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 2 

Abstract 26 

Genome-wide association analyses have uncovered multiple genomic regions 27 

associated with T2D, but identification of the causal variants at these remains a 28 

challenge. There is growing interest in the potential of deep learning models - which 29 

predict epigenome features from DNA sequence - to support inference concerning 30 

the regulatory effects of disease-associated variants. Here, we evaluate the 31 

advantages of training convolutional neural network (CNN) models on a broad set of 32 

epigenomic features collected in a single disease-relevant tissue – pancreatic islets 33 

in the case of type 2 diabetes (T2D) - as opposed to models trained on multiple 34 

human tissues. We report convergence of CNN-based metrics of regulatory function 35 

with conventional approaches to variant prioritization – genetic fine-mapping and 36 

regulatory annotation enrichment. We demonstrate that CNN-based analyses can 37 

refine association signals at T2D-associated loci and provide experimental validation 38 

for one such signal. We anticipate that these approaches will become routine in 39 

downstream analyses of GWAS. 40 

 41 

 42 

 43 

 44 

 45 

 46 

 47 

 48 

 49 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 8, 2019. ; https://doi.org/10.1101/760868doi: bioRxiv preprint 

https://doi.org/10.1101/760868
http://creativecommons.org/licenses/by/4.0/


 3 

Introduction 50 

 51 

Genome-wide association studies (GWAS) have identified over 400 independent 52 

signals implicated in genetic susceptibility to type 2 diabetes (T2D)(Mahajan et al., 53 

2018). However, efforts to derive biological insights from these signals face the 54 

challenge of identifying the functional, causal variants driving these associations 55 

within the sets of credible variants defined by the linkage disequilibrium (LD) 56 

structure at each locus. It remains far from trivial to assign mechanisms of action at 57 

these loci: most associated variants map to non-coding sequence, the implication 58 

being that they influence disease risk through the transcriptional regulation of one or 59 

more of the nearby genes.  60 

 61 

There is mounting evidence that disease-associated variants are likely to perturb 62 

genes and regulatory modules that are of specific importance within disease-relevant 63 

cell types or tissues (GTex Consortium et al., 2017; Marbach et al., 2016). For 64 

example, several studies have reported significant enrichment of T2D GWAS 65 

variants within pancreatic islet enhancer regions (Parker et al., 2013; Pasquali et al., 66 

2014), with that enrichment particularly concentrated in subsets of islet enhancers 67 

characterised by open chromatin and hypomethylation (Thurner et al., 2018), and 68 

clustered in 3D enhancer hub structures (Miguel-Escalada, 2018). Pancreatic islets 69 

represent a key tissue for the maintenance of normal glucose homeostasis, and 70 

uncovering islet-specific regulatory mechanisms is therefore critical to understanding 71 

T2D aetiology and pathogenesis. 72 

 73 

Several studies have generated genome-wide epigenomic profiling datasets of whole 74 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 8, 2019. ; https://doi.org/10.1101/760868doi: bioRxiv preprint 

https://doi.org/10.1101/760868
http://creativecommons.org/licenses/by/4.0/


 4 

human pancreatic islets, and/or FACS-sorted individual islet cell types (Ackermann, 75 

Wang, Schug, Naji, & Kaestner, 2016; Bhandare et al., 2010; Bramswig et al., 2013; 76 

Gaulton et al., 2010; Maher, 2012; Parker et al., 2013; Pasquali et al., 2014; Stitzel 77 

et al., 2010; Thurner et al., 2018). This wealth of genomic data provides a valuable 78 

resource for studying the regulatory machinery of human pancreatic islets, and has 79 

proven instrumental in prioritizing disease-associated variants by considering their 80 

overlap with regulatory elements enriched in disease-associate signals (Huang et al., 81 

2017; Thurner et al., 2018). However, in cases where multiple associated variants in 82 

high LD reside in the same regulatory region, a method with higher resolution is 83 

needed to resolve the causal variant. High-throughput massively parallel reporter 84 

assays (MPRA) offer one solution for the empirical assessment of putatively 85 

functional variants (Tewhey et al., 2016; Ulirsch et al., 2016), but they are expensive 86 

to deploy genome-wide, and may not fully recapitulate the cellular context.  87 

Convolutional neural networks (CNNs) are emerging as a powerful tool to study 88 

regulatory motifs in genomic data, and are well suited to extracting high-level 89 

information from high-throughput datasets de novo. Indeed, CNN frameworks have 90 

been shown to aid in prioritization of genomic variants based on their predicted effect 91 

on chromatin accessibility and modifications (Kelley, Snoek, & Rinn, 2016; Zhou & 92 

Troyanskaya, 2015) or gene expression (Kelley et al., 2018; Zhou et al., 2018). The 93 

methods deployed so far learn the regulatory code de novo from genomic sequences 94 

of regulatory regions gathered from multiple tissues, using datasets provided by the 95 

ENCODE (Maher, 2012), the NIH Epigenome Roadmap (Bernstein et al., 2010) and 96 

GTEx (GTex Consortium et al., 2017) consortia. The derived models offer 97 

computational predictions of the likely regulatory effects of genomic variation based 98 

on disruption or creation of regulatory motifs discovered by the CNNs. While these 99 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 8, 2019. ; https://doi.org/10.1101/760868doi: bioRxiv preprint 

https://doi.org/10.1101/760868
http://creativecommons.org/licenses/by/4.0/


 5 

multi-tissue methods offer an attractive, generally applicable, framework for variant 100 

prioritization, they may be missing nuances of the tissue-specific regulatory 101 

grammar, and may not be optimal for predictions of regulatory effects that are 102 

specific to disease-relevant tissues.  103 

 104 

In the present study, we trained CNNs on a broad collection of genome-wide 105 

epigenomic profiles capturing chromatin regulatory features from human pancreatic 106 

islets, and applied the resulting models to predict the regulatory effects of sequence 107 

variants associated with T2D. We demonstrate that these tissue-specific CNN 108 

models recapitulate regulatory grammar specific to pancreatic islets, as opposed to 109 

discovering regulatory motifs common across multiple tissues. We apply the CNN 110 

models to predict islet regulatory variants among the credible sets of T2D-111 

association signals, and demonstrate how CNN predictions can be integrated with 112 

genetic and functional fine-mapping approaches to provide single-base resolution of 113 

functional impact at T2D-associated loci.  114 

 115 

Results 116 

 117 

CNNs achieve high performance in predicting islet chromatin regulatory 118 

features 119 

We collected 30 genome-wide epigenomic profiling annotations from human 120 

pancreatic islets, and their FACS-sorted cell subsets from previously published 121 

studies (Ackermann et al., 2016; Bhandare et al., 2010; Bramswig et al., 2013; 122 

