed housekeeping genes in 
haematopoiesis number in the few hundreds. The differentially expressed genes 
were then classified by the cell type with the greatest expression. To ensure that the 
signatures recapitulated cellular functions specific to the mature blood cells in this 
atlas, rather than functions of shared progenitors from which they originate, we 
subselected the 16,572 genes whose maximum loge expression level was at least 
0.1 (i.e. 10.5%) greater than that found in the cell type with the second greatest 
expression (M&M, Table S5). For example, VWF is tagged with the endothelial cells 
group label (ENDO) because its expression varies across cell types (posterior 
probability of the alternate model ~= 1), VWF is most highly expressed in ENDO 
(loge expression level = 6.0), and the second highest expressed category (MK/PLT) 
has a loge expression level of 2.2 (Fig. 3A). The number of genes assigned to each 
category ranged from 186 in CD8 T lymphocytes (CD8TC) to 3,502 in MK/PLT (Fig. 
3B). Using these groups of genes, we found enrichment of GO terms reflecting the 
primary functions for all categories, except for BAS, macrophages M0 (M0) and 
monocytes (MONO), at a family-wise error rate < 5% (Table S6), as exemplified for 
the MK/PLT cluster and dendritic cells (DC) cluster in Fig. 3C. 
 
Differential expression of miRNAs. 
We applied the differential expression modelling described above to the short RNA 
data for four CD4TC, two MK, eight NEU, four MONO, three M1 and six M2 samples. 
We found 603 out of 2,588 miRBASE-annotated19 miRNAs to be differentially 
expressed with a posterior probability > 0.8, of which 573 exhibited a loge fold 
change between the most highly expressed and the second most highly expressed 
cell type greater than 0.1 and were thus classified as cell type specific. The mean 
expression of miRNAs was strongly associated with their having at least one 
validated miRNA target amongst the 29,920 validated mRNA-miRNA interactions in 
the mirecords, mirtarbase and tarbase databases20 (P < 2 x 10-16, effect size = 0.16, 
logistic regression). For example, 46 of the 50 miRNAs (92%) having the highest 
mean expression over cell types had at least one validated target, while only 
458/2508 (18.2%) of the remaining 2,508 miRNAs had a validated target. The cell 
type specific miRNAs with the greatest expression in their labelled cell type (Table 
S7) had been previously linked to relevant cellular functions. For example, hsa-miR-
21-5p (the most highly expressed M1-specific miRNA) is involved in resolution of 
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wound inflammation21 and macrophage polarization22; hsa-let-7g-5p, hsa-miR-26a-
5p, hsa-miR-150-5p and hsa-miR-146b-5p (the most highly expressed CD4TC-
specific miRNAs) are important modulators of CD4+ T-cells23,24; and hsa-miR-126-3p 
(the most highly expressed MK-specific miRNA) plays a role in MK/PLT 
biogenesis25,26. Using existing databases of miRNA-mRNA interactions, however, we 
did not find a correlation between expression of miRNAs and expression of their 
targets, which is consistent with miRNAs being only one of a diverse set of molecular 
players in transcriptional regulation of haematopoietic cells and in agreement with 
the results of other studies showing that miRNAs induce translational repression 
without mRNA destabilisation27. 
 
De novo transcriptome assembly identifies new genes and gene isoforms. 
The pervasive transcription of different types of non-coding RNAs (ncRNAs) is one of 
the most recent discoveries in the RNA biology of mammalian genomes28. Among 
ncRNAs, long ncRNAs (lncRNAs) form a heterogeneous class with crucial roles in 
the control of gene expression, both during developmental and during differentiation 
processes29. The number of lncRNA species is higher in the genome of 
developmentally complex organisms, hinting at the importance of RNA-based control 
mechanisms in the evolution of multicellular organisms30. Several studies have 
demonstrated that almost two-thirds of the genome is pervasively transcribed31. We 
used the BLUEPRINT gene expression dataset to identify novel genes and novel 
isoforms within known genes with respect to the reference transcriptome (Ensembl 
7532). We constructed sample-specific transcriptomes using read alignments to the 
reference genome33 and merged them into a consensus transcriptome. The 
consensus transcriptome contained 645 multi-exonic transcripts from 400 novel 
genes, defined as genes that did not overlap any of the transcripts present in 
Ensembl 75, GENCODE 1934 or RefSeq35 (Supplementary File 3). We found that 
using the expression values of the 368 novel genes having a log expression >0 in at 
least one sample it was possible to cluster the different samples by cell type (Fig. 
