
 

Abstract— There has been an emerging interest in the study of 

functional brain networks in cognitive neuroscience in order to 

better understand brain responses to different stimuli. Such 

studies can help in understanding brain connectivity alterations 

that arise in neurodevelopmental disorders such as intellectual 

disability (ID). This research contributes to this body of knowledge 

by studying alterations in brain connectivity in ID compared to the 

typically developing controls (TDC). Electroencephalography 

(EEG) data of subjects with ID and TDC is collected through 

limited channel dry electrode system. Data was analyzed for the 

auditory and rest state processing along with the study of intra-

network connectivity of the brain via clustering coefficients. 

Research findings indicate evidences for links between the sensory 

deficits and social impairment in ID individuals. 

Index Terms— EEG Signal Processing, neurodevelopment 

disorder, community, functional brain networks, Emotiv 

I. INTRODUCTION 

EURODEVELOPMENT refers to the development of 

neurological pathways that influence the performance and 

functioning of brain in activities such as social skills, memory, 

attention, etc. Significant and continued disruption to these 

dynamically inter-related processes through environmental and 

genetic risks may lead to neurodevelopmental disorders (NDD) 

and disability [1]. NDD are prominently linked with the 

impairment in growth and development of central nervous 

system during early developmental stages [2]. They are 

associated with a wider range of functionally-diagnosed 

conditions such as intellectual disability (ID) [3], autism, 

cerebral palsy, or attention-deficit/hyperactivity disorder 

(ADHD) as well as medically diagnosed conditions like Down 

syndrome, Fragile X syndrome or fetal alcohol syndrome [4]. 

Thus, there is a need for more focused research to provide a 

wide array of clinical and social supportive services around the 

needs of such subjects and their families [5]. 

The focus of this study is on intellectually disabled (ID) 

population. ID subjects are generally identified by adaptive, 

cognitive, and social skill deficits [6], and are often 

accompanied by challenging behavior such as an increased risk 

of injury [7]. Despite considerable research in exploring 

psychiatric and social morbidity of ID, little is understood about 

its association with brain development and organization. This 

has prompted researchers to adopt different neuroimaging and 

brain network extraction methods to understand the structural 

and functional connectivity in response to specific activities.  

 Structural Connectivity (SC) explores the anatomical 

connections between brain regions, whereas Functional 

Connectivity (FC) looks at the interaction between brain 

regions that aligns with either cognitive performance or brain’s 

default state [8]. FC can be measured using statistical methods 

such as correlation, phase coherence, and covariance [9]. This 

helps in understanding the synchronization of inter-related 

activities among brain regions via the construction of functional 

brain networks (fBNs). These fBNs play an important role in 

understanding the cognitive behaviour of brain. For example, 

FC has been helpful in extracting motor [10], visual [11], 

language [12], default mode [13] and attention [14] networks.  

In the field of neuroimaging, brain connectivity is 

predominantly studied in response to certain stimuli, i.e., while 

the subject is engaged in a task. A lot of research has been done 

in exploring brain connectivity by examining stimulus-

generated brain responses when engaged in cognitive tasks. 

Music perception is one such task that is known to generate 

cognitive and perceptive responses linked to memory and 

emotions [15]. Recent studies have suggested significantly 

enhanced phase synchrony while listening to music as 

compared to resting condition in healthy subjects [16], [17]. 

Related studies have also observed that there exist different 

degrees of functional cooperation between two adjacent brain 

regions in several musical perception tasks [17]. From a graph 

theoretical point of view, musical perception depicts increased 

FC and enhanced small-world network organization.  

To explore neurobiology of brain disorders such as ID, 

studies have adopted different neuroimaging techniques, say 

diffusion tensor imaging (DTI), functional magnetic resonance 

imaging (fMRI), electroencephalography (EEG) and 

magnetoencephalography (MEG) [9]. Use of different data 

modalities can provide complimentary views on brain 

connectivity and its variation. Although EEG has better 

temporal resolution and is more accessible with reference to 

cost and ease compared to fMRI, it is not utilized actively to 

extract fBNs, while a plethora of research studies have made 

use of fMRI for the same. EEG also holds a practical and 

theoretical advantage in elucidating clinical biomarkers [18]. In 

fact, it is one of the most cost-effective and clinically-available 

modalities for mass recording and monitoring treatment 
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outcomes [18], [19]. Recent studies are using EEG to study 

cognitive load in NDD like Autism [20]. This study is also 

aimed at exploring EEG data modality for providing an 

understanding of brain connectivity in ID versus typically 

developing control (TDC) individuals. 