Gaulton et al., 2010; Maher, 2012; Parker et al., 2013; Pasquali et al., 2014; Stitzel 123 

et al., 2010; Thurner et al., 2018)(STable 1), and re-processed them uniformly with 124 
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the same computational pipelines. The 1000bp long genomic sequences 125 

encompassing the signal peaks were used, together with vectors representing 126 

presence/absence of the 30 islet epigenomic features within these regions, as inputs 127 

to train the multi-class prediction CNNs. The resulting CNN models predict presence 128 

of these 30 features within any 1000bp long genomic sequence. Since the weights in 129 

neural network training are initialized randomly and then optimized during training, 130 

there is a considerable amount of heterogeneity in the predictive scores resulting 131 

from different iterations of the same training process, as networks may converge at 132 

different local optimal solutions. To improve robustness of results achieved with 133 

these models, we trained a total of 1000 CNNs with 10 different sets of 134 

hyperparameters differing in numbers of convolutional filters and their sizes to 135 

account for this stochastic heterogeneity (STable 2). 136 

 137 

Overall, CNNs achieved high performance in predicting the islet epigenomic features 138 

in sequences withheld from training, though we observed that the performance 139 

varied depending on the predicted feature (Fig.1). The best predictive performance 140 

was achieved for features related to promoters, transcription factor (TF) binding and 141 

DNA accessibility with mean areas under receiver-operator curves (AUROC) of 142 

0.948, 0.887 and 0.876, respectively. Histone mark features associated with active, 143 

coding regions, repressed regions and enhancers proved more difficult to predict 144 

based on their underlying genomic sequence, with mean AUROCs of 0.835, 0.792 145 

and 0.777, respectively. As predicted classes were not well balanced by design, we 146 

further investigated predictive performance by inspecting the area under precision-147 

recall curves (AUPRC) (Figure 1–figure supplement 1), a more appropriate measure 148 

where there are large numbers of negative examples. We observed that, while 149 
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variable between features, the predictive performance of the CNN models for the 150 

chromatin regulatory features was high, and even for the least confidently predicted 151 

features far exceeded the performance of random predictors.  152 

 153 

Convolutional filters recover binding motifs of TFs with roles in pancreatic 154 

development 155 

Convolutional filters of the first network layer capture local sequence patterns and 156 

motifs, aiding in predictions of islet regulatory features. We hypothesized that many 157 

of these would correspond to binding motifs of transcription factors (TFs) with roles 158 

in pancreatic islet development and function. For each convolutional filter of the first 159 

CNN layer, we derived a position weighted matrix (PWM) based on the observed 160 

nucleotide frequencies activating the filter, and compared them to a database of 161 

known TF binding motifs. We observed that the number of annotated motifs per 162 

network was positively correlated with the size of convolutional filters within the first 163 

layer, while the number of filters informative for the predictions (activation standard 164 

deviation>0) decreased with filter size (Figure 1–figure supplement 2). On average, 165 

only 29 out of 320 filters in first CNN layer were annotated to known TF binding 166 

motifs, but an average of 177 filters were informative for predictions, indicating that 167 

CNN models identify potentially novel sequence motifs not currently represented in 168 

the databases of known TF binding motifs.  169 

In total, we identified 373 recurrent annotated binding motifs with <5% false-170 

discovery rate (FDR) sequence similarity to the filters of the first CNN layer, which 171 

were detected in >50 networks (STable 3). The 10 most frequently discovered non-172 

redundant motifs are listed in Table 1. As expected, among the consistently-detected 173 

transcription factor motifs, we found motifs for all the transcription factors included in 174 
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the ChIP-seq training datasets (CTCF, FOXA2, PDX1, MAFB, NKX2.2, NKX6.1). 175 

Additionally, CNNs discovered, ab initio, binding motifs for several TFs that are 176 

known to be important for pancreatic development and for the maintenance of beta 177 

and alpha cell functions, including RFX6, HNF1A and NEUROD1 (Jennings, Berry, 178 

Strutt, Gerrard, & Hanley, 2015; van der Meulen & Huising, 2015). This 179 

demonstrates that the CNN models of the pancreatic islet epigenome are capable of 180 

discovering well-established islet TF motifs ab initio from genomic sequences.  181 

Islet CNN models prioritize T2D-associated variants with regulatory roles in 182 

pancreatic islets  183 

The regulatory effects of genomic variants can be approximated by comparing the 184 

CNN predictions for genomic sequences including different alleles of the same 185 

variant. Here, we applied the islet CNN models for prioritization of T2D-associated 186 

variants from a recently published GWAS study (Mahajan et al., 2018). This study of 187 

~900,000 cases and controls of European ancestry, identified 403 T2D-risk signals, 188 

and performed genetic fine-mapping for 380 of them. We ran CNN predictions for all 189 

109,779 variants included within the 99% credible variant sets for these signals, 190 

averaging the regulatory predictions for each variant and feature across 1000 191 

individual CNN models to increase robustness. Variants most likely to influence the 192 

islet epigenome were then identified through the cumulative distribution function for 193 

the normal distribution, separately for each predicted feature, and the lowest q-value 194 

for any of the features was assigned to a variant to signify its overall regulatory 195 

potential.  196 

 197 

We identified a total of 11,389 variants with a q-value<0.05 for any of the 30 198 

features, approximately 10% of the total number of credible set variants. These 199 
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variants were significantly more likely to be evolutionary conserved than the credible 200 

set variants with overall q>0.05, as assessed by one-sided Wilcoxon rank sum test 201 

of the GERP scores (Cooper et al., 2005) (p=7.31e-04).  202 

 203 

We reasoned that variants predicted to affect function of specific regulatory elements 204 

would be more likely to reside within them, e.g. a variant predicted to disrupt 205 

