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Abstract 

The identification of community structure in graphs continues to attract great interest in several 

fields. Network neuroscience is particularly concerned with this problem considering the key roles 

communities play in brain processes and functionality. Most methods used for community 

detection in brain graphs are based on the maximization of a highly parameter-dependent 

modularity function. In practice, the parametrization of this function often obscures the physical 

meaning and hierarchical organization of the partitions of network nodes. In this work, we present 

a new method able to detect communities at different scales in a natural, unrestricted way. First, 

to obtain an estimation of the information flow in the network we release random walkers to freely 

move over it. The activity of the walkers is separated into oscillatory modes by using empirical 

mode decomposition. After grouping nodes by their co-occurrence at each time scale, the so-called 

k-modes clustering returns the desired partitions. Our algorithm was first tested on benchmark 

graphs with favorable performance. We used the method on brain networks, including the 

anatomical connectivity of the macaque and human brains and a model for the interactions between 

nodes. We found a repertoire of community structures in the anatomical and functional networks, 

with a clear link existing between these two. The observed partitions range from the evident 

division in two hemispheres –in which all processes are managed globally– to specialized 

communities seemingly given by physical proximity and shared function. Our results stimulate the 

research of hierarchical community organization in terms of temporal scales of information flow.   

 

 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 22, 2019. ; https://doi.org/10.1101/743732doi: bioRxiv preprint 

https://doi.org/10.1101/743732


3 

 

Highlights 

- Oscillatory modes of networks’ signals carry information on architectural rules. 

- Meaningful partitions of the brain network are found over different temporal scales. 

- The multiscale organization of the brain responds to the function of its components.  
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 1. Introduction  

Network community detection constitutes a problem of current vital importance. Among all 

the nodes and interactions constituting a network, structures of subdivisions exist. In each of these 

communities (also referred as groups or clusters), nodes have a greater probability of being locally 

connected than to nodes in other groups (Fortunato & Hric, 2016; Garcia, Ashourvan, Muldoon, 

Vettel, & Bassett, 2018). One example with several applications in the literature (Girvan & 

Newman, 2002; Porter, Mucha, Newman, & Warmbrand, 2005; Traud, Kelsic, Mucha, & Porter, 

2011) is the tight-knit of a person’s friendships and the exchanges they have with other groups of 

friends. The identification of community structures provides insights into organizational 

principles, not only in terms of isolation of the clusters per se but also for the collective dynamical 

spreading of processes over the network (Fortunato & Hric, 2016).  

In the brain, neural units connect to one another over different spatio-temporal scales in 

intriguing and fascinating ways (Breakspear, Sporns, Honey, & Ko, 2007; Moradi, Dousty, & 

Sotero, 2019; Sotero & Trujillo-Barreto, 2008; Valdes-Sosa et al., 2009). The modularity of a such 

system is believed to critically impact the phenomena of segregation (processes occurring in 

groups of heavily interconnected brain units) and integration (the combination of information 

exclusive to specialized brain regions) (Rubinov & Sporns, 2010; Sporns, 2013). Other advantages 

of a community structure relate to adaptability, robustness to failure and the reduction of wiring 

costs –see (Garcia et al., 2018) and (Betzel et al., 2017) and the references therein. Additionally, 

grouping exists across different levels (a hierarchy) for supporting rapid responses to changes 

(Garcia et al., 2018). As an illustration, consider the large community of neural conglomerates in 

one cerebral hemisphere. This can be broken into smaller communities according to the functional 

role of their members (Thomas Yeo et al., 2011). An important initial step for the study of brain 
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structure, however, is the definition of the nodes and edges in the graph and the scale to be 

considered. This selection relies on the data available, which depends on the imaging modality 

used to record it. For example, anatomical associations can be examined through diffusion 

weighted magnetic resonance imaging data (DWMRI) and functional neuroimaging or 

electrophysiological methods, e.g., fMRI and electroencephalogram provide insights into the 

dynamic interactions between brain regions (Y. Iturria-Medina et al., 2007; Valdes-Sosa et al., 

2009).  

Regardless of the network data, the bulk of community studies in the brain use variants of 

Newman’s modularity function (Newman, 2006) and its maximization through Louvain-like 

algorithms (Blondel, Guillaume, Lambiotte, & Lefebvre, 2008) for the detection of clusters of 

regions (Sporns, 2013). The partitions obtained through these methods maximize intra-community 

edge weights relative to a specific random network null model (Bassett et al., 2013; Garcia et al., 

2018). Overall, these algorithms are problematic in that the output structure depends on the chosen 

null model and on a resolution parameter, 𝛾, as well.  Exploration of the resolution parameter space 

yields several structures which occasionally present hierarchy (Bassett, Khambhati, & Grafton, 

