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Abstract

Studies in bulk RNA sequencing data suggest cell-type and allele-specific expression of the human
leukocyte antigen (HLA) genes. These loci are extremely diverse and they function as part of the
major histocompatibility complex (MHC) which is responsible for antigen presentation. Mutation and
or misregulation of expression of HLA genes has implications in diseases, especially cancer. Immune
responses to tumor cells can be evaded through HLA loss of function. However, bulk RNA-seq does not
fully disentangle cell type specificity and allelic expression. Here we present scHLAcount, a workflow
for computing allele-specific molecule counts of the HLA genes in single cells an individualized reference.
We demonstrate that scHLAcount can be used to find cell-type specific allelic expression of HLA genes
in blood cells, and detect different allelic expression patterns between tumor and normal cells in patient

biopsies. scHLAcount is available at https://github.com/10XGenomics/scHLAcount.

Introduction

The major histocompatibility complex (MHC) locus of human chromosome 6 is important for antigen pre-
sentation, containing genes for both class I and class IT human leukocyte antigen (HLA). This locus is highly
variable in the human population, with hundreds of characterized alleles that can be considerably divergent.
Class I HLA alleles are responsible for neoantigen presentation, and therefore HLA haplotype information
for a patient is important for developing targeted immunotherapies. Loss of HLA expression or function
is likely a major driver of immunotherapy evasion. Loss of HLA class I expression has been demonstrated
in relapse after immunotherapy treatment of Merkel cell carcinoma (Paulson et al. 2018)) and loss of HLA
class II expression was observed in relapse after hematopoietic stem-cell transplantation for acute myeloid
leukemia (AML) (Christopher et al.|2018]). Genomic loss of heterozygosity of HLA has been detected in 40%
of non-small-cell lung cancers using the LOHHLA algorithm, which uses information about the individual’s

HLA genotype to determine copy number (McGranahan et al. [2017).
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In bulk RNA-seq data, expression of MHC locus genes are often underestimated due to poor mappability
caused by variability in the locus. Tools that build custom diploid references such as AltHapAlignR (W. Lee
et al. 2018) improves expression quantification. HLApers extended the diploid reference model to improve
allele-specific expression estimates (Aguiar et al. [2019) for eQTL mapping.

We seek to apply this concept to single cell gene expression data, such as those produced by 10x Ge-
nomics’ Single Cell Immune Profiling (5’ capture) and Gene Expression (GEX) (3’ capture) Solutions. Single
cell expression analysis software, such as 10x Genomics’ Cell Ranger, produce a matrix of molecule counts
for each gene in each cell. HLA expression is systematically underestimated when using the reference genome
compared to a personalized diploid reference (Aguiar et al.|[2019)). Therefore, as Cell Ranger relies on align-
ment to the reference genome, per-cell molecule counts for HLA genes are also likely to be underestimated,
and potentially skewed by haplotype and population of origin.

HLA allele-specific expression (ASE) has been seen in lymphoblastoid cell lines (Aguiar et al. 2019)).
In a study of allele-specific expression of HLA-A, -B, and -C genes in peripheral blood mononuclear cells
(PBMCs) subsets, no cell type specific allele preference was found (Greene et al. |2011). However, alleles
in the rhesus macaque with significant cell type specific expression were found. Some HLA-C alleles with
consistently higher expression have been found by qPCR (Bettens et al. [2014); this has also been observed
for some alleles of the class II genes HLA-DQB1 and HLA-DQA1 (Zajacova et al. 2018).
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Figure 1: scHLAcount pipeline illustration

Results

scHLAcount is a postprocessing workflow for single cell
gene expression data that performs allele-specific molecule counting for the main HLA class I and class II
genes in each cell based on user-supplied HLA genotypes. Each molecule is assigned to an allele based on
the consensus of pseudoalignments of the constituent reads to a personalized HLA reference graph. The
workflow is illustrated in Figure

We demonstrate that HLA genes present cell-type specific expression (Boegel et al.|2018|) and that HLA

loss of expression can be evaluated per-cell and per-cluster. Using five AML samples published in (Petti
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et al.|2019)) for which HLA class I and class IT genotypes were provided by the authors, we demonstrate the
ability to find cell type specific allele bias when cell types have been annotated using marker genes. We also
analyze data from two Merkel cell carcinoma (MCC) patients published in (Yost et al. 2019) and extend
their finding that HLA class I expression is lost, to show that this expression loss may be allele-specific.
Both datasets illustrate that most molecules in 5° GEX data can be assigned to a specific allele when the

individual is heterozygous, resulting in dataset-wide estimates of allele bias in molecule counts.