enhancer function should be residing in an enhancer region. We tested this by 206 

investigating overlap of predicted regulatory variants with human pancreatic islet 207 

chromatin state maps (Thurner et al., 2018). For this purpose, we considered the 208 

lowest q-values within each of the earlier described groups of regulatory features, 209 

corresponding to promoters, enhancers, open chromatin, transcription factor binding, 210 

as well as active and repressed regulatory regions (Fig.2).  Overall, we observed 211 

good agreement between the predicted disrupted regulatory elements and the 212 

variant located within them. Additionally, we observed a depletion of regulatory 213 

variants within heterochromatin and other low methylation sites.  214 

 215 

Finally, we hypothesized that predicted regulatory variants would be more likely to 216 

show allelic imbalance in chromatin accessibility. We used ATAC-seq data from a 217 

previously-published dataset of 17 human pancreatic islets (Thurner et al., 2018) to 218 

identify 137 pancreatic islet chromatin accessibility QTLs (caQTLs) among the 219 

credible set variants, and found these to be significantly enriched among the variants 220 

with the lowest CNN q-scores (p=6.93e-20).  221 

  222 

Convergence between CNN predictions and fine-mapping approaches 223 

If the CNN models are correctly identifying regulatory variants, we would expect to 224 
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see convergence between variants predicted to have regulatory effects based on the 225 

CNNs, and those assigned high genetic posterior probabilities of association (gPPA) 226 

from genetic fine-mapping. To test for such convergence, we generated the null 227 

distribution of randomly distributed regulatory variants through 1000 permutations of 228 

CNN q-values, while preserving the structure of credible sets at the 380 T2D-229 

associated signals. We observed enrichment of islet regulatory variants (CNN 230 

q<0.05) among variants with highest PPAs (Fig.3A), compared to the permutation-231 

based random distribution of regulatory variants (p=0.001). Overall, we found that 232 

28.8% of variants with gPPAs>=0.8 had predicted regulatory effects with q<0.05. 233 

 234 

It is standard to complement genetic fine-mapping with information from the genome-235 

wide enrichment of association signals within regulatory annotations in disease-236 

relevant tissues, deriving functional posterior probabilities of association (fPPAs) that 237 

combine genetic and epigenomic insights into variant function (Huang et al., 2017). 238 

As with the gPPAs, we observed that variants with high fPPAs, obtained through 239 

incorporating enrichments in regulatory elements from human pancreatic islet 240 

chromatin state maps (Thurner et al., 2018), were enriched for CNN-predicted 241 

regulatory effects (p=0.001)(Fig.3B). Overall, 40.6% of variants with fPPAs>=0.8 had 242 

predicted regulatory effects with q<0.05. 243 

 244 

As fine-mapping resolution varies between signals, we conducted analogous 245 

analyses based on variant rank within each credible set, irrespective of the 246 

quantitative PPA value (Fig.3C). Again, we observed higher proportions of predicted 247 

regulatory variants at higher PPA ranks within fine-mapped loci, when compared to 248 

random distribution of regulatory variants.  249 
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 250 

One might expect that CNN models trained with pancreatic islet epigenomic 251 

annotations would display the strongest evidence for prediction of regulatory variants 252 

at the subset of T2D GWAS signals characterized by defects in insulin secretion 253 

(Dimas et al., 2014; Wood et al., 2017), signals that are likely mediated through 254 

events in pancreatic islets. Indeed, we observed that the enrichment of islet CNN-255 

regulatory variants was more marked within the top ranks of insulin secretion signals. 256 

In contrast, T2D signals characterized by a primary defect in insulin action (which 257 

typically involve mechanisms in liver, fat and muscle) showed no enrichment over 258 

the permuted background (Fig.3C).  259 

 260 

Collectively, these data corroborate the convergence of the agnostically-derived 261 

CNN variant regulatory scores and diverse measures of islet biology, and indicate 262 

the potential for CNNs to support causal variant prioritization in T2D. They also 263 

emphasize the value of functional analyses that take account of the tissue-specificity 264 

of both transcriptional regulation and disease pathogenesis.  265 

 266 

Islet CNN models correctly identify known functional variants at T2D-267 

associated loci 268 

We tested whether the CNN regulatory predictions for individual variants can be 269 

integrated with previous fine-mapping approaches to further resolve T2D-associated 270 

signals. Overall, we found that, at 327 out of the 380 fine-mapped signals, there was 271 

at least one predicted regulatory variant (defined as q<0.05). Among the 74 signals 272 

previously fine-mapped to a single variant (with gPPA or fPPA>=80%), we found 28 273 

variants predicted to be regulatory in pancreatic islets (STable 4), in line with the 274 
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previously reported overall enrichment of T2D-association signals in the regulatory 275 

elements specific to islets (Miguel-Escalada, 2018; Parker et al., 2013; Pasquali et 276 

al., 2014; Thurner et al., 2018).These included two well-studied variants (rs10830963 277 

at MNTR1B, rs7903146 at TCF7L2), both previously shown to alter enhancer 278 

activities (Gaulton et al., 2015; Gaulton et al., 2010): these served as positive 279 

controls for the application of CNNs to functional variant prioritization. 280 

 281 

Islet CNN models refine regulatory mechanisms at T2D-associated loci 282 

While functional fine-mapping can be invaluable in narrowing down the list of most 283 

likely causal variants through investigating overlaps with regulatory elements in 284 

appropriate tissues, this strategy may not provide sufficient resolution at loci where 285 

several variants reside in the same regulatory element. Among the credible sets of 286 

variants, we identified 93 signals featuring at least two variants with fPPAs>=20%, 287 

indicating that, even after functional fine-mapping, there is no unambiguously causal 288 

single variant. At 37 of these 93 signals, CNNs predicted regulatory variants among 289 

the top fPPA candidates (STable 5). At 25 signals, integration of CNN regulatory 290 

predictions downstream of the functional fine-mapping highlighted a single most 291 

likely causal variant, with either just a single regulatory variant predicted among the 292 

credible variants, or the top regulatory variant having much lower q-value (difference 293 

in -log10(q) >100) than other predicted regulatory variants at the signal (few such 294 

signals are highlighted in Fig.4 and Fig.5), narrowing down the list of candidates for 295 

further functional follow-up studies.  296 

 297 

To explore this further, we focused on a T2D-association signal at the PROX1 locus, 298 

identified after conditioning the T2D association on the primary (most significant) 299 
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association signal at rs340874, which acts through the insulin secretion pathway. 300 