Since graph-theoretic and network science measures are used 

to assess communication efficiency and organization of 

networks, they are extensively used to study fBN organization 

[21]. This study is aimed at finding communities with densely 

connected set of nodes, but with inter-community connections 

being scanty in the network. Research has suggested that these 

community structures indicate strong inter-neuron connections 

that contribute to functional responses within the brain. Studies 

have suggested that the prominent network science measures 

like shorter path length and higher clustering are linked with 

better cognitive abilities, while deviant brain topologies may be 

indictors of neuropsychiatric disorders [22]. Thus, exploring 

fBN organization through the lens of graph theoretic models in 

neuropsychiatric disorder such as ID is of great relevance. 

Advancements in brain network analysis has entailed the 

need for integration of statistical tools with brain network 

analysis [24]. Generally, a univariate metric is used to 

summarize and compare networks with simple tests (e.g. t-test, 

F-test etc.). These approaches are often used because of their 

simplicity, but they do not account for local connectivity trend 

within the network [25]. The network-based statistics (NBS) 

[26] is one of the few methods that accounts for comparison of 

nodal properties or local connectivity patterns of a network. 

However, it fails to account for the topological differences in 

the entire network of a subject or a group. Thus, there is a need 

of a statistical measure that considers the local connectivity 

pattern as well as group differences at the network level. In this 

work, we propose a group level comparison measure which is 

inspired from the work of Simpson et al. [25], where they used 

permutation-testing framework to compare a group of networks 

while incorporating topological features inherent in individual 

networks. On the similar lines, this study proposes a method 

that incorporates this permutation-testing framework with a 

graph-theoretic measure called global clustering coefficient for 

assessment of group differences at the network level.  

For ID individuals, identification of brain connectivity 

patterns in response to stimuli can enable interventions to these 

subjects that can assist their caregivers, researchers and the 

society, in filling the educational gaps and providing them with 

a better lifestyle. This research study provides a framework to 

explore functional connectivity and brain network organization 

in ID using EEG. This work tested and verified the working of 

EMOTIV’s EPOC+ 14-channel EEG machine that is portable 

and cost-effective device. Also, this device overcomes 

experimental limitations associated with the clinical population 

of interest, i.e., people with ID who are not comfortable with 

the pasting of wet electrode EEG system. This work also 

explored the brain network organization associated with music 

apprehension task in two groups, i.e., ID and TDC, and provides 

cognitive reasoning for the same. Finally, this work provides a 

statistical framework to differentiate between ID and TDC 

groups by using the proposed permutation-testing framework. 

II. MATERIALS 

A. Participants 

A total of ten typically developing controls (TDC) and seven 

intellectually challenged participants took part in the study. 

Both ID and TDC participants were recruited from NaiDisha 

Centre, Tamana NGO, New Delhi, India. The ID participants 

were diagnosed under code range of F70-F79 of ICD-10 

medical classification list of mental retardation by World 

Health Organization (WHO). The age of ID participants (all 

male), ranged from 26 to 31 years (age = 28.661.966) with 

Intelligence Quotient (IQ) from 52 to 68 (mean IQ: 

59.1675.8452) and Social Quotient (SQ) from 57 to 62 (mean 

SQ: 59.6672.0656). The age of TDC participants (all male) 

ranged from 18 to 56 years (age = 33.8514.89). Approval for 

the experiment was granted by the Institute’s Ethics Committee 

and the experiment was performed in accordance with the 

ethical standards laid down in the 1964 Declaration of Helsinki 

under the expert guidance of caregivers who work with NDD 

population. Malin’s Intelligence Scale for Indian Children 

(MISIC) that is an Indian adaptation of Wechsler’s Intelligence 

Scale for Children (WISC) and Vineland Social Maturity Scale 

were the standardized tools used for the evaluation of IQ and 

SQ of ID population, respectively. 

B. EEG recording and pre-processing 

Raw Electroencephalogram (EEG) data was acquired using 

a 14-channel wireless EEG headset called EPOC by Emotiv 

[27] with a sampling rate of 128Hz using a subscription-based 

software Emotiv Xavier. It uses saline-based wet sensors 

instead of sticky gels which was a distinguishing feature with 

other similar products available in the market. Fig. 1 depicts the 

14 electrodes of Emotiv EPOC relative to 10-20 electrode 

system. Fig. S1 (Supplementary) depicts the parcellation of 

brain into Brodmann Areas (BA), while Table-S1 lists BA 

along with the cognitive functionality of these electrodes.  

The subject was seated on a comfortable chair in relaxed 

position with the wireless headset placed over the head. He was 

briefed about the experiment having 2 minutes of silence (rest 

state) and 4-5 minutes of a song (music state). Earphones were 

plugged in the ears for the auditory stimulus and eyes were 

closed throughout the session. The subject was also instructed 

to not engage in stressful thinking during the rest state. 

