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The ability to identify segments of genomes identical-by-descent (IBD) is a part of standard 
workflows in both statistical and population genetics. However, traditional methods for finding local 
IBD across all pairs of individuals scale poorly leading to a lack of adoption in very large-scale 
datasets. Here, we present iLASH, IBD by LocAlity-Sensitive Hashing, an algorithm based on 
similarity detection techniques that shows equal or improved accuracy in simulations compared to 
the current leading method and speeds up analysis by several orders of magnitude on genomic 
datasets, making IBD estimation tractable for hundreds of thousands to millions of individuals. We 
applied iLASH to the Population Architecture using Genomics and Epidemiology (PAGE) dataset of 
~52,000 multi-ethnic participants, including several founder populations with elevated IBD sharing, 
which identified IBD segments on a single machine in an hour (~3 minutes per chromosome 
compared to over 6 days per chromosome for a state-of-the-art algorithm). iLASH is able to 
efficiently estimate IBD tracts in very large-scale datasets, as demonstrated via IBD estimation across 
the entire UK Biobank (~500,000 individuals), detecting nearly 13 billion pairwise IBD tracts shared 
between ~11% of participants. In summary, iLASH enables fast and accurate detection of IBD, an 
upstream step in applications of IBD for population genetics and trait mapping.  
 
Inferring segments of the genome inherited Identical-By-Descent (IBD) is a standard method in 
modern genomics pipelines to understand population structure and infer relatedness across 
datasets1-6. Furthermore, it can be leveraged for alternative mapping strategies such as population-
based linkage7, capturing rare variation from array datasets8, and improving long-range phasing. 
However, the ability to scale this process to mega-scale datasets while comparing individuals along 
the genome has been limited. While approximate methods have been developed to improve 
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phasing9-11, the identification of accurate segments inherited IBD has been limited, making its 
integration with variant-based testing challenging in the modern genomic context. 
Here we extend ideas originally applied to large-scale similarity detection12 to develop iLASH, 
IBD by LocAlity-Sensitive Hashing, a novel algorithm that provides ultra-rapid and sensitive 
computation of identity-by-descent. In contrast to previous methods, which are based on 
conventional hashing techniques (e.g., GERMLINE13), iLASH uses a locality sensitive hashing 
(LSH) technique on short slices of DNA array data of individuals so that DNA slices near each 
other are located on an IBD tract with high probability, while data points far away from each other 
are likely to be on different IBD tracts. We provide further speedups via a careful implementation 
that leverages multiple processing cores, now commonly available in modern CPUs, through 
parallelizing computation in multiple stages of the algorithm. This parallelization also takes 
advantage of idle cycles during file reading and writing.  
 
LSH algorithms are a category of hashing functions  that preserve distances while maintaining 
computational efficiency in high dimensional applications14. LSH algorithms have been shown to 
be efficient in machine learning15, entity linkage16, search engines17,18, and other disciplines19,15. 
Here, we introduce a modification of the LSH algorithm designed expressly for identity-by-descent 
detection on genomic data. Based on the minimum length of tracts being searched for, iLASH 
slices the haplotypic data of every individual into windows and then performs LSH separately on 
each slice. After identifying slices that have a high probability of being in contiguous IBD, iLASH 
extends the slices efficiently to find the precise borders of each IBD tract. Multiple measures have 
been put in place to speed up the estimation process, including native parallelization and adaptive 
hashing. To maximize efficiency, iLASH also uses idle input time to preprocess the loaded 
genotype data. Similarly, it uses idle output time for calculating the extended IBD tracts and 
performing calculations of length and exact similarity. Furthermore, iLASH precomputes the 
permutations needed for LSH, a simple step that enables the threads to independently calculate 
LSH signatures in parallel. Overall, a combination of algorithmic technique and low-level 
optimizations allows for increased efficiency in large-scale genomic investigations. 
 