2017). How could one set 𝛾 so that a meaningful set of communities –and not any partition– is 

revealed? In many instances, researchers exclusively report the partition obtained for 𝛾 = 1 

(Fukushima et al., 2018). Nevertheless, it is known that high-modularity partitions can be found 

for 𝛾 = 1 in random, unstructured graphs, where no community structure should be detected 

(Fortunato & Hric, 2016).  More recently, a useful heuristic has been introduced to retain the so-

called graph’s most salient partition (Bassett et al., 2013; Garcia et al., 2018). In brief, a grid search 

is performed on the resolution parameter to find the value that generates the set of partitions with 

the greatest similarity. However, modularity maximization tends to split large communities in 
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smaller pieces, which is a consequence of the choice of the null model. This effect is not solved 

by multi-resolution approaches (Fortunato & Hric, 2016). These techniques have also been adapted 

to generate hierarchical output structures (Ashourvan, Telesford, Verstynen, Vettel, & Bassett, 

2019; Jeub, Sporns, & Fortunato, 2018) though the limitations with regard to the choice of null 

models and resolution parameters persist.  

Other algorithms exist with somewhat fewer applications in brain research (Fortunato & 

Hric, 2016; Gates, Henry, Steinley, & Fair, 2016).  Given the connectivity characteristics of 

communities, the utilization of random walkers for their identification is fairly straight-forward. 

Walkers tend to stay trapped in a cluster before transitioning to a different group (Fortunato & 

Hric, 2016). Walktrap (Pons & Latapy, 2005) and Infomap (Rosvall & Bergstrom, 2008) are 

examples of detection methods that employ random walk dynamics. The former is a costly, 

parameter-dependent method that exploits the probability of transition between two nodes in a 

certain number of steps as a measure of vertex similarity to group nodes. In the latter, a codeword 

is assigned to each vertex the walker encounters. Infomap considers networks with community 

structure to be analogous to geographical maps: unique codewords (street names) are only 

necessary to identify nodes (streets) in one specific community (city). Although Infomap has 

proven effective in artificial benchmark graphs and large datasets, it has performed more poorly 

in classical real networks traditionally utilized for testing algorithms (Gates et al., 2016; Hric, 

Darst, & Fortunato, 2014), e.g. the Zachary karate club (Girvan & Newman, 2002; Zachary, 1977). 

Those networks, for which ground-truth partitions are known, resemble some commonly analyzed 

brain graphs in that they have relatively small size and present various types of adjacency matrices, 

e.g., sparse, like those obtained from DWMRI or dense, from fMRI (Gates et al., 2016).  
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The description in terms of dynamical flows, as utilized in Walktrap and Infomap despite 

the above-mentioned limitations, is one that appeals to neuroscientists. In the first place, structural 

features like node degrees, number of edges of the brain graph, etc., condition the dynamics of 

network processes (Fortunato & Hric, 2016). Secondly, the transmission of information in the 

brain is, obviously, a dynamical process (Sotero, Sanchez-Rodriguez, Dousty, Iturria-Medina, & 

Sanchez-Bornot, 2019), brain connectivity being adaptive and function-sensitive within the 

context of structural constraints (Friston, 2011). For these reasons, we believe that the analysis of 

community structure and the identification of hierarchical architectures in brain networks can 

benefit from taking into account the dynamical aspects of its information flow. Thus, in this paper, 

we present a novel approach to community detection specifically designed for brain graphs, 

although not limited to them. 

We build on the methodology introduced by Sotero et al. in recent work (Sotero et al., 2019). 

These authors studied information flow in brain networks by using the fraction of walkers that a 

given one finds at each node as the variable describing the evolution of the walker over the 

network. This function of time, taken as the network’s signal, can be decomposed into its 

constituent frequencies  by using empirical mode decomposition (EMD) (N. E. Huang et al., 1996). 

Each of these oscillatory modes then associates with the notion of a temporal scale. Here, we 

incorporate a final step for performing data partitioning through 𝑘-modes clustering (Z. Huang, 

1998). The arrangement of the nodes visits recorded throughout the walkers’ flows at the different 

temporal scales allows the unveiling of a hierarchical organization. Intuitively, a walker would 

spend considerable times in large communities, which is seen in slow oscillatory modes. 

Analogously, fast modes could reflect the motion over smaller clusters. Initially, we test the 

algorithm on benchmarks and real networks with known community structure such as Girvan-
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Newman (Girvan & Newman, 2002), Lancichinetti-Fortunato-Radicchi (Lancichinetti, Fortunato, 

& Radicchi, 2008) and the Zachary karate club (Zachary, 1977). We then proceed to extract 

communities existing in macaque and human anatomical connectivity matrices, as well as in-silico 

functional connectivity graphs built over the human brain anatomical network. Meaningful 

patterns of communities obtained here support the reliability of our method.  