Acute myeloid leukemia (AML)

10x Genomics Chromium 5 GEX library data derived from five subjects with AML, as described in (Petti
et al. |2019)) was reanalyzed. Genotypes for HLA-A, -B, -C, -DRB1, and -DQB1 at two-field resolution were
provided by the authors.

Given the genotypes, we built custom diploid references; the allele from GRCh38 primary assembly was
used for genes HLA-DPA1, DPBI1, and DQA1 for which genotypes were not available. Raw scHLAcount

molecule counts are summarized in Table Molecule counts were normalized with the following formula:

median molecule count x raw molecule count/cell molecule count

Normalization and dimensionality reduction of the gene expression matrix generated by Cell Ranger
v2.1.1 was performed using Seurat v3.0.2 (Stuart et al. 2019). For all the biallelic genes in each subject,
we calculated the average normalized expression per gene and the fraction of the normalized expression for
each allele of the nine cell types with at least 100 cells assigned. As observed in the T cell dataset, some
genes had more expression of one allele than the other. Results for subject 809653 with the class II gene
HLA-DRBI are listed in Table [I] and visualized on a t-SNE dimensionality reduction plot in Figure [2h,b.
Depending on cell type, we observe 42% to 54% allelic bias for the DRB*01:03 allele. This allele preference
does not show a trend with average expression. For the same subject, we also observe a 27% to 41% allelic
bias for C*07:02 depending on cell type (Figure ,d; Table .

% of DRB1 molecules | Avg. HLA-DRBI1
Cell type # cells

assigned to 01:03 allele | normalized expression
ERY 3,728 41.9 0.238
T-CELL 10,942 44.8 0.741
PRE-B-CELL 336 474 1.162
B-CELL 868 474 14.185
HSC 2,261 52.1 5.247
MEP 560 53.0 3.411
DEND (M) 620 53.7 17.602
ERY (CD34+) 432 53.9 2.153
MONO 1,366 54.0 7.390

Table 1: Normalized expression and allele-specific expression of HLA-DRBI1 for subject 809653 from (Petti
et al. 2019)), stratified by cell type. Average is taken over all cells assigned to a particular cell type.
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Figure 2: (a) For each cell, color indicates loga(1 + normalized expression) of HLA-DRB1. (b) For each
cell, color indicates the fraction of HLA-DRB1 molecules assigned to an allele that are assigned to the 01:03
allele of subject 809653. Overall, 95.4% of HLA-DRB1 molecules are assigned to an allele. Gray cells have
no HLA-DRBI molecules assigned to an allele. (c) loga(1 + normalized expression) of HLA-C (d) (e) Cell
types as inferred in (Petti et al. .
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% of HLA-C molecules | Avg. HLA-C
Cell type # cells

assigned to 07:02 allele | normalized expression
B-CELL 868 26.7 5.184
MONO 1,366 32.7 5.813
PRE-B-CELL 336 33.9 3.266
DEND (M) 620 35.1 3.890
T-CELL 10,942 37.0 8.926
HSC 2,261 38.8 3.281
MEP 560 40.3 2.578
ERY (CD34+) 432 40.9 2.429
ERY 3,728 41.0 0.386

Table 2: Normalized expression and allele-specific expression of HLA-C for subject 809653 from (Petti et al.
2019)), stratified by cell type. Average is taken over all cells assigned to a particular cell type.

Merkel cell carcinoma (MCC)

Genotypes for genes HLA-A, -B, and -C for the discovery and validation subjects in (Paulson et al. |2018])
were provided by the authors. Here, alleles not explicitly reported in their publication are given a placeholder
name (e.g. ‘A1’). Using scHLAcount with a custom reference for the diploid genotype of genes HLA-A, -B,
and -C (and GRCh38 primary assembly alleles for the class IT genes) we calculated allele-resolved molecule
counts. Raw molecule counts were normalized as described above.

Normalization, dimensionality reduction, and clustering was performed using Seurat v3.0.2 (Stuart et al.
2019) following Paulson et al (Paulson et al.|2018]). For the discovery subject, we used the filtered expression
matrices for tumor and PBMC samples available at GEO accession GSE117988; for the validation subject,
the matrix is available at GSE118056.