This conditional signal has been fine-mapped to two plausible variants, rs79687284 301 

and rs17712208, on the basis of genetic and genomic data (Fig.5A). These variants 302 

are in perfect LD (R2=1.0, D’=1.0) and are located 376bp apart within the same open 303 

strong enhancer in islets. Neither genetic fine-mapping (in European populations) 304 

nor functional fine-mapping were able to further resolve the association at this signal. 305 

When we investigated pancreatic islet ATAC-seq data from 4 individuals 306 

heterozygous for these two variants (as confirmed by array genotype data), we 307 

observed strong allelic imbalance at both variants (rs17712208 p=1.55e-06; 308 

rs79687284 p=6.10e-05) (Fig.5B). This supports regulatory effects of this PROX1 309 

signal in the pancreatic islets, but highlights the difficulties in resolving the causal 310 

variant. These data are also consistent with the possibility that both variants are 311 

contributing to the functional effect.  312 

 313 

At this signal, both variants were scored as potentially regulatory by CNNs with 314 

q<0.05, but the q-value at rs17712208 was much lower (q=1.69e-160) highlighting 315 

this variant as the more likely regulatory candidate in the islets. This q-value 316 

corresponded to a prediction that the T2D risk A-allele would lead to a significant 317 

reduction in the H3K27ac mark (△H3K27ac=-0.12) (Fig.5C) indicative of an active 318 

regulatory element presence. The second variant, rs79687284, was assigned a 319 

much less remarkable q-value (q=0.002) and only predicted to affect promoter 320 

features, with the top predictions pointing to a mild reduction of H3K4me3 mark in 321 

alpha and beta cells (△a_H3K4me3=-0.01, △b_H3K4me3=-0.01).  322 

 323 

While it remains plausible that rs79687284 plays a regulatory function in a specific 324 
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cellular context, the functional annotation and CNN predictions point to rs17712208 325 

as the more likely causal variant (particularly given that both map to an enhancer 326 

rather than a promoter). We performed an in silico saturated mutagenesis for the 327 

rs17712208 variant (Fig.5D) to identify the regulatory sequence motifs at this locus 328 

affected by the variant. We observed that the reference T-allele is a crucial 329 

nucleotide in the HNF1B binding motif (Fig.5E), and that introduction of an A-allele at 330 

this position disrupts this motif, leading to predicted loss of the H3K27ac mark. Using 331 

an in vitro reporter assay in the human EndoC-bh1 beta-cell model, we confirmed 332 

that the A-allele at rs17712208 resulted in significant repression of enhancer activity 333 

(p=0.0001), while no significant change was observed for the rs79687284 variant 334 

(p=0.15)(Fig.5F). 335 

 336 

These examples illustrate how diverse approaches to variant prioritization at the 337 

T2D-associated loci show strong convergence towards the same candidate variants, 338 

and how CNN models can complement fine-mapping approaches in providing single-339 

base resolution to refine the association signals. Coupled with additional evidence 340 

that these signals exert their mechanism of action in the pancreatic islets, rather than 341 

other tissues implicated in T2D aetiology, the predicted regulatory variants may 342 

provide attractive targets for further functional follow-up studies.  343 

 344 

Comparison of tissue-specific with multi-tissue CNN model 345 

Finally, we compared the regulatory variant predictions made with the pancreatic 346 

islet tissue-specific CNN models described in this study with predictions made with a 347 

widely-used multi-tissue variant prioritization tool, DeepSEA (Zhou & Troyanskaya, 348 

2015) (Figure 3–figure supplement 1). We compared our results to the multi-tissue 349 
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significance scores reported by DeepSEA for each variant, as well as to the 350 

predicted effects on pancreatic islet chromatin accessibility (based on ENCODE 351 

DNase-seq data [“PanIslets”] generated from primary pancreatic islet cells, one of 352 

the tissues contributing to the overall multi-tissue score). Overall, we observed a 353 

modest but highly significant correlation of predictions with both these regulatory 354 

prediction scores reported by DeepSEA (multi-tissue: r=0.227, p<2.2e-16; PanIslets: 355 

r=0.223, p<2.2e-16)( Figure 3–figure supplement 1 - AB). 356 

 357 

As with our islet CNN models, we observed strong enrichment of predicted 358 

regulatory variants amongst the top ranks of the T2D GWAS credible variant sets for 359 

both modes of DeepSEA, as compared to permuted background (Figure 3–figure 360 

supplement 1 - C). However, both the multi-tissue and PanIslets DeepSEA models 361 

performed better within the subset of T2D signals acting through insulin action rather 362 

than through insulin secretion signals, predicting higher proportions of regulatory 363 

variants at top ranks of credible sets for the former, contrary to our expectations for 364 

the PanIslets model (Figure 3–figure supplement 1 - D). In addition, the DeepSEA 365 

framework failed to predict regulatory impact at loci where T2D causative variants 366 

have been established through multiple lines of evidence (such as at rs10830962 at 367 

MTNR1B (Gaulton et al., 2015) and rs7903146 at TCF7L2 (Gaulton et al., 2010)), 368 

both of which were correctly identified as regulatory in our islet-based study. 369 