The framework of the iLASH algorithm is described next and is shown in Figure 1 with additional 
details available in the online Methods section. The algorithm relies on phased haplotypes from a 
typical GWAS array with hundreds of thousands to millions of variants (SNPs) represented as 
binary strings.  iLASH builds upon a form of hashing originally developed to detect similar entries 
in large document databases. We are only interested in the similarity of segments longer than a 
given threshold, as the probability of a shared haplotype being IBD increases as segments grow 
longer13,20. Therefore, the first step of iLASH is to break the genetic data of the population into 
slices of a prespecified genetic length around the threshold of interest, say 3cM (Figure 1). Each 
slice can be processed in parallel until the last step of the algorithm. Second, we break each slice 
into segments of k bits (aka k-mers, or “shingles”, with k typically 10-30 bits), either in a 
contiguous or overlapping fashion. The genetic data for all the individuals in a slice is then 
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transformed into sets whose elements are the distinct k-mers. Third, we compute the minhash 
signature16 of these sets as illustrated in the second panel of Figure 121. The minhash approach 
provides a very efficient way of approximating the Jaccard similarity between the sets using a 
sublinear number of comparisons, efficiently scaling in large datasets. To create the minhash 
signature matrix, iLASH generates random permutations of the k-mers in a slice, and for each 
permutation it records the first index at which an individual’s shingle set at that slice contains a 
value, called the minhash value of the individual for that permutation at that slice. For example, in 
Figure 1 for individual I3 and permutation P2 (H3, H5, H1, H4, H2), the first element in the k-mer 
set I3 following the order of permutation P2 that has a non-empty value is H1, which is the 3rd 
element of the permutation, thus the minhash(I3,P2)=3. The probability of two individuals having 
the same minhash value is equal to the Jaccard similarity of their k-mer sets. Hence, the Jaccard 
similarity can be estimated by generating minhash values using different permutations and 
comparing them; with the estimation error decreasing as the number of permutations increases. 
For example, even with the low number of 3 permutations in Figure 1, the intersection of minhash 
signatures and the Jaccard similarity of I1 and I3 coincide. However, it would be computationally 
inefficient to compare all pairs of signatures. The banding technique used to compute LSH 
signatures in the next step allows for significant speedup by only selecting candidates for 
comparison that have an increased probability of having a high Jaccard similarity and avoiding 
most of the possible comparisons. We group the minhash signatures into b bands comprised of r 
minhash values and hash each band. Assume that the Jaccard similarity of I1 and I2 is s. It can be 
shown21 that the probability that two individuals agree in at least one LSH hash value is 1 - (1 - 
sr)b. This function is logistic with a step transition controlled by parameters r and b, which can be 
tuned to trade-off accuracy of approximation versus efficiency. Finally, iLASH uses these similar 
LSH hashes to find candidate IBD matches and then examines neighboring slices of a match 
candidate pair to extend them to identify the full IBD segment (Figure 1).  
 
iLASH takes standard genotype files in plink22 format as input and is available open source. For 
efficiency purposes, iLASH is implemented in C++. To foster usability, iLASH is designed to run 
on a single machine with one command with sensible defaults derived from realistic simulations. 
However, it is highly configurable to allow users to tune its behavior for each dataset, e.g., arrays 
of different densities.  
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Figure 1. Schematic of the iLASH algorithm pipeline. Starting from the left with the Slicing step 
where haplotypes are broken into windows (of uniform or variable length). The Minhashing step 
creates minhash signatures by generating a table of random permutations. The LSH step bands 
together minhash values to create an integrated LSH hash table where candidate matches are 
grouped together. Finally, in the Pairwise Extension step, these candidates are further analyzed 
to be extended in the (likely) case that an IBD tract spans multiple windows.  
 
Results 
We present a thorough evaluation of iLASH performance for both simulated data and real data 
from the PAGE consortium and the UK BioBank. The size of our test datasets is intractable for 
common tools, such as PLINK and Beagle, so we do not compare with them. We compare iLASH 
to the standard algorithm, GERMLINE13, for both performance and accuracy. Other than being 
the first tool with efficient performance for comparison to iLASH, GERMLINE is also similar to 
iLASH in that it uses hashing methods for IBD inference. We also separately compare iLASH 
against RaPID23, a recently developed scalable IBD algorithm, for both performance and accuracy. 
 
Performance on Simulated Data 
To investigate iLASH performance, we simulated IBD haplotypes for three separate populations 
with different average IBD and for sizes ranging from 1,000 to 80,000 individuals. To create these 
data, we first used HapGen24 to simulate 80,000 individuals with an elevated error rate in the 
copying model (the error rate for a given SNP (Q) =130) to decrease background IBD. Then we 
scanned three populations in the PAGE dataset with different cryptic relatedness characteristics: 
African American (low IBD on average), Puerto-Rican (a founder population with elevated IBD 
sharing), and all the individuals in PAGE, and extracted their detailed IBD distributions. We used 
these IBD distributions to generate “ground truth” IBD segments set with the same number of 
segments and lengths observed in the mentioned populations among any randomly selected group 
of 1,000 samples. We repeated this process to create a ground truth IBD map for 80,000 samples. 
The Puerto Rican population IBD simulation, for example, has more than 10 million shared 
segments with a total length of 62 million cM.  
 
Accuracy. Using our simulated data as ‘ground truth’ we compared the accuracy of iLASH & 
GERMLINE. iLASH accurately recovers at least 95% of all simulated IBD haplotypes across the 
simulated dataset of the three populations tested, compared to a lower accuracy of 82% for the 
GERMLINE algorithm, results that were consistent when considering 1,000 to 30,000 individuals 
for both GERMLINE and iLASH (see Supplemental Figure 1).  However, the concordance with 
ground truth varies significantly with the tract length, as shown in Figure 2, with iLASH 
outperforming GERMLINE both on shorter tracts and on longer tracts when high accuracy is 
required. For example, for tracts of 3cM, iLASH identifies approximately 80% of tracts with at 
least 90% accuracy, while GERMLINE only identifies 35% of those tracts.  For tract lengths of 5, 
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10, or 20cM, iLASH has recall, or the proportion of true tracts identified, close to 100% for 
accuracies up to 95%.   
 

 
Figure 2. Concordance of iLASH and GERMLINE with ground truth on simulated data at tract 
lengths of 3, 5, 10, and 20cM and accuracies from 50% to 99%. 
 