Recorded raw EEG data files were first header-fixed using 

the EDF Browser software [28] to make these compatible for 

loading in EEGLAB for filtering, correction, and visualization. 

Next, the EEG data was filtered and pre-processed using the 

pipeline implemented using EEGLAB [29] and MATLAB. The 

pre-processing pipeline included selection of 14 channels of 

Emotiv and was performed in EEGLAB. This data was filtered 

using a high pass filter with a lower frequency cut-off set at 

0.5Hz in EEGLAB to minimize filtering artifacts at epoch 

boundaries. A customized channel location file for the 

EMOTIV device which contains the spatial orientation of its 

electrodes was created and added. For removing artefacts from 

the EEG data, Independent Components Analysis (ICA) 

decomposition of the data using infomax algorithm was 
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performed in EEGLAB. Next, ADJUST plugin [30] was used 

that automatically computes a set of spatial and temporal 

features for each of the independent components (ICs). 

Artefacts are associated with temporal and spatial features as 

follows: 1) Eye Blinks: Spatial Average Difference (SAD) and 

Temporal Kurtosis (TK), 2) Vertical eye movements: SAD and 

Maximum Epoch Variance (MEV), 3) Horizontal eye 

movement: Spatial Eye Difference (SED) and MEV, and 4) 

Generic discontinuities: Generic Discontinuities Spatial 

Feature (GDSF) and MEV. 

 
Fig. 1. Electrode mapping 

Source: Adapted from [31] 

 

ADJUST displays all ICs along with their features. ICs, that 

cross the pre-determined thresholds of both spatial and 

temporal features of any artifact listed above, are highlighted 

by ADJUST. Finally, the marked artefact components were 

removed and the new dataset was saved. Here, with 14-channel 

data, only the worst two components (identified by visual 

inspection) of all the ADJUST-classified components were 

rejected. Resulting data was reconstructed to obtain clean, 

filtered, and artifact-free EEG signal. Fig. 2 provides the 

flowchart of the steps taken in pre-processing of EEG data. This 

data was then subdivided according to the rest and music state 

event markings and was analyzed next. 

III. METHODS 

A. Functional connectivity analysis 

This study uses partial correlation (PC) to measure statistical 

coupling between EEG signals. PC coefficients quantify 

correlation between two sensors, while being controlled for 

other sensors [32]. Unlike correlation, it prevents false 

prediction of direct link between two sensors. If rij is the 

Pearson correlation between ‘i’ and ‘j’, rik is the Pearson 

correlation between ‘i’ and ‘k’, and rjk is the Pearson correlation 

between ‘j’ and ‘k’, with k=1,2,...m as the other sensors to be 

controlled for, then PC Pij between sensors ‘i’ and ‘j’ is  

                           𝑷𝒊𝒋 = 𝑚𝑖𝑛
1≤𝑘≤𝑚

𝑟𝑖𝑗|𝑘 =
𝑟𝑖𝑗−𝑟𝑗𝑘𝑟𝑖𝑘

√(1−𝑟𝑖𝑗
2 )(1−𝑟𝑗𝑘

2 )
. (1) 

FC analysis was performed as follows: the pre-processed 

time-series EEG data comprising of 𝑁 = 14 channels was 

subdivided into 𝑇 number of non-overlapping static windows 

of 𝐿 samples (say 𝐿=32) each, resulting in a 2D matrix (or a 

slice) of size 𝑁 × 𝐿. Next, the adjacency matrix was built using 

the PC of size 𝑁 × 𝑁. All time windows of subject ‘s’ were 

stacked to create a 3D tensor Ws(t) of size 𝑁 × 𝑁 × 𝑇. Thus, 

we obtained 𝑆 number of 3D tensors. 

 
Fig. 2. Filtering and pre-processing pipeline 

 

 

B. Temporal summarization for extracting static connectivity 

To study the static FC, connectivity matrix Ws(t) of subject s 

was temporally summarized via Higher Order Singular Vector 

Decomposition (HOSVD), also known as Tucker 

Decomposition [33], as   

               𝑾𝒔(𝑡) = 𝑪 ×1 𝑼(1) ×2 𝑼(2) ×3 𝑼(3),                         (2) 
 

where C  ∈ ℝ𝑁×𝑁×𝑇  is the core tensor and the three orthonormal 

mode matrices containing the left singular vectors 

corresponding to each of three modes are depicted by U(1) ∈
ℝ𝑁×𝑁, U(2) ∈ ℝ𝑁×𝑁, and U(3) ∈ ℝ𝑇×𝑇 or the horizontal, frontal 

and vertical unitary matrices of Ws(t). Unfolding the tensor 

along the desired mode using singular value decomposition 

(SVD) results in the corresponding mode matrices. Since the 

column space of U(3) spans the temporal direction, the singular 

vector corresponding to the highest singular value is utilized for 

temporal summarization. To achieve this, Ws(t) was flattened 

as 𝐖𝑠
(3)

(𝑡) ∈ ℝ𝑇×𝑁2
 and SVD was applied to find the singular 

vector of u(3,1) that is associated with the largest singular value. 