Similarly, while the rs17712208 variant at PROX1 reported in this study was found to 370 

be regulatory using the multi-tissue mode of DeepSEA (p=6.25e-03), the predictions 371 

for pancreatic islets accessibility profiles (PanIslets) were only borderline significant 372 

for this variant (p=0.049).  373 

 374 
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Our in silico saturated mutagenesis analysis indicated NEUROD1 as the likely motif 375 

created at the MTNR1B locus (not shown), and HNF1B as the motif disrupted at 376 

PROX1 (Fig.5E). These transcription factors are critical for the function of pancreatic 377 

islet beta cells (Gu et al., 2010), and likely represent tissue-specific processes, more 378 

liable to be missed in a multi-tissue model. We anticipate that CNN models trained 379 

on data from multiple tissues may be biased towards sequence features and motifs 380 

present across all the tissues, and may not detect tissue-specific signals with high 381 

confidence. Given the demonstrated enrichment of T2D association signals in 382 

regulatory elements specific to the pancreatic islets, we demonstrate the value of 383 

training the prediction models in the tissues most relevant to the phenotype in 384 

question, at least for those loci where the tissue-of-action can be defined. 385 

 386 

Discussion 387 

 388 

Application of deep learning methods to characterize the regulatory potential of 389 

noncoding variants has been a subject of interest in recent years. Instead of 390 

predictions across an array of tissues, in the current study we focused on multiple 391 

genome-wide epigenomic annotations available for pancreatic islets, one of the 392 

central tissues impacting T2D aetiology. We demonstrate how the CNN regulatory 393 

predictions for genomic variants can be integrated downstream of fine-mapping 394 

approaches for further refinement of GWAS association signals.  395 

 396 

Overall, we observed that CNNs were capable of learning the regulatory code from 397 

the underlying genomic sequence, though the prediction accuracy differed among 398 

the studied epigenomic features. The individual feature predictive performance was 399 
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likely affected by a number of factors, in particular the quality of input data, and the 400 

total number of peaks called for a feature, as deep learning methods require many 401 

training examples to learn to generalize well. Furthermore, epigenomic features differ 402 

in their characteristics, including peak width and specificity of sequence motifs 403 

predictive of their presence. Thus, when training a multi-task prediction network, we 404 

may expect that network parameter optimization might not work equally well for 405 

disparate features. Promoter regions, DNA accessibility and binding of specific 406 

transcription factors proved the easiest to predict, as these features are 407 

characterized by very distinct sequence motifs that can be identified by the network’s 408 

convolutional filters. Importantly, the binding motifs learned de novo from the 409 

genomics sequences of signal peaks presented to the networks included several 410 

transcription factors with well-established functions in pancreatic development and 411 

function.  412 

 413 

In the present study, we trained 1000 individual CNN models with different 414 

hyperparameters to aid in prioritization of the likely functional variants from the 415 

largest T2D GWAS study to date (Mahajan et al., 2018). We observed an overall 416 

convergence of the genetic fine-mapping, functional fine-mapping and regulatory 417 

predictions generated by the tissue-specific CNN models, as evidenced by 418 

enrichment of predicted functional variants among variants with highest gPPAs, 419 

fPPAs and PPA ranks. To our knowledge, this is the first time such enrichment has 420 

been reported for in silico predictions of regulatory variants. Our findings contrast 421 

with those from a recent study, which argued that computational methods are not yet 422 

mature enough to be applied in GWAS fine-mapping (Liu et al., 2019). 423 

 424 
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In our study, we have observed multiple examples of convergence of the top scoring 425 

variants by CNNs with the top variants identified through functional fine-mapping 426 

using islet chromatin state maps. We also note that the CNN-prioritized variants 427 

were significantly enriched in islet chromatin accessibility QTLs, as well as variants 428 

residing in islet functional regulatory elements, including promoters and strong open 429 

enhancers, which is in line with findings of previous functional genomics studies 430 

(Parker et al., 2013; Pasquali et al., 2014; Thurner et al., 2018). We demonstrate that 431 

when used in conjunction with high-resolution genetic or functional fine-mapping, 432 

CNN predictions can provide a powerful way of dissecting the causal variant from a 433 

set of T2D-associated variants. The results presented in this study will facilitate 434 

further functional follow-up studies to fully elucidate the mechanisms underlying the 435 

associated disease susceptibility at the prioritized variants. One caveat here is that 436 

the value of applying tissue-specific CNN models to guide the identification of causal 437 

variants, depends on knowing the effector tissue for the signals in question. With 438 

complex diseases, such as T2D, this is not always straightforward, as multiple 439 

tissues (including pancreatic islets, liver, adipose and skeletal muscle) have been 440 

implicated in T2D aetiology. As more functional data on disease-relevant tissues are 441 

collected, and large scale experimental studies provide validated sets of regulatory 442 

variants to include in supervised model training, we expect further advancements in 443 

the deep learning applications in genomics. Indeed, we anticipate that in the near 444 

future, deep learning based fine-mapping approaches will become part of routine 445 

downstream analyses of GWAS. 446 

 447 

Materials & Methods 448 

Collection and processing of islet data 449 
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We collected 30 genome-wide epigenome profiling datasets from human pancreatic 450 

islets from previously published studies (Bhandare et al., 2010; Gaulton et al., 2010; 451 

Maher, 2012; Parker et al., 2013; Pasquali et al., 2014; Stitzel et al., 2010; Thurner 452 

et al., 2018)(STable 1). Where raw sequencing data was available, we uniformly 453 

reprocessed the data using the default settings of the AQUAS Transcription Factor 454 

and Histone ChIP-Seq processing pipeline 455 

(https://github.com/kundajelab/chipseq_pipeline) and ATAC-Seq/DNase-Seq pipeline 456 

(https://github.com/kundajelab/atac_dnase_pipelines), mapping against the human 457 

reference genome build hg19, and using MACS2 for peak calling. We used the 458 

coordinates of the optimal peaks sets produced with the Irreproducible Discovery 459 

Rate (IDR) procedure for further analysis. 460 

 461 

CNN input sequence and feature encoding 462 

The training and test datasets for the convolutional neural network training were 463 

created analogously to the approach used in Basset (Kelley et al., 2016). Briefly, 464 

1000bp genomic intervals were assigned to all called narrow peaks, by extending 465 

500bp on each side of the centre of the peak. Peaks were greedily merged until no 466 

peaks overlapped by >200bp, and the centre of the merged peak was determined as 467 

a weighted average of the midpoints of the merged peaks, weighted by the number 468 

of chromatin features present in each individual peak. This resulted in 505,273 469 

genomic intervals of 1000bp length with assigned presence/absence of the 30 islet 470 

epigenomic features, with an average of 2.62 chromatin features per interval. The 471 

genomic sequences of the intervals were extracted from the hg19 human reference 472 

genome and encoded as one-hot code matrix, mapping the sequences into a 4-row 473 

binary matrix corresponding to the four DNA nucleotides at each position. For each 474 
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1000bp sequence we created an accompanying feature vector denoting which of the 475 