Custom | % molecules | Custom | % molecules | Custom | % molecules
Subject Assay type | diploid assigned to | diploid assigned to | diploid assigned to
reference | an allele reference | an allele reference | an allele
HLA-A HLA-B HLA-C
Di
ISCOVELY | 3 X 0.866 5.34 0.391 40.76 0.639 64.31
(Tumor)
Di
ISCOVELY | 2 GEX 0.855 6.42 0.449 45.98 0.767 67.94
(PBMC)
Validati
alidation | oo 0.878 LT | 0.896 91.69 |  0.745 80.68
(Tumor)
Validati
alidation | oo 1.050 87.71 1.073 94.41 1.033 89.65
(PBMC)

Table 3: scHLAcount analysis of discovery patient tumor (2 time points) and PBMC (4 time points) and
validation patient tumor and PBMC (1 time point each) (Paulson et al. |2018). Raw molecule counts for

genes A, B, and C are compared to Cell Ranger counts normalized to 1.0. GEX = gene expression


https://doi.org/10.1101/750612
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/750612; this version posted August 29, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

Discovery subject

For this subject, the “tumor dataset” comprises cells taken from two time points in treatment; the “PBMC
dataset” comprises cells taken from four time points in treatment. Unsupervised clustering of the tumor
dataset resulted in 15 clusters. As described in Paulson et al (Paulson et al. 2018), we identified 11 of
these clusters comprising 7,131 cells as putative tumor cells using the tumor marker genes NCAM1, KRT20,
CHGA, and ENO2 and the non-tumor marker genes CD3D, CD34, CD61, and Fibronectin. The remaining
four clusters contained 300 putative normal cells.

Due to the nature of 3> GEX data, nearly all reads are sequenced from the opposite end of the HLA-A
transcript from the variable sites used to define HLA types These variable sites are mostly located in
exons 2 and 3, while the 3’ end of the transcripts are mostly homologous between the class I genes Boegel
et al. 2018 As a result of the coverage distribution of 3’ GEX data, very few HLA-A molecules could be
assigned to an allele. We observe far fewer molecules from scHLAcount compared to Cell Ranger, especially
in gene HLA-B because UMIs that only contain reads from the 3’ end of the transcript will be ambiguously
aligned to all class I genes and the molecule will not be counted by our algorithm.

As previously reported, HLA-B expression is markedly less in the tumor compared to non-tumor cells
and PBMC (Table . Additionally, HLA-A and HLA-C expression appears to be reduced in tumor cells.

Gene Tumor cells Non-tumor cells PBMC
Genotype (n=7,131) (n=300) (n=12,874)
Average | % molecules | Average | % molecules | Average | % molecules
normalized | assigned to | normalized | assigned to | normalized | assigned to
expression allele 1 expression allele 1 expression allele 1
HLA-A
0.724 24.98 3.392 43.78 1.958 40.83
Al/A2
HLA-B
0.115 76.11 3.156 61.70 1.713 63.97
35:02/B2
HLA-C
0.209 49.54 3.802 59.58 1.918 59.17
C1/C2

Table 4: Average overall and allele-specific expression of HLA class I genes in the discovery subject of (Paul-
son et al. [2018).

Validation subject

For this subject, the “tumor dataset” and “PBMC dataset” comprise cells taken from a single time point
after relapse. Unsupervised clustering of all cells together resulted in 18 clusters. As described in Paulson
et al (Paulson et al. 2018), we identified seven of these clusters comprising 4,682 cells as putative tumor
cells using the tumor marker genes NCAMI1, KRT20, Large T Antigen, and Small T Antigen. Only 17 of
these cells originated from the PBMC dataset. The remaining 6,209 cells were designated putative normal
cells and comprised 5,731 cells from the PBMC dataset and 478 cells from the tumor dataset, which Paulson
et al. 2018| identified as tumor-infiltrating leukocytes and tumor-associated macrophages (Figure )

Compared to Cell Ranger molecule counts, we inferred more molecules for the PBMC dataset and fewer
molecules for the tumor dataset. At least 80% of scHLAcount molecules were assigned to an allele for class
I genes (Table |3).
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Dividing cells into tumor and normal as described above, we corroborate the observation from Paulson
et al. [2018| that HLA-A expression is greatly reduced in tumor cells compared to infiltrating immune cells
(Figure [3h). No marked allele-specific bias in expression is observed in cells in either category. Additionally,
we observe decreased expression of HLA-B and HLA-C in tumor cells (Figure [3,e). While non-tumor cells
display approximately balanced expression of the two alleles of these genes, tumor cells have only 13% of
allele-resolved HLA-B expression from allele 35:01 and 6% of allele-resolved HLA-C expression from allele
‘C1’ (Table .