False Positive Rate. To investigate the rate of false positives of iLASH and GERMLINE, we took 
a composite individuals approach25. We used chromosome 2 data from 2000 sampled individuals 
from the African American population of the PAGE study. In order to minimize the possibility of 
false positive IBD inference, we divided the genotype data into slices of 0.2 cM length, and we 
shuffled theses slices among the 2000 individuals. Before this process, iLASH was able to find 
10459 IBD tracts in the dataset. Afterwards, however, only 1 tract of 3.9 cM was found by iLASH. 
In the same reshuffled dataset, GERMLINE still found 27,838 (false positive) tracts, with 99.9% 
of them around a low complexity region (starting from SNP rs1729898 and ending at SNP 
rs12464090, which contains only 60 SNPs on the PAGE array data). After trimming the genotype 
data by dropping one out of every 3 SNPs to see how iLASH performs in the context of  less 
density, the number of tracts found by iLASH decreased to zero. GERMLINE results also 
decreased to 1,097, all of which were still in the same region. When we increased the size of slices 
to 0.5 cM, iLASH identifies 3 tracts for the normal data and 13 tracts for the data with lower SNP 
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density. The number of GERMLINE results were 22,688 and 26,724 tracts for dense and trimmed 
haploid files respectively. Again, more than 99% of the false positive tracts found by GERMLINE 
were located in the same low complexity region described above. In contrast, iLASH showed near 
perfect performance in both cases. It is worth noting that since both tools use haplotype data instead 
of genotype data, their precision is dependent on the accuracy of the phasing stage, however 
standard phasing algorithms embrace approximate IBD inference to improve long-range phasing. 
Such methods are expected to improve phasing accuracy in large studies, particularly in the 
haplotypes spanning IBD segments. 
 
Runtime. To compare the time efficiency of iLASH and GERMLINE, we used the same simulated 
datasets as the previous section. We ran GERMLINE and iLASH on the same machine, a 
workstation running CentOS Linux release 7.4.1708 with 128 GB of memory and Intel® Xeon® 
Processors E5-2695 v2 with 12 cores and 24 threads on it using 30 MB of shared cache. Both 
iLASH and GERMLINE are implemented in C++, but in order to use a specific version of the 
Boost library, GERMLINE required an earlier version of the C++ compiler.  
Figure 3(A) shows the computation time in seconds for iLASH and GERMLINE as the population 
size grows. The biggest dataset that we were able to run GERMLINE tractably on one machine 
was for 30,000 individuals and took over 5 hours to run. For the same data, iLASH took 3 minutes 
and 15 seconds. Our maximum-sized simulation of 80,000 individuals could be scanned and 
analyzed by iLASH in less than 16 minutes.  
Figure 3(B) shows the computation time in seconds for iLASH and GERMLINE as the total size 
of found IBD grows. Both tools exhibit a linear growth with the amount of IBD, but iLASH’s 
slope if significantly lower than GERMLINE’s (timeiLASH = 0.8 x IBDLength vs. timeGERMLINE = 
229 x IBDLength; fitted over the PAGE dataset).  

 
(A)                                                                      (B)  

Figure 3. IBD computation runtime in seconds for iLASH and GERMLINE on synthesized 
haplotypic data simulating all of PAGE and Puerto Rican (PR) populations IBD patterns: (A) as 
the number of individuals grows, (B) as the total output (total length of tracts found) grows.  
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Comparison with RaPID 
Recently, Naseri et al.23 released an IBD detection package that relies on the Positional Burrows-
Wheeler Transfom26 to efficiently scale haplotype matching. We ran RaPID on the same simulated 
data used in our comparisons with GERMLINE and iLASH. We noted that while RaPID is 
substantially faster than GERMLINE, it remains slower than iLASH on all sized datasets, and the 
difference is particularly noticeable as the sample size increases (cf. Supplemental Figure 2). For 
1,000 samples, iLASH takes 4 seconds, while RaPID takes 27 seconds. For 80,000 samples iLASH 
takes 15 minutes, while RaPID takes 98 minutes. More importantly, iLASH is significantly more 
accurate than RaPID:  iLASH recovered over 95% of the total length of “ground truth” IBD in 
simulations, where RaPID only recovered 72%. Short IBD segments (5-3cM) were particularly 
challenging for RaPID, which generated a larger number of false positives (22-25% across runs). 
In spite of RaPID being a haploid method, the output of the program does not report haplotype 
phase information, which somewhat constrains the options possible in downstream analysis after 
IBD estimation. Given these limitations, in the remainder of the paper, we only compare with 
GERMLINE.  
 
Performance on real data from the PAGE Study 
We investigated iLASH and GERMLINE IBD inference over two existing datasets: a multi-ethnic 
population of N=51,520 individuals from the Population Architecture using Genomics and 
Epidemiology (PAGE) consortium, and the N~500,000 individuals in the UK Biobank dataset. In 
PAGE, iLASH uncovered a total 202,424,985 segments, while GERMLINE identified a total of 
195,577,460 tracts. The overall concordance between iLASH and GERMLINE was 95%. iLASH 
total runtime was 58 minutes on a single workstation (same as above) requiring between 3 GB (for 
chromosome 22) and 17 GB of memory (for chromosome 2). GERMLINE could not be run on the 
same workstation, because it required more than 128 GB of memory for every chromosome. 
GERMLINE was run on the High Performance Computing Cluster called Minerva at the Icahn 
School of Medicine at Mount Sinai, which has several high-memory nodes. For the largest 
chromosome (12) that could be analyzed by GERMLINE without splitting the population, 
GERMLINE took 6 days of computation. For the same chromosome in the single machine 
described above, iLASH took 3 minutes and 12 seconds, an improvement of four orders of 
magnitude.  
 