30 datasets showed a signal peak overlapping the sequence. All sequences from 476 

chromosomes 1 (N=43,029, 8.52% total) and 2 (N=40,506, 8.02% total) were held 477 

out from the training and applied as test and validation sets, respectively.  478 

 479 

CNN training 480 

CNN models were trained using code from the open source package Basset (Kelley 481 

et al., 2016) implemented in the Torch7 framework (http://torch.ch). We trained a 482 

total of 1000 CNN models with 10 different hyperparameter settings (Sup. Table 2), 483 

differing in sizes and numbers of convolutional filters applied. We averaged the 484 

results across these 1000 models to achieve robust results, and overcome the CNN 485 

training stochasticity. Each network contained three convolutional layers, each 486 

followed by a rectified linear unit (ReLU) and a max pooling layer, and two fully 487 

connected layers. The final output layer produced the predictions for the 30 features. 488 

The network training was stopped when the area under receiver-operator curve 489 

(AUROC) did not improve in 10 subsequent training epochs. The predictive 490 

performance of the networks was assessed by evaluating predictions made on the 491 

sequences from chr2 constituting the validation set. We calculated the AUROCs and 492 

AUPRCs using R package PRROC v.1.3 (Grau, Grosse, & Keilwagen, 2015).  493 

 494 

Sequence motifs captured by convolutional filters 495 

The convolutional filters in the first CNN layer detect repeatedly occurring local 496 

sequence patterns, which increase the prediction accuracy. These patterns can be 497 

summarized as position-weighted matrices (PWMs), derived by counting nucleotide 498 

occurrences that activate the filter to more than half of its maximum value, as 499 
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implemented in the Basset framework. The resulting PWMs were matched to the 500 

CIS-BP database (Weirauch et al., 2014) of known transcription factor binding motifs 501 

using the Tomtom v.4.10.1 motif comparison tool (Gupta, Stamatoyannopoulos, 502 

Bailey, & Noble, 2007). We repeated this for all the 1000 trained networks, and found 503 

recurrent motifs by identifying binding motifs matched at FDR<5% in at least 50 504 

networks. The redundant motifs were filtered out from the top motifs table by 505 

comparing all the database motifs against each other using the Tomtom v4.10.1 506 

motif comparison tool, and reporting the top scoring motif as the main hit, and other 507 

motifs matching it at FDR<5% as secondary motifs. 508 

 509 

Application of CNN models to variant prioritization 510 

We obtained the credible variant sets from a recent T2D GWAS study (Mahajan et 511 

al., 2018). For each variant, we run predictions for the 30 islet epigenomic features 512 

with all 1000 trained CNN models for two 1000bp long sequences: first including the 513 

reference allele and second including the alternative allele, with the variant 514 

positioned in the middle of the 1000bp sequence. We calculated the mean 515 

differences in prediction scores across all the 1000 CNNs for each of the 516 

investigated features between the two sequences for each variant. We then 517 

estimated p-values for each of the variants and each feature with the cumulative 518 

distribution function of normal distribution, and applied FDR procedure for multiple 519 

testing correction. The overall regulatory potential of each variant was quantified as 520 

the lowest q-value for any of the 30 features. 521 

 522 

Functional validation of CNN regulatory predictions 523 

To test the validity of the resulting regulatory predictions for the credible set variants, 524 
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we tested whether variants predicted to affect specific regulatory elements 525 

(promoters, enhancers, open chromatin, TF binding, active, or repressed regions) 526 

were more likely to reside in these regulatory regions in islets, as defined by the 527 

high-resolution chromatin state maps of human pancreatic islets, partitioning the 528 

genome into 15 regulatory states based on patterns of chromatin accessibility and 529 

DNA methylation integrated with established ChIP-seq marks (Thurner et al., 2018). 530 

Using the generally applicable gene set enrichment R package gage (version 531 

2.26.1)(Luo, Friedman, Shedden, Hankenson, & Woolf, 2009) we tested whether 532 

variants overlapping each chromatin state were more likely to be found at the top or 533 

bottom of the variant list ranked by the lowest q-values within each of the feature 534 

groups.  535 

 536 

In a similar manner we tested whether variants with lower q-values are more likely to 537 

act as chromatin accessibility QTLs (caQTLs) exhibiting allelic imbalance in open 538 

chromatin in the ATAC-seq data from 17 human pancreatic islets (Thurner et al., 539 

2018). We identified the islet caQTLs among the credible set variants by 540 

investigating variants overlapping the ATAC-seq peaks. We required >= 2 subjects 541 

with a heterozygous genotype for the variant, and >=5 sequencing reads overlapping 542 

each allele. We calculated the significance of open chromatin allelic imbalance with 543 

the negative binomial distribution test, and used an FDR-adjusted p-value of 0.05 to 544 

define the 137 caQTLs. The enrichment of these caQTLs within the credible set 545 

variant list ranked by their lowest q-value was calculated using R package ‘gage’.  546 

 547 

Evaluating convergence between fine-mapping and CNN predictions 548 

To test the overall convergence between the two complementary methods for variant 549 
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prioritization: genetic fine-mapping and CNN regulatory predictions, we evaluated 550 

whether we observed more regulatory variants at highest genetic PPAs. We 551 

examined the proportions of regulatory variants predicted by CNNs using q-value 552 

<0.05 as a cut-off, at different thresholds of genomic PPA (gPPA) going down from 553 

PPA of 1.00 to 0.00 in steps of 0.01, and observed decreasing proportions of 554 

regulatory variants with decreasing gPPA. We compared this to a random 555 

distribution of regulatory variants with respect to gPPA by permuting the CNN q-556 

values 1000 times, preserving the overall number of significant variants, as well as 557 

the number and overall structure of credible sets. The enrichment p-value was 558 

calculated from these permutations by comparing the areas under curves with 559 

fraction of variants significant at each gPPA threshold generated in each permutation 560 

with the area under the curve calculated from the original results. Areas under 561 

curves were calculated using the AUC function of the DescTools R package 562 

(Signorell al., 2019). We repeated the same for functional fine-mapping PPAs 563 

(fPPA), using fPPAs generated through incorporation of pancreatic islet regulatory 564 

elements defined by chromatin state maps (Thurner et al., 2018). To account for the 565 

differing degree of fine-mapping resolution at different GWAS loci, we also evaluated 566 

whether we observed higher proportion of regulatory variants with q<0.05 among the 567 

variants with the highest PPA within each locus, regardless of the actual PPA value, 568 

and repeated the same procedure investigating genomic PPA ranks within each 569 

signal. In the same way we evaluated whether we observed lower q-values at the top 570 

ranks of signals known to act through insulin secretion mechanisms (N=34), rather 571 

than insulin action (N=23) (Dimas et al., 2014; Wood et al., 2017).  572 

 573 

Identification of T2D association signals further refined by incorporation of 574 
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CNN regulatory prediction 575 