Gene Tumor cells Non-tumor cells
Genotype (n=4862) (n=6209)
Average | % molecules | Average | % molecules
normalized | assigned to | normalized | assigned to
expression allele 1 expression allele 1
HLA-A
0.060 39.7 4.154 56.8
02:01/A2
HLA-B
0.511 13.4 5.172 50.4
35:01/B2
HLA-C
0.327 6.3 4.991 46.8
C1/C2

Table 5: Average overall and allele-specific expression of HLA class I genes in the validation subject of (Paul-
son et al. [2018)).

Discussion

Tumor evasion of immunotherapy is of growing concern, as novel and expensive treatment modalities find
themselves stymied by this evolutionary response. scHLAcount provides a simple way to assign reads from
scRNA-seq experiments to MHC alleles. This is a powerful tool for investigating allele-specific expression,
loss of heterozygosity, and mutational or epigenetic suppression of HLA expression in tumor immune-evasion.
Additionally, using a personalized reference and counting with scHLAcount often recovers more molecules
than using the standard reference and counting with Cell Ranger. This has the potential to improve gene
expression based clustering in cells where MHC genes are a major component of the expression profile.

scHLA count could be extended to also apply to any other locus where there is common structural variation
present in the human population. The approach of using De Bruijn graphs to improve isoform and haplotype
quantification has been considered before (Patro et al. 2017; Bray et al. [2016]), but has not yet been applied
to scRNA-seq data until this study. A recent pre-print (Tian et al.|[2019)) genotyped individual cells for HLA
class I using scRNA-seq data but did not address allele-specific expression on the molecule level.

We have found that 5> GEX data is preferable to 3° GEX data for genotyping and assigning molecules
to alleles, because the sequencing coverage is not as limited to one end of the transcript (Figure . Since
the three class I genes have considerable sequence homology except in exons 2 and 3 and virtually all of the
coverage of 3’ GEX data falls in the later exons, few UMIs have a read from the variable exons and could
be assigned to a specific allele, and many UMIs have reads only in regions homologous among the 3 genes

and thus these molecules are not counted.
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Figure 3: loga(1 + normalized expression) of HLA-A (a) HLA-B (b) and HLA-C (c) and allele preference
for HLA-A*02:01 (d) HLA-B*35:01 (e) and HLA-C1 (f) for the validation subject of (Paulson et al. 2018]).
Values are plotted per cell; aggregate statistics shown in Table (g) Cell types inferred using marker genes.


https://doi.org/10.1101/750612
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/750612; this version posted August 29, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

Methods and Materials

The numbered steps in Figure |1 correspond to the numbers in parentheses in this section.

To make FASTA files of the coding and genomic sequences of the alleles present in the sample (1), users
need to provide a list of genotypes (2) and download the IMGT/HLA allele sequence database (3). These
genotypes can be assayed by specialized molecular tests, such as sequence-specific oligonucleotide probe PCR
(PCR-SSOP), sequence-specific primed PCR, (PCR-SSP), or Sanger sequence-based typing (SBT) (Erlich
2012). Alternatively, algorithms for sequence-based typing from next-generation sequencing reads of the
genome, exome, or transcriptome utilize comprehensive allele databases such as IMGT/HLA (Robinson et
al. 2015)) to successfully infer genotypes (reviewed in Bauer et al. |2018). Following the pseudoalignment
approachBray et al. 2016, scHLAcount builds two colored De Bruijn graph indexes, one containing the CDS
sequences and one containing genomic sequences, using a k-mer length of 24.

Reads aligned to the MHC region (GRCh38 coordinates chr6:28510120-33480577) (4) corresponding
to valid cell barcodes (5) are extracted from the BAM file (6). Each read is first pseudo-aligned to the
CDS graph, yielding the set of alleles that could have generated the read (also referred to as the equivalence
class) Bray et al. 2016, If there is no alignment of at least 60 bases (2 mismatches are permitted outside the
initial seed kmer), the read is pseudo-aligned to the genomic sequence graph and retained if the alignment
is at least 60 bases. (7) In the datasets studied, less than 5% of reads that failed to align to the CDS were
successfully aligned to the genomic sequence. This genomic alignment step is intended to rescue reads that
may be haplotype specific in 3’ or 5> UTR regions. It also provides a mechanism to handle single nuclei
RNA-seq libraries.