4A), suggesting these novel genes play a role in the determination of cellular 
identity. 
 
The vast majority (555 out of 645) of novel multi-exonic transcripts had a coding 
potential36 below 0.364, therefore classifying them as non-coding, whilst the 
remaining 90 transcripts were classified by CPAT as potentially coding. Additionally, 
to the CPAT score we also employed other discriminating features, such as the 
presence of low complexity regions, to separate coding from non-coding genes.  
Open reading frames (ORFs) annotated in GENCODE have indeed minimal overlap 
with transposon-associated regions and other repetitive or low complexity regions 
(~2 % of all nucleotide positions)37. To further investigate the coding potentials of this 
set of novel transcripts, we determined that the percentage of transcripts overlapping 
repeat elements in the non-coding and potentially coding categories is not 
significantly different (Fig. S2A), and that non-coding and potentially coding 
transcripts did not show differences in the portion of each transcript overlapping 
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repeats regions (Fig. S2B) nor in the localization of the overlap with repeat regions 
(Fig. S2C). These findings indicate that amongst the novel genes, even those with a 
higher coding potential display features that are more similar to non-coding 
transcripts rather than protein coding ones, for this reason we chose not to separate 
the two groups. Furthermore, the distribution of the expression level of the novel 
genes is lower than that of known protein coding genes (Ensembl 75) and it is similar 
to that of annotated lncRNAs (Fig. 4B). Novel genes also have higher tissue 
specificity than known lncRNAs and protein coding genes annotated in Ensembl 75 
(Fig. 4C). These two properties contribute to explain their novelty: novel genes are 
expressed only in a very limited number of cell types and at low level, albeit 
consistently across biological replicates. Therefore, their identification has been 
made possible only upon the reconstruction of cell type specific transcriptomes. 
Supporting their prevalent non-coding nature is also the poor conservation of the 
exonic sequences across vertebrates, again resembling that of annotated lincRNAs, 
rather than that of protein coding genes (Fig. 4D). The genomic coordinates of these 
novel genes are available as a supplementary gtf file (Supplementary file 3).   
 
Circular RNA in mature hematopoietic cells. 
Circular RNAs (circRNAs) are single stranded RNA molecules whose ends are 
covalently joined via a back-splice mechanism. Most circRNAs have unknown 
function but some circRNAs are known to regulate transcription38 or act as miRNA 
sponges39-41. Peripheral blood contains thousands of circRNAs expressed at higher 
levels than their corresponding linear mRNAs42. We determine the abundance of 
circRNAs in the total RNA-seq data using five methods40,43-46; requiring that each 
identified backsplice event is detected by at least three methods to mitigate aligner-
specific biases and exclude predictions that overlap known segmental duplications47 
in the genome, multiple genes or Ensembl 75-annotated readthrough transcripts. We 
obtained a final list of 91,866 circRNAs, 55,187 of which were observed in multiple 
samples (Supplementary Table 8). The vast majority (81.64%) of back-splice 
events we identified were exonic and utilized annotated canonical splice sites (Fig. 
5A), as expected from previous reports40,48. Many (44%) of the circRNAs matched 
structures in circBase49 exactly, and a further 30% overlapped structures in circBase. 