This vector  captures the most significant contribution in time.  

Thus, u(3,1) is utilized to carry out weighted temporal 

summarization of connectivity matrix as  

              𝑾𝑠 =
∑ 𝒖3,1(𝑡) 𝑾𝒔(𝑡)   𝑇

𝑡=1

∑ 𝒖3,1(𝑡)𝑇
𝑡=1

,                                         (3) 

where Ws ∈ ℝ𝑁×𝑁 is the static connectivity matrix of subject 

‘s’. Similarly, the summarization was done for all subjects to 

obtain S number of 𝑁 × 𝑁 connectivity matrices.  
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C. Subject summarization for extracting group-level 

functional connectivity  

To study group-level FC, connectivity matrices of all S 

subjects of a particular group (say ID) were stacked together to 

create a 3D tensor W of size 𝑁 × 𝑁 × 𝑆. Similar to the process 

explained above, subject summarization was carried out after 

HoSVD [34]. Compared to simple averaging of the connectivity 

matrices of all subjects, HoSVD based subject summarization 

accounts for inter-subject variability and carries out weighted 

summarization. This led to the formation of static group-level 

adjacency matrix of size 𝑁 × 𝑁. 

D. Binary graph generation 

The subject summarized-weighted 2D adjacency matrix is 

binarized by applying a threshold to select only the significant 

connections. Top 30% connections were considered significant 

and an absolute threshold value was determined for the same. 

PC values in the connectivity matrix exceeding the threshold 

were set to ‘1’ and rest were set to ‘0’. This resulted in the 

formation of a binary connection matrix, where a connection or 

an edge between two nodes exist, if the corresponding entry in 

the binary connection matrix is ‘1’; otherwise, there is no edge 

between them.  

E. Graph theoretical metrics 

Next, graph metrics were computed from the binary 

connection matrix of size 𝑁 × 𝑁. The network was explored 

visually. Functional brain networks as well as network metrics 

were extracted in Gephi [35]. Louvain modularity algorithm 

with randomized experiments was used to extract unweighted 

and undirected communities or networks [36]. The quality of 

partition 𝑃 was quantified using the modularity index 𝑄 as 

                     𝑄 =
1

2𝑚
 ∑ ∑ [𝑨𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚𝑖,𝑗∈𝑁𝑐∈𝑃 ], (4) 

where ‘m’ is the total number of edges, A is the adjacency 

matrix of the network, ki is the degree of the node ‘i’. The index 

𝑐 runs over the modules of partition 𝑃, while the indices ‘i’ and 

‘j’ span across the 𝑁 nodes of the matrix.  Louvain algorithm 

assigns a modularity class to each node. Networks possessing 

high modularity can be interpreted as having high inter-

community connections and sparse intra-community 

connections. It is considered to be the best measure of 

determining quality of partition 𝑃 of a network.  

We also explored graph theory metric, namely, clustering 

coefficient that is considered to be a useful measure to quantify 

function-structure associations in the brain and helps in the 

understanding of small-worldness of a network, its community 

structure and its local efficiency [37]. It is a popular measure 

for studying functional segregation across different 

communities and functional aggregation within a community of 

brain. For example, it measures how likely it is that the two 

connected nodes are part of a larger highly connected group or 

degree to which nodes in a network tend to cluster. To quantify 

this tendency, clustering coefficient was introduced [38]. There 

are two types of clustering coefficients, local clustering 

coefficient (LCC) and global clustering coefficient (GCC). 

LCC is computed for all the nodes in the network and provides 

the fraction of nodes that are connected to each other. LCC 

considers local connectivity pattern, while GCC is computed 

for the entire network and provides average neighborhood 

connectivity for the entire network. GCC can be computed by 

two approaches, first by computing the average of LCC over all 

the nodes. The second approach for computing GCC is by 

measuring the transitivity of the network, which is the ratio of 

number of triangles and number of open triads in a network as 

               GCC2=3×
No. of triangles

No. of open triads
= 

∑ τΔ

∑ τ
                    (5) 

where ∑ 𝜏 gives the total number of open triads and ∑ 𝜏𝛥  is the 

subset of these open triads which are triangles. The value of this 

coefficient ranges between ‘0’ and ‘1’. Both the approaches to 

compute GCC, either by GCC1 or by GCC2, measure the 

tendency of edges to form triangles. GCC2 places larger weight 

on high degree nodes as compared to GCC1, which can be really 

useful while studying brain networks. 