Reads sharing a cell barcode and unique molecular identifier (UMI) are assumed to originate from the
same RNA molecule. At recommended sequencing depths with modest sequence saturation, there are typ-
ically 1-3 reads per UMI. Individual reads may have different equivalence classes according to their pseu-
doalignment. We ignore reads whose equivalence class contains more than one gene. If more than half of the
reads from a molecule are assigned to a particular gene, that molecule will get counted to one of its alleles
(e.g. HLA-A 02:01), based on the constituent reads’ equivalence classes. In the case of ambiguity, it will get
counted to that gene (e.g. HLA-A) instead. The output is a sparse molecule count matrix (8) where each

column corresponds to a barcode in the provided cell barcode list, and each row corresponds to an allele.
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Supplementary Material

GRCh38 primary assembly alleles. Genotypes present in GRCh38 primary assembly were inferred
using Kourami v0.9.6 (H. Lee and Kingsford [2018]). 2 million 200bp error-free reads were simulated from
GRCh38 Chr6:28510120-33480577, which is approximately 80-fold coverage of the region. Reads were aligned
to the Kourami reference panel and genotypes were inferred; all listed genotypes had 100% sequence identity
with respect to the corresponding database sequence.

A*03:01:01G

B*07:02:01G

C*07:02:01G

DQA1*01:02:01G

DQB1*06:02:01G

DRB1*15:01:01G

DPA1*01:03:01G

DPB1*04:01:01G

On the scRNA-seq dataset from donor 4 from 10X Genomics [2019)]
scHLAcount analyzed 58 million reads aligned to the MHC region in 83 minutes (55 minutes spent genotyp-

Computational performance.

ing; 28 minutes spent counting). Maximum memory usage was 1.5 GB.

Subject | HLA-A HLA-B HLA-C HLA-DQB1 | HLA-DRB1
508084 | 68:01/01:01 | 07:02/27:05 | 07:02/07:04 | 05:01/06:02 | 01:01/15:01
548327 | 68:01/02:06 | 51:01/44:05 | 02:02 02:02/02:01 | 07:01/03:01
721214 | 03:01/01:01 | 18:01/14:01 | 08:02/07:40 | 03:02/02:02 | 07:01/04:03
782328 | 32:01 37:01/15:01 | 06:02/03:04 | 05:01/03:02 | 04:01/10:01
809653 | 68:02/31:01 | 27:05/14:02 | 08:02/07:02 | 03:01 11:01/01:03

Table S1: Genotypes for subjects from Petti et al.2019) provided by the authors in personal communication

with permission to include here. Genotypes shared with the GRCh38 primary assembly are in bold text.
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Custom | % molecules | Custom | % molecules | Custom | % molecules | Custom | % molecules
Subject | diploid assigned to | diploid assigned to | diploid assigned to | diploid assigned to

reference | an allele reference | an allele reference | an allele reference | an allele

HLA-A HLA-B HLA-C HLA-DQB1

508084 1.039 95.13 1.066 87.22 0.885 60.77 1.028 95.89
548327 1.165 86.26 1.061 93.09 1.032 n/a 2.721 2.27
721214 1.180 69.44 1.137 90.09 0.908 93.63 3.319 98.95
782328 1.154 n/a 0.880 63.95 0.957 89.77 1.010 99.15
809653 1.083 87.21 1.154 96.53 0.911 91.74 1.070 n/a

Custom | % molecules
Subject | diploid assigned to GRCh3S GROD3S GROh3S

allele allele allele
reference | an allele
HLA-DRB1 HLA-DPA1 | HLA-DPB1 | HLA-DQA1
508084 1.641 74.60 1.135 1.024 1.086
548327 1.920 89.52 1.180 1.172 2.087
721214 1.745 89.05 1.217 1.050 2.058
782328 1.125 92.12 1.276 1.078 1.274
809653 1.066 95.43 1.136 1.050 1.455
Table S2: Using the custom diploid reference or GRCh38 allele as denoted, raw molecule count for each gene

is compared to Cell Ranger counts normalized to 1.0. Subject 548327 is homozygous for HLA-C, Subject
782328 is homozygous for HLA-A, and Subject 809653 is homozygous for HLA-DQB1.
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Figure S1: Read coverage of HLA Class I genes for 3’ GEX and 5’ GEX. Minimum and maximum coverage
for each assay in the region shown is normalized to 0 and 1 respectively. The 3’ dataset is merged from
SRR7722937-SRR7722942 and the 5’ dataset is SRR7692286 (Paulson et al. [2018]). GEX = gene expression
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