In comparison to other RNA species, circRNAs have low abundance, but they can 
accumulate inside the cell as a result of their resistance to exonuclease activity50. To 
investigate the expression patterns of circRNAs in the different hematopoietic cells, 
we performed pairwise correlation analysis and hierarchical clustering of Spearman’s 
correlation coefficients using only counts from circRNAs observed in multiple 
samples. These analyses distinctly grouped samples by cell types and lineage, to 
show tissue-specific expression of circRNAs (Fig. 5B). Next, we compared circRNA 
abundance with the expression of the linear RNAs originating from same genes, 
using as measure abundance ratios (AR), calculated by dividing the back-splice read 
counts from each locus with the canonical junction counts. We found mean ARs over 
replicates within cell types ranging from 1.02% in HUVEC (R) to 12.45% in PLT (Fig. 
S3A and Supplementary Table 9); the latter due to the absence of steady-state 
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transcription, in the anucleated PLT, and to the differential decay of circRNA relative 
to linear molecules51. We also observed that in 74.53% of genes producing circRNAs 
(n = 9,277), expression profiles of backsplice and canonical junctions from same loci 
are positively correlated (median rho: 0.13; interquartile range (IQR): 0.29) across 
cell types. Furthermore, over a third of these (38.04%) exhibit significant correlation 
between expressions of circRNAs and linear molecules. For this subset, the median 
expression of backsplice and canonical junctions are significantly higher (p-value < 
2.2e-16 and p-value = 5.757e-13 respectively, Wilcoxon rank sum test), relative to 
other circRNA genes (Fig. 5C). Without ruling out the possibility that the small 
difference in median canonical junction expression is influenced by junctions internal 
to circRNAs from the same loci, it is conceivable that small changes in the 
transcriptional output of some genes results in higher observable circRNA 
expression due to their accumulation. Finally, to identify differentially expressed 
circRNA, we performed pairwise comparisons of their abundance and identified 984 
distinct circRNAs (<2%), originating from 751 genes (protein-coding: 731; non-
coding: 20) as differentially expressed. The maximum number of differentially 
expressed circRNAs observed from pairwise comparisons is 314 (median: 24, IQR: 
48; Fig. S3B and Supplementary File 4). Moreover, the expression patterns of 
differentially expressed circRNAs cluster samples by cell type (Fig. 5D). Although 
several mechanisms of action have been discovered for non-coding RNAs, only a 
handful of circRNAs have been experimentally verified as functional38,40 and their 
functions are distinct from those of their host genes, negating direct functional 
inferences from GO analysis.  
 
Discussion 
Here we explored 90 transcriptomes, from mature hematopoietic cells produced by 
the BLUEPRINT consortium, with the aim to determine which genes allow each of 
the 27 cell types achieves their diversity (Fig. 1) and their unique functional role in 
the hematopoietic system. We have shown that, at best, 2422 genes (ranging from 
168 to 2422), out of the ~10,000 considered expressed at >=1 FPKM or more, form 
75% of each transcriptome and that these are enriched in genes encoding for 
proteins involved in basic cellular functions rather than in those required to specify 
the different functional phenotypes/identities, the only exception being platelets, 
which have a much simpler transcriptome, 75% of which is occupied by 168 genes 
encoding for their core functions (Fig. 2). For the remaining cell types functional 
identity is achieved by the establishment of expression patterns, composed of 
uniquely expressed genes and of genes whose expression level is differing in the 
various samples (Fig. 3). These were identified using a differential expression 
analysis deploying a Bayesian statistical model (M&M). We conclude that each 
hematopoietic cell type performs its functions by expressing a unique combination of 
genes, partially overlapping with other cell types, and that basic cellular functions are 
up kept even in cell types with very limited half-life. Next, we leveraged on RNA-seq 
annotation agnostic nature to use genome alignments to reconstruct the 
transcriptome of each cell type and to identify, with a very conservative approach, at 
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least 400 novel genes. These display properties such as low expression and high 
tissue specificity, that are highly reminiscent of those of lncRNAs52 (Fig. 4). The 
nature of the data (ribo-depletion) allowed also to greatly expand the catalogue of 
circRNAs identified in blood, as well as, to determine that these ncRNAs display high 
levels of cell type specificity (Fig. 5). Our findings reinforce the notion that lncRNAs 
and circRNAs may have roles in determining cell fate and functions in 
hematopoiesis, through mechanisms that are yet to be investigated. 