We identified the T2D association signals where the islet CNN models can help with 576 

further refinement by investigating signals comprising at least 2 variants with 577 

fPPA>=0.2. In Figures 4 and 5 we highlighted signals where CNN predictions point 578 

to a single variant, among these fPPA>=0.2 variants, with a much higher regulatory 579 

score than the remaining variants at these loci. 580 

 581 

The in silico saturated mutagenesis was performed using the basset_sat.py script 582 

from the Basset framework (Kelley et al., 2016). The TF binding motifs overlapping 583 

the variant site were identified with FIMO (Grant, Bailey, & Noble, 2011) using the 584 

CIS-BP motifs database (Weirauch et al., 2014).  585 

 586 

Plasmid transfection and Luciferase reporter assay 587 

We experimentally validated the CNN regulatory predictions for the two variants 588 

(rs17712208 and rs79687284) at PROX1 locus with luciferase reporter assay. 589 

Briefly, human EndoC-βH1 cells (Ravassard et al., 2011) were grown at 50–60% 590 

confluence in 24-well plates and were transfected with 500 ng of empty pGL4.23 591 

[luc2/minP] vector (Promega, Charbonnieres, France) or pGL4-minP-592 

PROX_enhancer vectors (wildtype, rs17712208-A and rs79687284-C) with FuGENE 593 

HD (Roche Applied Science, Meylan, France) using a FuGENE:DNA ratio of 6:1 594 

according to manufacturer’s instruction, with three biological replicates for each 595 

tested condition. Primer sequences used for cloning and site-directed mutagenesis 596 

(SDM) are listed in STable 6. Restriction enzymes Nhel and Xhol were used for all 597 

subsequent cloning. Isolated clones were verified by sequencing. 598 

Luciferase activities were measured 48 h after transfection using the Dual-Luciferase 599 
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Reporter Assay kit (Promega) according to manufacturer’s instructions in half-600 

volume 96-well tray format on an Enspire Multimode Plate Reader (PerkinElmer) 601 

with three technical replicates for each well. The firefly luciferase activity was 602 

normalized to the Renilla luciferase activity obtained by cotransfection of 10 ng of the 603 

pGL4.74[hRluc/TK] Renilla Luciferase vector (Promega). Results were analysed with 604 

two-tailed independent samples t-tests with p-value<0.05 considered as significantly 605 

different between groups. 606 

 607 

Comparison of single- versus multi-tissue CNN predictions 608 

Finally, we compared the predictions resulting from our single-tissue pancreatic islet 609 

CNN models with the predictions generated with another publicly available multi-610 

tissue variant prioritization tool DeepSEA (Zhou & Troyanskaya, 2015). The 611 

functional significance scores for each variant (multi-tissue) and the q-value for 612 

chromatin effects in the ENCODE PanIslets primary pancreatic islets cells (single 613 

tissue) were generated by submitting VCF files of the credible set variants to the 614 

DeepSEA web server (date accessed: 9th May, 2018).  615 

 616 

Data availability 617 

The datasets analysed during the current study are available in the public 618 

repositories under accessions listed in STable 1.  619 

 620 

Code availability 621 

Code used to generate the results of this study is available at 622 

https://github.com/agawes/islet_CNN 623 

 624 
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Figure legends 650 

Figure 1. Area under receiver-operator curves (AUROC) for 30 islet epigenomic 651 

features predicted by CNN models. The AUROC values were calculated based on 652 

performance on the validation set formed by 1000bp sequences from chr2, held out 653 

from training and testing. The boxplots show summary of performance across 1000 654 

individual CNN models, and are grouped by corresponding regulatory element. 655 

 656 

Figure 1–figure supplement 1. Area under precision-recall curves (AUPRC) for 30 657 

islet epigenomic features predicted by CNN models. The AUPRC values were 658 

calculated based on performance on the validation set formed by 1000bp sequences 659 

from chr2, held out from training and testing. The boxplots show summary of 660 

performance across 1000 individual CNN models, and are grouped by corresponding 661 

regulatory element. As the interpretation of AUPRC values depend on how well 662 

balanced the dataset it, we denote the class imbalance (equivalent to prediction of a 663 

random model) for each feature as open circles. 664 

 665 

Figure 1–figure supplement 2. Influence of the size of filters in the first convolutional 666 

layers on filters’ annotation and filter’s influence on predictions. Boxplots represent 667 

summary of 100 individual CNN models differing in the size of convolutional filters of 668 

the first layer. In grey are shown all the informative filters, with standard deviation of 669 

filter activation >0, and in white a subset of these filters which were not annotated to 670 

match any known TF binding motifs. The number of informative filters decreases with 671 

increasing filter size. Red boxplots show increasing number of annotated filters with 672 

increasing filter size.  673 
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Figure 2. Predicted regulatory variants reside in regulatory elements they are 674 

predicted to affect. For each variant we found the lowest CNN q-value among feature 675 

groups corresponding to different regulatory elements (promoters, enhancers, open 676 

chromatin, active regions, TF binding, repressed regions) predicted from genomic 677 

sequence, and we ranked all variants according to these six q-values. We then 678 

tested whether variants residing in each of the 15 pancreatic islet chromatin states 679 

(Thurner et al., 2018) were enriched at the top or bottom of these ranked lists. 680 

Colours in the heatmap represent the strength of the enrichment expressed as 681 

log10-transformed enrichment q-values, with red colours representing enrichments 682 

at the top (enrichment), and blue at the bottom of the ranked lists (depletion). For 683 

plotting purposes all -log10(p-values) below -50, or above 50 were truncated to these 684 

values. Stars denote significant enrichments: * <0.05, ** <0.01 and *** <0.001. 685 