To explore the utility of IBD haplotypes inferred by iLASH in a large genomic dataset we 
constructed an IBD-based network of distant relatedness among the PAGE dataset27. In this 
network individuals are represented by nodes (N=38,919 across 3 PAGE Studies: WHI, MEC and 
HCHS/SOL) that are connected by edges (e= 55,069,482) if they share any haplotypes IBD. We 
used this to explore fine-scale population substructure by applying the community detection 
algorithm InfoMap28 to the IBD network in order to uncover communities of individuals who were 
enriched for recent, shared ancestry in the form of elevated IBD sharing. We observed that 92.3% 
of selected PAGE participants fell into one of 12 inferred IBD communities, each containing 
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N>100 individuals, with the remaining 7.7% of participants being assigned to communities 
ranging from N=1 to N=91 participants in size (see Figure 4A). We observed that IBD community 
membership correlated strongly with available demographic information in the form of both self-
reported ethnicity as well as sub-continental and country level region of origin (see Supplementary 
Table 1). For example, membership of one InfoMap community was highly correlated with being 
born in Puerto Rico (PPV 0.96), while another was correlated with being born in the Dominican 
Republic (PPV 0.98). We also observed significant differences in the distribution of total pairwise 
IBD sharing between communities (Figure 4B). Examination of the population level fraction of 
IBD sharing within- and between- communities revealed a high degree of network modularity, or 
elevated sharing within communities relative to between (Figure 4C). Three distinct communities 
emerged that correlated with being born in Mexico (PPVs 0.96, 0.43 and 0.99, respectively), the 
latter of which exhibited elevated IBD sharing relative to the former two and may represent a 
founder population of (native American) Mexican origin. This analysis demonstrates the utility of 
IBD inference for exploring fine-scale population substructure within large datasets. Further, this 
elevated IBD signature empowers techniques in founder populations such as IBD mapping and 
detection of highly drifted alleles. 
 

 

Figure 4 .Network of IBD sharing in the PAGE dataset. (A) A network of IBD sharing within PAGE plotted via 
the Fruchterman Reingold algorithm. Each node represents an individual (edges not shown). Individuals are colored 
based on community membership as inferred by the InfoMap algorithm. (B) Distribution of the sum of IBD sharing 
within the top 16 largest InfoMap communities demonstrates variance in levels of IBD sharing between different 
communities. InfoMap communities are labeled according to the demographic label that most strongly correlated 
with community membership (as measured by positive predictive value). Elevated pairwise IBD sharing can be 
observed in several InfoMap communities, which may represent founder effects. (C) Heatmap of the population 
level fraction of IBD sharing within and between the top 16 largest InfoMap communities demonstrates elevated 
sharing within, relative to between communities. 
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Detecting Identity-by-Descent in the UK Biobank 
To explore fine-scale population substructure in the UK Biobank we leveraged the phased 
genotype data at 655,532 SNPs for N=487,330 participants. We used iLASH to infer pairwise IBD 
segments (>=2.9cM) between all individuals. We observed 10.84% of all possible pairs of 
individuals shared at least one haplotype of their genome IBD, representing 12,867,760,228 
pairwise connections in total (Figure 5A). To understand how well the IBD sharing estimates 
correlated with genetic relatedness, we calculated the correlation between the kinship coefficient 
and the sum of IBD haplotype sharing among 3rd degree and above relationships in the UK 
Biobank. We observed a high degree of correlation between the two estimates (R2=0.95; Figure 
5B). Beyond this close relatedness, we observed 778,822 pairs of individuals exhibiting relatively 
high levels of relatedness (>100cM), and additionally 43,205,248 pairs of individuals with sharing 
above 20cM. In most instances these individuals were just below the level of detection as provided 
by the standard genetic relationship matrix released alongside the UK Biobank genotype data. 
However, we also identified 4,808 highly related pairs of individuals (>=500 cM) that were not 
reported to be 3rd degree relatives or above in the default UK Biobank release. To investigate this 
further, we replicated the KING relatedness estimation for this subset of participants, and noted 
that the majority of these pairs did exhibit elevated relatedness (mean kinship=0.037, Interquartile 
Range=0.031-0.043), but that their KING estimates fell slightly below the cut-off for 3rd degree 
relatives (>0.0442). However, some discordance between the two metrics persisted. Specifically, 
we identified a subset of pairs (N=203 pairs, comprised of N=378 unique individuals) with high 
IBD (>500cM), but low or negative kinship (< 0.02). We noted that levels of autozygosity within 
the individuals comprising these pairs was significantly elevated relative to the population average 
in the UK Biobank, with the mean sum of runs of homozygosity (ROH) within discordant pairs 
being 116.5cM (95% C.I=98.2-135.0cM), compared to 1.84cM (95% C.I=1.79-1.89cM, Wilcoxon 
p<6.3e-204) in the UK Biobank overall. We speculate that this elevation of autozygosity may have 
contributed to the deflation of the KING kinship estimates and resultant discordance with iLASH.   
 