One of the objectives of the study was to understand whether 

GCC is a suitable measure to detect group-related differences 

between TDC and ID groups. Additionally, it was desired to 

explore as to which of the two approaches of computing GCC 

is more relevant for such studies. To this end, the 3D tensor of 

filtered EEG data of dimension 𝑁 × 𝐿 ×  𝑇 × 𝑆 was converted 

into a 4D tensor of dimension 𝑁 × 𝑁 × 𝑇 × 𝑆, containing the 

𝑁 × 𝑁 connectivity matrices (generated using functional 

connectivity measure), for all the time windows 𝑇 and for all 

the subjects 𝑆. This 4D tensor was then subject-summarized and 

binarized into a 3D tensor of dimension 𝑁 × 𝑁 × 𝑇, for which 

the GCC values were computed using both the approaches, to 

study the evolution of modules and clusters over a period of 

time. GCC1 and GCC2 were computed using the Brain 

Connectivity Toolbox (BCT) [39] over the binary undirected 

adjacency matrices of dimension 𝑁 × 𝑁 for all time windows. 

F. Statistical analysis 

Brain network analyses and neuroimaging studies have taken 

a transcendental leap over the past couple of decades. However, 

for statistical measures, researchers usually resort to common 

statistical tests that rely on network metric and univariate nodal 

or edge-based comparisons that ignore the inherent topological 

properties of the network. This study carries out statistical 

testing by two methods. The first method is the conventional 

univariate statistical comparison of results by the non-

parametric two-sample t-test, i.e., the Wilcoxon rank sum test 

that does not assume known distributions. This test returns a 

decision for the null hypothesis that data in two samples are 

from continuous distributions with equal medians, against the 

alternative that they are not. This statistical test was applied on 

the GCC values to examine if GCC values were statistically 

significantly different in the two groups TDC and ID for both 

rest and music state. Results from this test provided statistical 

support for the cognitive and theoretic findings of this work. 

Inspired from the permutation testing framework of Simpson 

et al. [25], this work proposed to statistically test the clustering 

strength of networks of ID and TDC groups via permutation 

testing. In permutation testing, the distribution of test statistic 

under the null hypothesis is generated empirically from the data 

by permuting data labels. Analysis of GCC, which is the degree 
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to which nodes in a graph tend to form a cluster, provided an 

insight of the regions of activity in the brain and thus, of the 

functional brain networks. 

IV. RESULTS AND DISCUSSION 

A. ID and TDC Group-level Network analysis  

The inter-group differences between TDC and ID population 

was studied from the perspective of network analysis and 

cognitive reasonings associated with nodal properties of the 

network. A total of four networks were generated for group-

level analysis for rest and music states of ID and TDC groups. 

After the binarization of adjacency matrix to ‘0’ and ‘1’ as 

described earlier in Section III-D, some nodes were not 

observed to have connection with any other node and hence, 

were not available in the final networks (missing nodes). Also, 

diagonals of the adjacency matrix that denote the connection of 

a node to itself (self-loop) were not considered. 

The fBNs generated for group level analysis of the TDC 

group, for both rest and music state are depicted in Fig. 3 and 

Fig. 4. Among a wide array of inter-nodal connections, three 

network communities were found in both rest and music state 

albeit with subtle differences in their formation in respective 

states. The predominance of nodes with respect to their nodal 

connections was, however, majorly changed while still 

remaining in the similar network formation in both states. 

 
Fig. 3. Rest state network for TDC group 

(Nodes of same color denote one community; three communities are 

detected in this figure) 

 

 

 
Fig. 4. Music state network for TDC group 

(Nodes of same color denote one community; three communities are detected 

in this figure) 

During the rest state, the first community of nodes had AF3 

(BA09), FC5 (BA44), T8 (BA21) and F7 (BA45 and BA47) 

with a predominant connectivity at AF3 and FC5 nodes. The 

second community of nodes had F3 (BA08), F8 (BA45 and 

BA47), FC6 (BA06) and P7 (BA19 and BA37) with 

predominant connectivity at F3 and F8 nodes. The third 

community of nodes had F4 (BA08), AF4 (BA09), P8 (BA19 

and BA37), O1 (BA18) and O2 (BA18) with predominant 

connectivity at F4 and O2 nodes. During the music state, three 

slightly different network communities were observed for TDC 

group. The first community of nodes had AF3 (BA09), FC6 

(BA06) and F7 (BA45 and BA47) with a predominant 

connectivity at AF3 node. The second community of nodes had 

F3 (BA08), F8 (BA45 and BA47), FC5 (BA44), T7 (BA21) and 

T8 (BA21). The third community of nodes had F4 (BA08), AF4 

(BA09), P7 (BA19 and BA37), O1 (BA18) and O2 (BA18) with 

a predominant connectivity at AF4, O1 and O2 nodes. 