Finally, our website https://blueprint.haem.cam.ac.uk/bloodatlas/ provides an 
interface for exploring expression levels at the gene and transcript levels generating 
graphical representations and downloading expression values. 
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Figure 1: Principal component analysis of gene and miRNA expressions. 
1A: Scatterplot of the first (PC1) vs the second (PC2) principal component of the 
expression of genes with a log expression estimate greater than zero in at least one 
sample. 1B: Scatterplot of PC1 vs PC2 of the expression of the miRNAs with unique 
read count >10 in at least one sample. 
 
Figure 2: Complexity of genes and miRNA transcriptomes.  
2A: Cumulative distribution of the fraction of total transcription contributed by non-
mitochondrial protein-coding genes when sorted from most to least expressed in 
each cell type. 2B: Cumulative distribution of the fraction of total mature miRNA 
transcription contributed by mature miRNAs when sorted from most to least 
expressed in each cell type.  
 
Figure 3: Cell type specific transcriptional signatures. 
3A: VWF expression estimates and posterior variances across samples. 3B: The 
number of differentially expressed genes classified by cell type having the greatest 
expression, subject to a log fold change >0.1 compared to the cell type having the 
second greatest expression. 3C: Graphical representations of the GO term 
enrichments for the MK/PLT and the DC groups in which the nodes represent terms, 
which are coloured green if they are enriched and light blue if they are ontological 
ancestors of enriched terms, and edges represent ontological relations. 
 
Figure 4: Properties of the identified novel genes.  
4A: Heatmap of the Spearman's rank correlation (rho) matrix calculated by using the 
log2(FPKM+1) values of the 368 novel genes, expressed (FPKM>1) in at least one 
sample. Dendrogram has been drawn by using complete-linkage clustering based on 
distances calculated as one minus the correlation coefficient. 4B: Expression 
distributions of the novel genes and the ones annotated in Ensembl 75 with biotype 
protein coding or lncRNAs.  4C: Expression specificity (Tau) distributions of the novel 
genes and the ones annotated in Ensembl 75 with biotype protein coding or 
lncRNAs. 4D: Sequence conservation (UCSC phastCons 100) distributions of the 
novel genes and the ones annotated in Ensembl 75 with biotype protein coding or 
lncRNAs. PhastCons have been obtained from multiple alignments of human (hg19) 
sequences with other 99 vertebrate species.  
 
Figure 5: CircRNA expression in blood cells.  
5A: Bar plot showing distributions of circRNAs identified from all samples, grouped 
by cell types. Each bar is colour-coded to indicate number of identified circRNAs 
originating from different genomic regions. 5B: Heatmap of the Spearman's rank 
correlation (rho) using back splice junction counts from each sample. Lowly 
expressed circRNAs (with < 20 reads from all samples) were excluded. 5C: Boxplots 
showing distributions of splice junction expression in circRNA producing genes. 
Boxes are colour-coded to show splice junction expression distributions in genes 
with correlation between circRNA and linear RNA abundance. 5D: Heat map 
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showing expression of all differentially expressed circRNAs (n = 987) identified from 
pairwise comparisons between cell types. 
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Materials & Methods 
Cell isolation 
Samples were obtained from NHS Blood and Transplant donors and from cord blood 
donations at Cambridge University Hospitals, after informed consent (REC East of 
England 12/EE/0040). See supplementary material.  
RNA extraction 
RNA was extracted from TRIzol according to manufacturer’s instructions, quantified 
using a Qubit RNA HS kit (Thermofisher) and quality controlled by Bioanalyzer 
(Agilent). 
Library construction  
Libraries were prepared with TruSeq Stranded Total RNA Kit with Ribo-Zero Gold 
(Illumina) except for platelet, eosinophil and basophils which were prepared with 
Kapa stranded RNA-seq kit with riboerase (Roche). 
miRNA extraction  
RNA was extracted with miRNeasy Mini Kit (Qiagen) and libraries prepared 
with NEBNext® Multiplex Small RNA Library kit (New England Biolabs). 	