Overall, we highlight in the UK Biobank that detectable relatedness exists across far more pairs of 
individuals than is present in the kinship matrix currently provided with the standard data release. 
The sensitivity of methods like iLASH to detect true levels of cryptic relatedness is critical in 
mixed effects models such as SAIGE29 and BOLT-LMM30 for efficient, appropriately-calibrated 
association testing. 
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Figure 5. Identity-by-Descent Sharing in the UK Biobank. (A) Distribution of the sum of pairwise 
IBD sharing (cM) in the UK Biobank across all N=487,330 participants. (B) Correlation between 
the sum of IBD sharing and kinship as measured by the KING software in all pairs of individuals 
reported in the UK Biobank output to be >= 3rd degree relatives. 
 
Discussion 
Here we present iLASH, an accurate and computationally efficient method for detecting identity-
by-descent segments. iLASH scales to large, biobank-level datasets, empowering downstream 
analysis that uses IBD for population genetic inference and disease mapping. In addition, we 
demonstrate that, consistent with population genetic theory31, IBD is a ubiquitous component of 
large-scale population datasets and can provide estimates of relatedness useful in both medical and 
population genetic contexts. Here, we have run iLASH on large datasets such as the PAGE Study 
(n=51,520) and the UK Biobank (n= 487,330), providing additional context to the understanding 
of population structure using typical measures of global ancestry relying on unlinked genotypes. 
As IBD breaks down via recombination across a relatively small number of generations, the 
observed patterns from iLASH provide a snapshot of relatedness and population structure driven 
by more recent patterns, rather than the more ancient patterns determined by SNP-based genetic 
drift. 
In contrast to previous methods, we gain significant performance improvements by basing our 
algorithm on locality-sensitive hashing (LSH), an algorithm that leverages the speed of hash-based 
methods while allowing for some incomplete matches, whether due to genotyping or phase switch-
based inconsistency. By contrast, GERMLINE, the previous industry standard for large-scale 
inference, only identifies IBD candidates on small hash seeds, followed by SNP-wise extension, 
increasing runtime quadratic to the number of individuals due to a large number of pairwise 
comparisons. Keeping most of our algorithm within the standard LSH framework allows our 
runtime to grow much more slowly in the number of individuals. In addition, we include several 
low-level optimizations to allow for parallelizability on modern computing nodes, improving 
speed and sensitivity. 
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While this windowed hash-based method could mean that our method is less precise at identifying 
IBD end-points along the chromosome, in practice, our simulations show otherwise. We validated 
this method via simulations, ensuring that we could both recover short segments (3-5cM) as well 
as the full length of longer segments, allowing for downstream utility of the IBD tract length 
distribution. Our method is far more sensitive than GERMLINE at identifying short segments, an 
observation found by others32. Identifying large segments is critical for inferring an unbiased tract 
length distribution, an observation required for IBD-based genetic relatedness matrices33, as well 
as population genetic inference3. While maintaining high sensitivity in short segments, we ensure 
that our method is not susceptible to false positives via genome shuffling25 to create a putatively 
IBD-free dataset. Consistent with our method being haplotypic, false positives should not be an 
issue, and we observe our method being almost entirely without false positives, up to the detection 
limit of haplotypic complexity in our test data. We note that these false positive tests can be highly 
dependent on the diversity present in the population used for simulation, therefore we chose a 
population with limited endogamy, derived from PAGE Study African Americans, to test iLASH. 
 
In addition to identifying cryptic relatedness in a dataset, we anticipate our scalable IBD tool to 
provide additional insights into large-scale datasets such as PAGE, UK Biobank, and larger 
datasets such as the Million Veteran Program and the All of Us Research Program. iLASH works 
within standard pipelines as it uses a standard input file format, and output from these estimates 
can easily be integrated into medical and population genetic workflows. As an example, we 
demonstrate the utility in estimating IBD segment patterns across real-world datasets, allowing for 
downstream population clustering using graphical methods able to tease apart fine-scale 
population structure at a level beyond standard SNP-based methods such as PCA. This, then, can 
have large implications for medical genetics, particularly at the rare end of the frequency spectrum, 
where variants are far more likely to be private to one or a small number of populations. For 
example, we have shown previously that IBD tracts allow us to identify a population-specific 
variant underlying a recessive musculoskeletal disease in Puerto Ricans, that could not be detected 
using standard SNP-based genome-wide association approaches8. 
 
While our method is computationally efficient, mega-scale datasets in the hundreds of thousands 
to millions still benefit from data subsetting in the current version of iLASH, as demonstrated in 
running iLASH over the UK Biobank. This can be ameliorated with runs on high-memory nodes, 
however to fit the entirety of a dataset on a single machine will require additional data 
compression, likely through methods such as the Positional Burrows-Wheeler Transformation 
(PBWT), employed by the Sanger Imputation Service. These approaches can be integrated 
efficiently in the future, along with other methods, such as a distributed implementation of iLASH 
tailored for machine clusters, and incremental computation of IBD as new subjects are added to 
large datasets, such as from the UK Biobank 150,000 participants release to the current >500,000 
individuals, or with direct-to-consumer companies. A distributed implementation of iLASH, 
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designed natively to be run over nodes in a cluster, fits well with the underlying algorithm and 
would allow for an even more scalable solution. We have currently focused our methods on 
common variants as are typically found in genotype arrays. We plan in the future to update iLASH 
to account for recent, rare mutations as are present in sequence data. As our algorithm is based on 
locality-sensitive hashing we can easily handle mismatches due to genotype error or recent 
mutation on an IBD background. This simply will require modification of haplotype similarity 
thresholds and SNP density. With large, diverse sequencing datasets soon available, we anticipate 
this as a future improvement to a new version of iLASH. 
 