2. Materials and methods  

2.1 The network’s signal 

Let us imagine a network of 𝑛 nodes, possibly presenting community structure, in which a 

random walker is set free. The walker moves over the edges available to it. In general, the 

probability of transitioning from node 𝑗 towards node 𝑖 in the next time step is given by (Zhang, 

Shan, & Chen, 2013):  

𝑝𝑗→𝑖 =
𝐶𝑗𝑖

∑ 𝐶𝑗𝑖
𝑛
𝑗=1

          (1) 

where 𝐶𝑗𝑖 is the weight of the connection from area 𝑗 to area 𝑖. The walker tends to visit the nodes 

in a community before a route takes it to an outsider, a member of a different community 

(Fortunato & Hric, 2016). This is because of the predominantly local connectivity pattern of 

communities. Now, suppose that 𝑊(𝑊 ≫ 𝑛) walkers simultaneously move over the same 

network. Each time one walker appears in a node, it finds fellow walkers, while others visit 

different nodes. Let us compute, for each walker, the fraction of the total number of other walkers 

that it encounters at each time step. After 𝑇 time steps, there exist 𝑊 time series reflecting different 

realizations of the flow of information in the network (Sotero et al., 2019). Those series incorporate 

information on the structure of the network (e.g., the number of walkers at a hub is expected to be 

persistently high), and the paths therein existing (i.e., the random walk itself). Finally, for 

generalization purposes –as the ratio of walkers would depend on the size of the network– we 
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standardize such time series. Fig. 1a shows an exemplary signal corresponding to one of the 

walkers flowing over one of the networks considered in this paper. The horizontal axis is two-fold, 

showing both the temporal iteration (lower) and the indexes of the nodes the selected walker visits 

at each time step. Given the size of the graphs in this study, i.e., brain networks with 𝑛~102, we 

fix 𝑊 = 1000. 

The representation of the network we come up with can be decomposed to obtain oscillatory 

modes at different time scales. The temporal scales of random walks processes in complex 

networks depend on the network structure (Sotero et al., 2019). In other words, the network 

structure can be seen through different dynamical levels ranging from slow time scales in which 

walkers practically travel through the entire network to faster scales consisting, for instance, of the 

abrupt transitions from one node to the next. Empirical mode decomposition (EMD) (N. E. Huang 

et al., 1996) solves the problem of finding a nearly orthogonal basis for any complicated, nonlinear 

and non-stationary process without the need for any predefined model. The components into which 

the signal is broken down representing temporal scales are conventionally called intrinsic mode 

functions (IMFs). Each of these satisfy that: 1) the number of zero-crossings and extrema of the 

function are either equal or differ by one, and 2) the mean of its upper and lower envelopes is zero. 

Components are different as to conveyance of information (Sotero, 2016). For notation purposes, 

IMF1 denotes the fastest mode (highest frequency). The rest are named accordingly.    

 In our interpretation oriented to community detection, IMFs of the fraction of walkers-signal 

reflect hierarchical organization of the network. For example, fast temporal scales of the fraction 

of walkers could associate with partitions composed of small groups of nodes. In slower modes, 

the walker may get to visit all the nodes existing in larger communities. To give an example, as 

shown in Fig. 1b, a walker may quickly transition over nodes 74, 76, 65, 54 and 60 (seen with 
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IMF2) or more slowly appear at those but also at others (IMF4). The five elements mentioned above 

may represent a community; those and the ones identified by the green color, may constitute a 

broader community.  

 

Fig. 1 goes around here  

Fig. 1. A typical network’s signal. a)  Standard fraction of other random walkers one walker finds 

while flowing in a network. The lower horizontal axis shows the temporal progression of the 

walker. The upper axis shows the succession of nodes it visits. b) Empirical mode decomposition 

of the signal in (a). The activity of five nodes that are found between two zero-crossings of IMF2 

is highlighted in blue. Together with those, other nodes appear between zero-crossings of IMF4 (in 

green). Only the first 30 time steps of 𝑇 = 5000 are shown for visualization purposes.  

 

2.2 Finding nodes that cluster together 

The following step consists of exploiting the features of the IMFs and grouping nodes 

together. For each oscillatory mode and walker, we take chunks of data consisting of the network 

nodes seen between zero crossings. In our previous example, 74, 76, 65, 54 and 60 would be one 

of such data chunks for the fast IMF2 (Fig. 1b).  Other sets of nodes will appear in different 

portions. One may think of our selection of the chunks in terms of the oscillations of a spring-mass 

system. There, points to the right/left of the zero reference cluster together (the spring is 

stretched/compressed). Each time the signal for the displacement of the mass passes through the 

equilibrium position it is also switching from one ‘community’ to the other. The zero crossings-

analogy bases on the interpretation and symmetry properties of the IMFs. In practice, nodes outside 

a certain true community 𝐶𝑞, may occasionally pertain to a chunk of otherwise genuine members 
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of 𝐶𝑞, given the existence of edges to that community. Likewise, all nodes belonging to a 

community do not necessarily have to appear together between two contiguous zero crossings. The 

problem is how to identify authentic node clusters over the effects of noise with the information 

available from the IMFs. To address this issue, we turn to unsupervised learning, particularly to 

clustering. In clustering analysis, the goal is to group objects based on the information available –

features describing the data (Assent, 2012; Ronan, Qi, & Naegle, 2016; Steinbach, Ertöz, & 

Kumar, 2004). The more similar items in a group are and the more different to those in other 

groups, the better the clustering (Steinbach et al., 2004).   