 
Fig. 5. Rest state network for ID group 

(Nodes of same color denote one community; two communities are detected 
in this figure) 

 

 
Fig. 6. Music state network for ID group 

(Nodes of same color denote one community; four communities are detected 

in this figure) 

 

During the rest-state, bilateral frontal cortex showed 

dominant activity with minimal to no connection with temporo-

parietal regions. The dominant connections were at F3 and F4 

nodes that are considered relevant for secondary motor 

response, motor planning, imaging and learning, auditory 

imagery, working memory and visuo-motor response. Such 

strong frontal behaviour of this community can be explained by 

subject’s engagement in working memory, memory retrieval 

and mental imaging which happens during the rest state, when 

the mind is engaged in random thought processes. Negligible 
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activation on temporal sites can be explained by no auditory 

stimulus and complete silence during the rest state. But during 

the music state, temporal cortex had activated to significant 

proportions. Such strong temporal behaviour of this community 

can be explained by the auditory stimulus provided to the 

subjects, which resulted in significant activation at temporal 

sites. During the music state, temporal nodes had increased 

connections to the respective ipsilateral frontal regions with 

increased connectivity at the dorsolateral prefrontal cortex 

(AF3 and AF4), which is a major seat for language 

comprehension and expression, working memory, memory 

retrieval and encoding, selective attention to sounds, executive 

planning, auditory imagery and emotional stimuli. This could 

reflect the activation of fronto-temporal circuitry during music 

perception. 

The interconnection of nodes was not just lateralized to a 

hemisphere, but had inter-hemispheric connections too. This 

implies the importance of interhemispheric neurons forming 

communications with different cortical areas. The presence of 

distinct occipito-parietal network in both states further validates 

the presence of different networks observed in the current 

study. The activation of occipital network can be due to visual 

mental imaging that goes on while at rest with closed eyes and 

can be explained by subject’s engagement in semantic 

processing and memory recalling due to the given auditory 

stimulus in music state. It was also observed that networks were 

more intermingled at rest but became slightly more distinctive 

but yet incorporated with music. 

From the above network analysis of TDC group for both rest 

and music state, we can conclude that the generated functional 

networks are consistent in nature, as their network properties 

stand in complete correlation not only with the cognitive 

reasoning suggested by related literature but also with the 

experimental design. Moreover, this conclusion also validates 

the efficiency of the 14-electrode wireless EEG device in 

recording electrophysiological brain activity, which can be used 

to generate consistent functional brain networks.  

After validating the recording device and establishing the 

consistency of generated functional brain network, the 

functional networks generated for group-level analysis of the 

ID group for both rest and music state were explored. The 

functional networks generated for group level analysis of the ID 

group for both rest and music states are depicted in Fig. 5 and 

Fig. 6, respectively. Among a wide array of inter-nodal 

connections, two network communities were found in the rest 

state, while four communities were found in the music state. 

During the rest state, the first community of nodes had AF3 

(BA09), AF4 (BA09), FC5 (BA44), F4 (BA08), P7 (BA19 and 

BA37), P8 (BA19 and BA37), F7 (BA45 and BA47), T8 

(BA21), O1 (BA18) and O2 (BA18) with a predominant 

connectivity at AF4 and P8 nodes. The second community of 

nodes had F3 (BA08), F8 (BA45 and BA47), FC5 (BA44), FC6 

(BA06) and T7 (BA21) with predominant connectivity at F3 

node. The internodal connection was observed to be sparse in 

ID group as compared to the TDC group during rest state 

suggesting poorer inter- and intra-hemispheric connection in ID 

group. Overall, during the rest state, there was a dominance of 

parietal activity of the dominant hemisphere in ID group in 

comparison to the bilateral frontal dominance as seen in TDC 

group suggesting poorer attention and lesser involvement in 

executive planning in ID group participants. 

During the music state, four network communities were 

observed for ID group. The first community of nodes had AF3 

(BA09), AF4 (BA09), FC5 (BA44) and O2 (BA18) with 

predominant connectivity of FC5 node. The second community 

of nodes had FC6 (BA06) and O1 (BA18) with predominant 

connectivity of FC6 node. The third community of nodes had 

P8 (BA19 and BA37), F3 (BA08) and T7 (BA21) with 

predominant connectivity of P8 node. The fourth network was 

composed of F4 (BA08), F7 (BA45 and BA47), F8 (BA45 and 

BA47), P7 (BA19 and BA37) and T8 (BA21) with predominant 

connectivity of T8, F7 and F8 nodes. Segregation of networks 

in music state in comparison to rest state networks suggests that 

parallel circuits are formed when stimuli such as music is 

provided to ID participants. This may reflect poorer integration 

of cortical circuitry requiring more neuronal efforts for the 

processing of audio stimuli. There was a predominance of P8 

connections (representing the inferior temporal gyrus of 

dominant hemisphere) in both music and rest states in ID group 

participants suggests more importance is provided to 

environmental structures such as face and body recognition. 