Numerous methods have been created to model population structure for large, diverse populations. 
However, as datasets grow, population structure becomes more inevitable, and the relevance of 
demographic history influencing patterns of cryptic relatedness become unavoidable. This has 
particular implications for how we think of genotypic similarity. Where phasing and imputation 
are standard workflows, we provide a method to integrate IBD analysis into existing pipelines, 
allowing for novel population identification and inference of demographic history. From these we 
can both provide a method forward for population-based linkage as a complement to standard 
GWAS approaches, as well as an efficient way of identifying sub-populations within a larger 
dataset. Methods such as iLASH then, while having their roots firmly in early medical genetic 
studies, can then provide insight for the future of large-scale and multi-ethnic cohorts available in 
biobanks and national initiatives. 
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Methods (online) 
In this section, we describe in detail the algorithm and implementation techniques used in iLASH, 
including parameter configurations and their effect on the results of iLASH. 
Background and rationale 
iLASH was inspired by a minhash-based realization of the LSH algorithm16,17. Locality Sensitive 
Hashing (LSH) refers to a category of hashing methods that preserve a specific distance function. 
A hash function is called “locality-sensitive” if it maps close vectors in the source domain to close 
or identical vectors in the target domain. A good example of such hash functions is a mapping of 
the points on the surface of a half-sphere to a 2D circle plane beneath them. This function reduces 
dimensionality from 3 to 2. However, the output of such mapping still has enough information to 
infer the distance among different points on the 3D curve.  
 
LSH was developed and is often used for duplicate string detection in large text corpora. In general, 
it is not feasible to compare every pair of strings, since the computational cost grows quadratically 
with the number of strings. Moreover, it is desirable to also identify segments that are similar, but 
not identical, since we need to account for text modifications such as typos, local rephrasing, 
insertions of advertisements, personalized greetings, or other dynamically generated text in a web 
page. Jaccard similarity, or the intersection of two sets divided by their union, is a measure fit for 
such tasks.  
 
The LSH implementation used in finding text duplicates thus tries to preserve the Jaccard 
similarity between different pairs of strings.21 The first step is to convert each string into a set of 
shingles (aka n-grams, substrings of n characters) and conceptually create a matrix with the strings 
(sets) as rows and all the distinct shingles (elements) as columns. Then, LSH estimates the Jaccard 
similarity between the sets (strings) by doing two levels of hashing. The first hashing step of LSH 
is called minhashing. To create the minhash matrix, the algorithm generates n random 
permutations of shingles. For each permutation P, it records for each set S, the index of the first 
shingle included in S (cf. Figure 1). The probability of two sets having the same minhash value for 
each of the permutations is equal to their Jaccard similarity score. The second level of hashing is 
called the LSH. To calculate LSH signatures, consecutive minhash values are grouped together 
and hashed for a second time. Suppose there are n minhash values for each string, grouped in b 
bands. Each band is comprised of 𝑟 = 𝑛/𝑏 minhash values. Suppose S1 and S2 have a Jaccard 
score of s between them. Then the probability of all minhash values in a band being equal between 
the two sets is sr. The probability that at least one of the minhash values in a band being different 
is 1-sr. If one or more than one of the values in a band differs between S1 and S2, then the LSH 
signature of that band is going to be different for the two sets. Thus, the probability of all LSH 
signatures being distinct for each set is (1 − 𝑠*),. Using this equation, we can calculate the 
probability of two sets sharing at least one LSH signature, leading to them being declared a hit as 
1 − (1 − 𝑠*),	. This probability distribution is a sigmoid function that generates a S-curve with a 
step transition that can be manipulated by changing values of r and b to trade off reducing the 
number of comparisons and the false positive and false negative rates.  
 
Parallels between finding similar strings and similar haplotypes make adopting LSH in the 
genomic domain attractive. However, pure LSH is not ideal to be used over entire chromosomes 
simply because the goal of IBD estimation is finding exact loci shared between pairs of individuals 
and not an average estimation of overall similarity of pairs of chromosomes. The latter is less 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 8, 2019. ; https://doi.org/10.1101/749507doi: bioRxiv preprint 

https://doi.org/10.1101/749507
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

relevant to geneticists because on average there is not a lot of difference between similarity scores 
of different individuals. However, when dividing genotype data into windows (we will use the 
word slice from here on to refer to these windows along the genome) along the chromosomes, the 
similarity score of individuals sharing an IBD tract in or around those slices would dramatically 
differ from that of a non-sharing pair. For example, in the problem of IBD estimation for tracts 
longer than 3cM in a dataset, if all the haplotypes are divided similarly into slices shorter or equal 
to 3cM each, three scenarios could happen to IBD segments longer than 3cM in a database. 