 686 

Figure 3. Convergence between CNN regulatory predictions and fine-mapping 687 

approaches for functional variant prioritization.  688 

A. Regulatory variants (black) are enriched among variants with highest genetic 689 

PPAs (gPPAs) over permuted background (blue).  690 

B. Regulatory variants (black) are enriched among variants with highest functional 691 

PPAs (fPPAs) generated with FGWAS over permuted background (blue).  692 

C. Regulatory variants (black) are enriched among variants with top PPA ranks 693 

within sets of credible variants over permuted background (blue), as well as at top 694 

ranks of signals acting through insulin secretion (red) over insulin action (purple) 695 

mechanisms.  696 

 697 
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Figure 3–figure supplement 1. Comparison of CNN regulatory predictions made with 698 

the islet-specific CNN ensemble to predictions made with the publicly available 699 

DeepSEA model.  700 

A) Comparison of -log10-transformed q-values from the islet CNN ensemble with 701 

functional significance scores generated by the omni-tissue DeepSEA model 702 

B) Comparison of -log10-transformed q-values from the islet CNN ensemble with 703 

-log10-transformed E-values for the ENCODE PanIslet DNase generated by 704 

the DeepSEA model. In scatterplots variants predicted to be regulatory with 705 

both approaches are shown in red, variants predicted as regulatory only by 706 

DeepSEA are shown in blue, and variants predicted as regulatory only by islet 707 

CNNs are shown in green. 708 

C) Enrichment of regulatory variants among variants at the top ranks of T2D 709 

GWAS credible sets (black) predicted by the omni-tissue DeepSEA model 710 

over the permuted background (blue).  Purple line shows the signals acting 711 

through insulin action mechanisms, while red line shows the signals acting 712 

through insulin secretion (pancreatic islet-mediated) mechanisms. 713 

D) Enrichment of regulatory variants among variants at the top ranks of T2D 714 

GWAS credible sets (black) predicted by the single-tissue DeepSEA model 715 

based on ENCODE PanIslet DNase dataset over the permuted background 716 

(blue).  Purple line shows the signals acting through insulin action 717 

mechanisms, while red line shows the signals acting through insulin secretion 718 

(pancreatic islet-mediated) mechanisms. 719 

 720 

Figure 4. Examples of T2D-association signals where integration of CNN regulatory 721 

variant prediction downstream of functional fine-mapping refines the association 722 
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signals to single candidate variants. Genetic PPAs (gPPAs) are shown in the top 723 

panels as blue points, functional PPAs (fPPAs) are shown in the middle panels as 724 

green points, and -log10-transformed q-values from CNN predictions are shown in 725 

the bottom panels as red points. 726 

 727 

Figure 5. CNN regulatory predictions help refine the association signal at PROX1 728 

locus, previously fine-mapped to only two variants: rs17712208 and rs79687284.  729 

A. Genetic PPA (gPPA), functional PPA (fPPA) and -log10(q-value) of the CNN islet 730 

regulatory predictions for both variants.  731 

B. Allelic imbalance in open chromatin across 4 pancreatic islets heterozygous for 732 

the variants. Allele counts for the major (grey) and minor (red) alleles are shown for 733 

both variants. 734 

C. Table summary with CNN predictions for the H3K27ac mark for both variants. 735 

D. In silico saturated mutagenesis for 40nt flanking sequence around the 736 

rs17712208 variant for the H3K27ac predictions. The line plots in the upper panel 737 

indicate the absolute highest values from the heatmap below, with blue line 738 

indicating loss of function, and red – gain of function changes. Blue fields in the 739 

heatmap indicate that a given nucleotide substitution would result in decrease in 740 

prediction values for H3K27ac, while red field indicate increase in the predictions. 741 

The height of letters in the sequence below the heatmap indicated the relative 742 

importance of each nucleotide in the final predictions.  743 

E. Matched HNF1B binding motif is shown below.  744 

F. Luciferase reporter assays confirmed that the A allele of rs17712208 resulted in 745 

significant repression of enhancer activity, while no effect was observed for the 746 
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rs79687284 variant. GFP = green fluorescent protein (negative control), EV = empty 747 

vector (baseline).  748 
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Table 1. 10 non-redundant transcription factors binding motifs most frequently 749 

detected by first layer convolutional filters at FDR<5%. Sequence logos of 750 

representative CNN filters are shown. Transcription factor binding motifs redundancy 751 

was removed with Tomtom motif similarity search with other motifs detected by 752 

CNNs with q<0.05 for similarity to the main motif are listed in the last column; only 3 753 

motifs with highest similarity are listed. 754 

755 Motif 
name/TF 

Representative 
CNN filter logo 

Motif logo CNNs with 
filter match 

q<0.05 

Similar TF motifs 
discovered 

M6114_1.02 
FOXA1 

  

838 M6234_1.02 FOXA3, 
M6241_1.02 FOXJ2, 
M4567_1.02 FOXA2… 

M4427_1.02 
CTCF 

  

833 M4612_1.02 CTCFL 

M1906_1.02 
SP1 

  

677 M2314_1.02 SP2, 
M6482_1.02 SP3, 
M6535_1.02 WT1… 

M2296_1.02 
MAFK 

  

629 M4629_1.02 NFE2, 
M4572_1.02 MAFF, 
M4681_1.02 BACH2… 

M2292_1.02 
JUND 

  

571 M4623_1.02 JUNB, 
M2278_1.02 FOS, 
M4619_1.02 FOSL1… 

M1528_1.02 
RFX6 

  

556 M4476_1.02 RFX5, 
M1529_1.02 RFX7, 
M5777_1.02 RFX4… 

M4640_1.02 
ZBTB7A 

  

530 M6539_1.02 ZBTB7B, 
M6552_1.02 ZNF148, 
M6422_1.02 PLAGL1… 

M1970_1.02 
NFIC 

  

484 M5664_1.02 NFIX, 
M5660_1.02 NFIA, 
M5662_1.02 NFIB 

M2277_1.02 
FLI1 

  

442 M6222_1.02 ETV4, 
M2275_1.02 ELF1, 
M5398_1.02 ERF… 

M6281_1.02 
HNF1A 

  

418 M6282_1.02 HNF1B, 
M6546_1.02 ZFHX3 
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