The enhanced activity at temporal regions (T8 more than T7) 

during the music state could be understood in the context of 

their involvement in the perception of auditory stimuli during 

listening music. 

During the music state, the predominance of frontal 

connections was not observed in ID group as in the TDC group. 

Rather, an overall predominance was observed at the temporo-

parietal region. Also, the ID group lacked in the activation of 

the predominant fronto-temporal circuits as observed in the 

TDC group during the music state. Moreover, unlike the 

distinctive activity at the dorsolateral prefrontal cortex circuitry 

in TDC group, the participants in the ID group displayed poorer 

involvement of this region reflecting lesser involvement in 

executive processing of music. The predominant connections of 

T8 to F7 and F8 and belonging to a separate network further 

suggests music enjoyment rather than appropriate audio 

processing of the stimuli in context of executive functioning. 

The separate occipito-parietal community network observed in 

TDC group was not observed in ID group in either state 

supporting poorer networking circuits in these groups of 

participants. 

With the above network analysis, it was concluded that the 

generated functional networks were consistent with reference to 

the cognitive reasonings associated with the structural property 

of networks.  

B. Statistical analysis of network parameter 

In general, it is known that there is less coordination between 

brain regions in NDD. This study attempted to validate this via 

statistical analysis of the GCC as a network parameter. Results 

of Wilcoxon ranksum test suggested the following: 1) for GCC-

1, significant differences were observed between TDC and ID 

classes in the rest state (p=3.29e-51, Table S2) and, between 

TDC and ID classes in the music state (p=7.84e-106, Table S2), 
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2) for GCC-2, again significant differences were observed 

between TDC and ID classes in the rest state (p=3.10E-86, 

Table S2) and, between TDC and ID classes in the music state 

(p=1.88e-184, Table S2) and, 3) much lower p-values were 

observed while using GCC-2 as a parameter compared to GCC-

1, indicating that GCC-2 is a better measure of the two because 

it is more efficient in capturing differences between the two 

groups in group-level analysis. 

Apart from comparing the two groups in rest and music 

states, data from rest and music states of both the groups were 

also analyzed vis-à-vis each other. Results suggested the 

following: 1) for GCC-1, no significant differences were 

observed between rest and music classes for the TDC group 

(p=0.0422, Table S3) and, rest and music classes for the ID 

group (p=0.1232, Table S3), 2) for GCC-2, again no significant 

differences were observed between rest and music classes for 

TDC group (p=0.0237, Table S3) and, rest and music classes 

for ID group (p=0.0231, Table S3). Fig. 7 and 8 depict boxplots 

for the visual comparison of the two groups for both GCC-1 and 

GCC-2 values in rest and music states from which it was 

concluded that the two groups are indeed different. 

 
Fig. 7. Boxplots for TDC vs ID rest state 

 

 
Fig. 8. Boxplots for TDC vs ID music state 

C. Permutation testing framework 

In the proposed permutation-testing framework, GCC 

through transitivity measure (GCC-2) was used as the test 

statistic. This study had seven subjects in the ID group (G1) and 

ten subjects in the TDC group (G2). For the sake of uniformity 

in the number of subjects considered, 7 subjects from the TDC 

group were randomly selected. First, subjects in the dataset 

were assigned an ‘id’ called as the original label (refer to Fig. 

9) and GCC-2 was computed as the test statistic for all the 

subjects in G1 and G2 groups. Next, ratio of mean of GCC-2 

values of G1 to that of G2, denoted by Rgcc, was computed as 

depicted in Fig. 9. 

 
Fig. 9. Figure shows labels of two groups G1 and G2, each with 7 subjects. 

Left: depicts the original labelling of subjects and Right: depicts one example 

of permuted labelling of subjects 

 

This Rgcc value corresponds to the original label. The labels 

were then permuted (randomly shuffled) and the Rgcc values 

were again computed for all the set of combinations, resulting 

in K number of Rgcc values, where K is the number of times 

labels were permuted. After generating K number of Rgcc 

values, their histogram was plotted to see the empirical 

distribution. If the Rgcc value computed using the original labels 

lies beyond 0.05 or lesser probability region of the empirical 

distribution generated using permutation testing framework, it 

is said to be significant. 