1) The segment is located exactly within one slice’s boundaries with minimal 
overflow/underflow. Then the said slice will have almost 100% similarity. 

2) The segment is located almost half and half between two neighboring slices. Since the 
segment is larger than 3cM (the length of each slice), each slice would have around 50% 
similarity of more.  

3) The segment is spread more on one slice and less on the neighboring slice. One of the slices 
will have more than 50% similarity in between the two individuals and the other slice will 
have less than 50% shared. 

In each of these scenarios, there will be at least one slice that has a Jaccard similarity score equal 
to or greater than 50% between the two individual haplotypes sharing IBD. iLASH estimates such 
similarities in order to find IBD tracts. Segments longer than 3cM have a higher minimum score 
between two haplotypes which is more favorable to iLASH requirements. By inspecting 
neighboring slices to a slice with a high degree of estimated similarity, iLASH addresses the third 
scenario. This will help find the true extent of an IBD segment. In the following section, we discuss 
how using dynamic and overlapping slicing addresses these issues.  
 
iLASH algorithm and settings 
As discussed earlier, the iLASH algorithm has four main steps. It first starts by slicing haplotype 
data into slices. Initially, we used static slices of 2000 SNPs. However, genotype data is not usually 
sampled uniformly through the human genome. Thus, there can be slices of 2000 SNPs that cover 
a 5 cM long haplotype and there can be others covering 2 cM in the same experiment. To address 
this, we used dynamic slicing where each slice corresponds to a fixed genetic distance of k cM 
(usually 3 cM) but comprises a variable number of SNPs.  For added precision, neighboring slices 
can overlap. For example (and across our experiments), the 3 cM slices in our experiments 
overlapped on 1.4 cM with their neighbors. In the areas of low complexity, where a small number 
of SNPs could represent a long haplotype, we observed increased rates of false-positives. Thus, 
we defined a threshold in iLASH to prevent the analysis of slices with lower than a given SNP 
count (in our experiments we ignored slices with fewer than 50 SNPs). While we have found these 
parameters to yield good results on our datasets, they may or may not be suitable for other datasets. 
Our implementation of iLASH allows the user to configure all these parameters.  
 
Starting the second step, the SNP data in each slice is tokenized into shingles (k-mers). In our 
experiments, each shingle encompasses 20 SNPs. Smaller shingle length does not necessarily 
mean higher precision as it may cause the number of possible values for each shingle to decrease 
which results in lower precision. The shingles are then mapped to a 32-bit integer space using FNV 
hashing to allow for uniformly representing shingles of different lenghts (see Other Technical 
Notes below). No stored hash structure is used so as to maximize the speed gains by eliminating 
the need for a synchronized memory access procedure. By default, iLASH uses non-overlapping 
shingles. Our experiments used this default setting. However, the tool has the option to generate 
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overlapping shingles which can help with noisy data by increasing the similarity at the cost of a 
modest increase in run time. Jaccard similarity of slices S1 and S2 was then defined as the number 
of shingles they have in common divided by the total number of shingles present in the slices. In 
the next two steps, iLASH calculates the minhash values and the LSH signatures. The resulting 
hash table comprised of LSH signatures helps iLASH algorithm to find hits between slices that are 
similar. The algorithm uses FNV hashing to a 32-bit integer space for both the minhashing and 
LSH steps. In the LSH steps, however, an in-memory hash table was maintained since 
synchronization is inherently critical for finding hits. In the experiments for this paper, we used 20 
minhash permutations per slice. These minhash values were then grouped into 5 bands to generate 
LSH signatures. 
 
In its last step, iLASH analyzes LSH hits. Getting a hit among LSH signature for two slices, does 
not necessarily mean the two are a match or even similar enough to be considered for further 
analysis. Based on the number LSH hits between two slices, iLASH estimates a minimum 
similarity score for them. Next, it examines the estimated similarities using two thresholds. The 
Match Threshold parameter (MT) controls iLASH decision whether to declare the two slices a 
match. Matching slices are not examined before being written to output. However, if an estimated 
score is lower than MT, it will be compared to Interest Threshold (IT). Scores that are not declared 
a match but are higher than interest threshold will be examined on a shingle level in order to find 
matching sub-slices. These sub-slices, if longer than the minimum length, will be written to the 
output file. For our experiments, we used a match threshold of 99% and interest threshold of 70%.  
 
Finally, neighboring matched slices are collapsed together to form longer segments. Before writing 
them to the output file, iLASH examines the edges of each segment at a shingle level; and extends 
it if possible. This will help to recover as much of the actual segment as possible.  
 
Other Technical Notes 
To maximize deployment and adoption, iLASH is designed to run on a standard single machine, 
without requiring parallel technologies like Hadoop or CUDA. However, iLASH takes advantage 
of the multiple cores available in modern machines and efficiently interleaves computation with 
reading and writing to disk (I/O operations). To read from and write to files, programs are required 
to wait in I/O queues. Furthermore, the speed of storage devices is far lower than that of main 
memory. Therefore, I/O operations can hinder the experiments. iLASH uses parallelization to 
process the genotypes that are already loaded in memory while it waits for the next batch of data 
to be loaded. Also, while waiting to write IBD segments to the output file, it computes the next 
IBD segments.  
 