Expression analysis 
Read were trimmed with Trim Galore (v0.3.7; parameters “-q 15 -s 3 --length 30 -e 
0.05”) and aligned to Ensembl v757 human transcriptome with Bowtie53 (1.0.1; 
parameters “-a --best --strata -S -m 100 -X 500 --chunkmbs 256 --nofw --fr”). 
MMSEQ13,54 (v1.0.10; default parameters) was used to quantify and normalise 
expression. 
Guided transcriptome assembly  
STAR (v2.4.1c) with parameters “--runThreadN 8 --outStd SAM --outSAMtype BAM 
Unsorted --outSAMstrandField intronMotif” was used to align trimmed reads to 
Ensembl v75 human genome. The bam files sorted by coordinate and indexed by 
using samtools (v 1.3.1)55 were used for the guided transcriptome assembly with 
stringtie (v 1.3.4)14 with the parameters “-p 8 --rf -G Ensembl_75.gtf -v -l BPSTRG” 
and Ensembl v75  gtf as reference. Stringtie was used to merge individual 
transcriptomes in the master transcriptome. Gffcompare56 was used to compare the 
master transcriptome to the reference (Ensembl 75). Intergenic transcripts were 
further compared with gencode (v19)34 and ucsc (v hg19)57 transcriptomes by using 
the R bioconductor GenomicRanges package58, in order to exclude any overlap with 
those. Protein coding potential of the novel intergenic multi-exonic transcripts was 
assessed by using CPAT (v 1.2.4)36. 
 
CircRNA identification and expression profiling 
A detailed description of computational methods for circRNA identification, 
expression profiling and comparisons is in the supplementary materials. 
 
Supplementary figures legends 
Figure S1: Gene and miRNA expressions PCA and correlation clustering. 
1A: Cumulative variance plot for each principal component. Genes with a log 
expression estimate greater than zero in at least one sample have been included.1B: 
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Cumulative variance plot for each principal component. miRNAs with unique read 
count >10 in at least one sample have been included. 1C: Heat map of the 
Spearman rank correlation coefficient (rho) between samples. Genes with a log 
expression estimate greater than zero in at least one sample have been used to 
calculate the Spearman rank correlation coefficient. Rows and columns order reflects 
the  result of the complete linkage clustering made by using 1-rho as distance. 1D:  
Heat map of the Spearman rank correlation coefficient (rho) between samples. 
MiRNAs with unique read count >10 in at least one sample have been used to 
calculate the Spearman rank correlation coefficient. Rows and columns order reflects 
the  result of a  complete linkage clustering made by using 1-rho as distance.  
Figure S2: Repeat elements overlap of novel transcripts. 
2A: Non coding and potential coding transcript have  non significant difference in the 
fraction of transcripts overlapping repeats (Fisher's Exact Test p-value = 0.2147, 
odds ratio  0.6214023). 2B: Non coding and potential coding transcripts have similar 
fraction of overlapping repeats, wilcoxon test (#W = 19316, p-value = 0.5184). 
Figure S3: Differential circRNA abundance in blood cells.  
3A: Box and whisker plots showing distributions of circRNA abundance ratios in 
blood cells. Abundance ratios were derived by dividing back-splice junction counts 
with total splice reads from host genes. 3B: Heatmap indicating numbers of 
differentially expressed circRNAs identified from pairwise comparisons of circRNA 
expression in blood cells. 