The permutations were done 300,000 times and the empirical 

distribution of Rgcc values was plotted for the music state data 

of both the groups. Fig. 10 depicts this distribution and also the 

position of Rgcc value calculated using the original labels i.e. 

observed Rgcc. From this figure, it was concluded that the 

functional brain networks of the two groups under study, i.e., 

the TDC and ID groups, for music state data, were indeed 

statistically different. Similar procedure was repeated on the 

rest data. Fig. 11 depicts this distribution and also the position 

of the Rgcc value calculated using the original labels. 

 
Fig. 10. Empirical distribution generated by permutation for GCC analysis on 

the music state data of both the groups 

 

This figure demonstrates that the functional brain networks 

of the two groups under study i.e. the TDC and the ID groups, 

for rest state data, are indeed statistically different. Also, the 

lower GCC values for ID population suggests that, perhaps, 
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these subjects have lesser coordination or connectivity strength 

within their networks. Overall, the functional brain networks of 

both the groups are statistically different. 

 
Fig. 11. Empirical distribution generated by permutation for GCC analysis on 

the rest state data of both the groups 

V. CONCLUSION 

This study has made some important contributions. First, the 

data of ID subjects was captured using 14-channel dry electrode 

EEG system. Although multiple channel wet electrode EEG 

systems are considered more reliable compared to the dry 

electrode systems with limited channels, it was worthwhile to 

test dry electrode system in this study because ID subjects 

accepted this headset as a playful device and hence, captured 

data was reliable as proved via statistical analysis as well as via 

cognitive corroborations of the extracted networks. Since, in 

general, these subjects do not accept any device or equipment 

easily, particularly, the gel-based wet electrode system could 

have disturbed their natural brain response because of anxiety 

and discomfort. Thus, this study establishes the utility of dry 

electrode based limited channel EEG devices that can make 

data collection and analysis of EEG related studies much easier 

on the ID population.  

 Second, this work studied functional brain networks formed 

during the music and rest states of human brain using tensor-

based signal processing framework. The task or activity specific 

functional brain network and functional connectivity of subjects 

were successfully extracted from their EEG recordings. 

Distinctions were observed between the rest and music states of 

the brain by two major analyses, namely, network analysis and 

network parameter analysis. In the network analysis, the 

associated BAs and their cognitive functionalities were utilized 

to reason out the resulting networks. Overall, lesser brain 

activation was observed in ID group as compared to TDC 

group, reflecting lesser involvement in executive processing of 

the task. However, improvement in activation by a cognitive 

training exercise can presumably help in improving their mental 

functioning depending on the focus of the cognitive training. 

This may also be reflective of the benefits observed in 

population of individuals with traumatic brain injury receiving 

specific cognitive training for improving a particular cognitive 

deficit. 

Third, in the network parameter analysis, GCC, a network 

parameter was studied extensively. This parameter analysis was 

based on the hypothesis that although brain of ID subjects 

perceives stimuli and show activations, the intra-community 

strength may be lower in ID population. Indeed, this was 

observed through the permutation testing framework that was 

extended to GCC coefficient in this work. Overall, three 

statistical measures, namely ranksum test, boxplots, and a novel 

approach of permutation testing framework were utilized to 

establish the differences in the networks in music versus rest 

states as well as in ID versus TDC population.  

Fourth, the insignificant differences within the groups in 

music vs. rest states suggests that the preservation of the 

functional circuits remains more or less intact within the healthy 

or ID population. However, there is an altered network 

architecture in different population groups as suggested by the 

observed group differences. Furthermore, functional networks 

suggested differential activation of networks during the rest and 

music states among the groups suggesting poorer attention and 

lesser involvement in executive planning along with poorer 

integration of cortical circuitry requiring more neuronal efforts 

in ID group participants. This may explain the cognitive deficits 

and associated social impairment observed in such individuals. 

In future, researchers should focus on identifying responses 

to different varieties of environmental stimulation in this 

population to gather more information regarding the brain 

networks. The information can then be utilized in developing 

programs to foster targeted intervention towards environmental 

manipulation of various stimuli to bolster cognitive 

rehabilitation in ID population. Specifically, from a practical 

perspective, training modules focused on strengthening the 

neural networks of task-associated learning can also help in 

building the abilities in the ID population. It has been found that 

task-specific functioning can be strengthened by utilizing 

neuro-modulation techniques such as transcranial direct current 

stimulation (tDCS), applied while performing a cognitive task. 

Motivated with the above, this study suggests to devise 

interventions utilizing the methods and finding of this work 

along with the tDCS based design to help ID individuals facing 

challenges in translating the required actions like performing a 

task while listening to the instructions simultaneously. A 

similar strategy can be applicable in this population group to 

understand how instruction-linked brain activation becomes a 

helping factor for quick motor-sensory response for the task. 
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