Instead of using the shingles directly, iLASH hashes the shingles using FNV hashing, which has 
several advantages.  First, FNV hashing allows iLASH to deal with different shingle sizes 
uniformly. It especially helps to compress the shingle space when the shingle length parameter is 
set to more than 30 bits. Second, FNV hashing enables iLASH to analyze both normalized 
genotype files (encoded as bit strings of minor/major alleles) and unnormalized files (with for 
example letter encoding for the bases) in the same fashion. Third, it allows for parallelization, as 
opposed to using standard C++ hash tables that would create a synchronization bottleneck among 
the multiple threads. Finally, iLASH also uses FNV to create the permutations to compute minhash 
signatures. When computing minhash signatures, using FNV to map shingles to a 32-bit space and 
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then using that representation space to create random permutations using a formula instead of 
actually permuting the matrix, helps maximize the effect of parallelization by eliminating the need 
to maintain an integrated hash table among all threads. Assuming x to be the hash value of a shingle 
to be the index number of that shingle, we can generate a new index number for x in a random 
permutation P(a,b) using the following formula; where a and b are randomly selected integers 
specific to the permutation: 
 

𝑁𝑒𝑤	𝐼𝑛𝑑𝑒𝑥4 = 𝑎 ∙ 𝑥 + 𝑏	𝑚𝑜𝑑	4294967311	 
 
The FNV hash function is also used for generating the LSH signature. However, unlike other steps 
that involved hashing, analyzing LSH signatures requires maintaining a hash table in order to find 
hits. Removing in-memory hash structures in shingling and minhashing steps helped us to 
effectively parallelize our algorithm and gain a substantial speedup against our original 
implementation.  
 
Test data generation 
To simulate genotype data of individuals, we took a composite individual approach23. Genotype 
data of African American individuals in the PAGE Study was broken down in short windows and 
randomly rearranged to eliminate IBD while preserving LD structure. We then randomly copied 
haplotypes between different individuals to simulate IBD for power tests.  
 
Application to Population Architecture using Genomics and Epidemiology (PAGE) Study 
data 
A total of 51,520 subjects were genotyped on the MEGA array as part of the Population 
Architecture using Genomics and Epidemiology (PAGE) study, and subsequently underwent 
quality control filters as described in Wojcik et al.34. Genotypes that passed quality control 
(n=1,402,653) underwent phasing using SHAPEIT2. At this stage an additional N=1 individual 
was removed for having a chromosome specific missingess rate of > 10%. Phased haplotypes for 
the autosomes were subsequently filtered to a minor allele frequency of 5% and indels were 
removed (resulting in the retention of 593,326 autosomal SNPs genome-wide). SHAPEIT2 output 
was then converted to plink format using the fcgene software and these files were used as the input 
for both GERMLINE and iLASH (along with genetics maps interpolated using data from b37 
genetic maps).  
 
To compute IBD we used comparable parameters for GERMLINE and iLASH. The flags used for 
GERMLINE were “-min_m 3 -err_hom 0 -err_het 2 -bits 25 –haploid.” 
For iLASH the parameters were: 
auto_slice 1, perm_count 12, shingle_size 20, shingle_overlap 0, bucket_count 5, perm_count 20, 
max_thread 20, match_threshold 0.99, interest_threshold 0.70, max_error 0, min_length 3, 
cm_overlap 1.4.  
 
The code, along with best practices and other recommendations in the online user manual, is 
available at https://github.com/roohy/IBD 
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Quality control for downstream analysis in PAGE 
IBD haplotypes inferred for N=38,919 PAGE individuals from the WHI, MEC, and HCHS/SOL 
studies were filtered for regions that overlapped with known genomic regions of low complexity. 
Additionally, IBD haplotypes that fell within genomic regions of excess IBD sharing (empirically 
defined as regions where we observed that the mean number of inferred IBD haplotypes exceeded 
3 standard deviations of the genome-wide mean) were also excluded from downstream analysis. 
 
Identity-by-descent network construction and community detection 
The length of IBD haplotypes (cM) shared between each pairs of PAGE individuals were summed 
to obtain the total length of IBD shared genome-wide between pairs. This was used as the input 
for the construction of an undirected network using the iGraph software in R (version 3.2.0) where 
each individual was represented as a node, weighted edges were used to represent the sum of IBD 
sharing between any give pair. Community detection was then performed using the 
infomap.community() function from the iGraph package. 
 
Application to UK Biobank Data 
Quality control and phasing of the UK Biobank genotype data was performed as previously 
described35. Phased haplotype data for N=487,330 UK Biobank participants in BGEN v1.2 format 
were converted to vcf format using bgenix (v1.0.1) and subsequently converted to PLINK format 
using an in-house python script. After the removal of indels, a total of 655,532 SNPs were retained 
across the autosomes. These sites were used as the input for iLASH, which was run using the 
following parameters: 
 
“perm_count 12, shingle_size 20, shingle_overlap 0, bucket count 4, max_thread 20, 
match_threshold 0.99, intersect_threshold 0.70, max_error 0, min_length 2.9, auto_slice 1, 
cm_overlap 1.4” 
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