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Extended methods 
 
Materials & Methods 
Cell isolation 
All samples were obtained from NHS Blood and Transplant blood donors and 
processed within 3 hours, and from cord blood donations at Rosie Hospital, 
Cambridge University Hospitals, in both cases after informed consent (ethical 
approval REC East of England 12/EE/0040). Detailed protocols, including antibodies 
panels, have been made available at http://www.blueprint-epigenome.eu/. Briefly 
neutrophils and monocytes were isolated from peripheral blood whole units (460 ml) 
of or from cord blood units. Peripheral blood mononuclear cells (PBMCs) were 
separated by gradient centrifugation (Percoll 1.078 g/ml) whilst neutrophils were 
isolated from the pellet, after red blood cell lysis, by CD16 positive selection 
(Miltenyi). PBMCs were further separated using a second gradient (Percoll 1.066 
g/ml) to obtain a monocyte rich layer. Monocytes were further purified by CD16 
depletion followed by CD14 positive selection (Miltenyi). For neutrophils and 
monocytes gene expression was tested also on Illumina HT12v4 arrays (accession 
E-MTAB-1573 at arrayexpress). The purification of macrophages M0, LPS activate 
macrophages M1, alternatively activated macrophages M2, endothelial cell 
precursors, erythroblasts, megakaryocyte, naive B lymphocytes, naive CD4 
lymphocytes, naive CD8 lymphocytes used in this study has been extensively 
described{25258084}{28703137}. Regulatory CD4 lymphocytes (T regs), CD4 
central memory lymphocytes (CM) and CD4 effector memory lymphocytes (EM) 
were isolated by flow activated cytometry (FACS) using the following surface 
markers combinations: T regs,  CD3+ CD4+ CD25+ CD127low; CD4 CM, CD3+ 
CD4+ CD45RA- CD62L+; CD4 EM, CD3+ CD4+ CD45RA- CD62L-. CD8 central 
memory lymphocytes (CM), CD8 effector memory lymphocytes (EM) and CD8 
terminally differentiated effector memory lymphocytes (TDEM) were isolated by 
FACS using the following surface markers combinations: CD8 CM,  CD3+ CD8+ 
CD62L+ CD45RA-; CD8 EM, CD3+ CD8+ CD62L- CD45RA-; CD8 TDEM, CD3+ 
CD8+ CD62L- CD45RA+. B memory lymphocytes and B class switch lymphocytes 
were isolated by FACS using the following surface markers combinations: B 
memory, CD19+ CD27+ IgD+; B class switch, CD19+ CD27+ IgD- CD38dim. Natural 
Killer cells (NK) were isolated by FACS using the following surface markers: CD3- 
CD56dim CD16+. Eosinophils and basophils were isolated from a mixed leukocytes 
pellet obtained by sedimentation of whole blood 6% hydroxyethyl starch (Grifols, 
Cambridge, UK) for 30 minutes using Easysep (Stemcell Technologies) as 
previously described{20805156}. Monocyte derived dendritic cell were generated 
from cord blood CD34 depleted PBMC after a second Percoll (1.066 g/ml) to enrich 
for monocytes using a PromoCell dendritic cell isolation kit. Bone marrow derived 
mesenchymal stem cells isolation had been previously described{18557828}. 
Platelets were isolated from platelet rich plasma after leukocyte (CD45 positive) 
depletion as previously described{28703137}. All cell types purity was assessed by 
flow cytometry and/or morphological analysis after cytospin preparations were made 
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and stained. The purified cells were resuspended in Trizol. Samples which did not 
meet predefined criteria (>95%) of cell purity were not sent for data generation.  
RNA extraction 
RNA was extracted from TRIzol according to manufacturer’s instructions, quantified 
using a Qubit RNA HS kit (Thermofisher) and quality controlled using a Bioanalyzer 
RNA pico kit (Agilent). 
Library construction and sequencing 
For all cell types with the exceptions of platelet, eosinophil and basophils libraries 
were prepared using a TruSeq Stranded Total RNA Kit with Ribo-Zero Gold 
(Illumina) using 200ng of RNA as input. Platelet, eosinophil and basophils samples 
were prepared with the Kapa stranded RNA-seq kit with riboerase (Roche) according 
to the manufacturer's instructions. 
miRNA extraction  
RNA was extracted using the miRNeasy Mini Kit (Qiagen) from cell pellets with an 
RNA Integrity Numbers (RINs) from 7.3 to 10 as assessed with an RNA 6000 Nano 
kit on a 2100 Bioanalyzer (Agilent). Small RNA libraries were prepared using 
the NEBNext® Multiplex Small RNA Library Prep Set for Illumina (New England 
Biolabs) and the LongAmp Taq 2x Master Mix. Size selection was performed with 
6% polyacrylamide gels, and library quality was verified on a 2100 Bioanalyzer 
(Agilent). Equimolar (2 nM) amounts of each library, as verified with Picogreen® 
dsDNA Quantification Reagent (Promega), were pooled and sequenced on an 
Illumina HiSeq 2000 using 50 bp single end reads.	
Expression analysis 
Trim Galore (v0.3.7) 
(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) with parameters “-q 
15 -s 3 --length 30 -e 0.05” was used to trim PCR and sequencing adapters. 
Trimmed reads were aligned to the Ensembl v75 {25352552} human transcriptome 
with Bowtie 1.0.1 {19261174} using the parameters “-a --best --strata -S -m 100 -X 
500 --chunkmbs 256 --nofw --fr”. MMSEQ (v1.0.10) {24281695}{21310039} was 
used with default parameters to quantify  and normalise gene expression. 
Guided transcriptome assembly  
STAR (v2.4.1c) with parameters “--runThreadN 8 --outStd SAM --outSAMtype BAM 
Unsorted --outSAMstrandField intronMotif” was used to align trimmed reads to the 
Ensembl v75 (Cunningham et al., 2015) human genome. The bam files sorted by 
coordinate and indexed by using samtools (v 1.3.1) {19505943} have been used for 
the guided transcriptome assembly by using stringtie (v 1.3.4) {25690850} with the 
parameters “-p 8 --rf -G Ensembl_75.gtf -v -l BPSTRG” and the Ensembl v75  
(Cunningham et al., 2015) gtf as reference transcriptome. Stringtie has also been 
used to merge the transcriptomes of each individual sample in one single master 
transcriptome.  Gffcompare{22383036} has been used to compare the master 
transcriptome to the reference transcriptome (Ensembl 75). Intergenic transcripts 
have been further compared with gencode (v19){22955987} and ucsc (v hg19) 
{25428374} transcriptomes by using the R bioconductor GenomicRanges package 
{23950696}, in order to exclude any overlap with other annotated transcriptomes. 
The protein coding potential of the novel intergenic multiexonic transcripts has been 
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assessed by using CPAT (v 1.2.4){23335781} using default parameters and human 
models provided by the program. 
CircRNA identification and expression profiling 
Identification and comparisons: Back-splice junctions were identified using 
CIRI{25583365}, CIRCexplorer{27365365}, find_circ{23446348}, 
circRNA_finder{25544350} and PTESFinder{26758031} (parameters: JSpan=10, 
PID=0.85, segment_size=65), mapping against the human genome (GRCh37). 
Candidate circRNA junctions were selected if reported by at least 3 methods and do 
not overlap segmental duplications.  Genomic positions of back-splice junctions were 
compared to previously identified junctions in circbase.org{25234927} (obtained 
05/2018 ), annotated splice sites in Ensembl 75{25352552} and  known segmental 
duplications{11381028} in the genome. Back-splice junctions overlapping multiple 
genes, readthrough transcripts and duplicons were excluded from downstream 
analyses. 
Classification: Identified circRNAs were classified into 5 groups based on their 
genomic location relative to Ensembl 75 annotations and overlap with known splice 
sites. exonic_known: Splice junction corresponds to known splice sites; 
exonic_novel: back-splice overlaps at least one annotated exon and utilizes only one 
known splice site; intronic: circRNA is internal to annotated intron; intergenic: back-
splice junctions do not overlap annotated exons/introns and antisense: circRNAs 
overlap antisense to annotated exons/introns. 
Expression estimates: Raw counts reported by PTESFinder were normalized by 
dividing with the total splice reads from each sample and multiplied by 1E6 to derive 
Junctions Per Million (JPMs). Abundance ratios were derived by dividing total back-
splice reads with total spliced reads from each circRNA producing gene. Across all 
samples, z-scores of mean circRNA and canonical junction expression were 
compared to assess correlation. Statistical analysis of circRNA expression was 
performed using DESeq2{25516281}. 
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