To capture the natural structure of the data, we proceed to cluster network nodes –or objects, 

in conventional clustering jargon– given their co-appearance between zero-crossings of the IMFs 

–the features. Features are binary vectors encoding the positions of the nodes appearing together 

in the between zero-crossings chunks. This yields a complete representation of the IMFs 

corresponding to each walker in terms of binary variables (Fig. 2a). To ensure a proper sampling 

of all nodes and their co-appearances, we select the features corresponding to a high number of 

walkers (200 out of the 1000 simulated). This is a random selection, in the same way that subsets 

of variables are sometimes chosen when clustering data with multiple independent signals (Jiliang 

Tang, Salem Alelyani, & Huan Liu, 2014; Ronan et al., 2016). 

Here, we employ the so-called k-modes clustering algorithm (Z. Huang, 1998). K-modes is 

an extension of the popular k-means method (Macqueen, 1967) for categorical variables, binary 

features being a particular case of those. A simple matching dissimilarity is used as notion of 

distance in k-modes. Two objects, 𝒙 and 𝒚 are far from each other by a quantity that equals the 

number of mismatching features (of 𝑀 features), namely: 

𝑑(𝒙, 𝒚) = ∑ 𝛿(𝒙𝑙, 𝒚𝑙)
𝑀
𝑙=1 , 𝛿(𝒙𝑙, 𝒚𝑙) = {

0      (𝒙𝑙 = 𝒚𝑙)

1      (𝒙𝑙 ≠ 𝒚𝑙)
     (2) 
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 The algorithm minimizes a cost function after a vector (the mode1) for each of the k clusters 

has been selected and objects grouped around it such that their dissimilarity is minimal. Alike k-

means, Huang’s k-modes yields locally optimal solutions depending on the starting conditions. 

Thus, one necessary first step is running the algorithm several times to select the solution with the 

lowest overall cost. The number of initial conditions for the clustering algorithm is empirically set 

to 50 in this work, based on the consistency of the solutions obtained.  With all these considerations 

k-modes is run (Fig. 2b). The implementation of k-modes we used is available from 

https://github.com/nicodv/kmodes.  

2.3 Accepting/rejecting hierarchical partitions 

Clustering algorithms generally find clusters even in absence of underlying structure, 

highlighting the necessity of validating solutions (Ronan et al., 2016). In k-modes, objects are 

allocated in k clusters exactly. However, unless the user has prior knowledge on the distribution 

of the data –which rarely occurs– k is a parameter to be determined. Several metrics are intended 

to elucidate the correct number of clusters in the data from running the algorithm over a range of 

k. These metrics use measures of separation, compactness, or both. Various studies, most famously 

the one by Milligan and Cooper (Milligan & Cooper, 1985), have looked at the performance of 

indexes for assessing the results over numerical data and Euclidean distances. To the best of our 

knowledge, such measures have not been transformed to account for categorical data (binary, in 

particular) and matching dissimilarity, as recommended by Huang in his seminal paper (Z. Huang, 

1998). Therefore, in Appendix B, we briefly describe six measures with satisfactory performance 

for recovering true cluster structure, i.e.: the Calinski-Harabasz index (Anderson, 2001; Calinski 

                                                 
1The terms employed here are mostly faithful to the ones used in each of the parts combined. This is why the word 

mode appears with two meanings: one refers to the oscillatory functions in which a signal can be decomposed (the 

intrinsic mode functions), the other represents ‘the centroids’ of the clusters of nodes obtained with binary features 

(as in k-modes clustering). 
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& Harabasz, 1974), the C-index (Milligan & Cooper, 1985), a modified Duda-Hart criterion 

(Duda, Hart, & Stork, 2001), silhouette width (Kaufman & Rousseeuw, 1990), one of the family 

of Dunn indexes (Bezdek & Pal, 1998; Dunn, 1973) and the Davies-Bouldin index (Davies & 

Bouldin, 1979; Dubes, 1987). Details on their utilization and customization to account for binary 

data, if applicable, are also included. Importantly, as the success ratio of an individual index in 

determining the true number of clusters is limited and may depend on the data (Dubes, 1987; 

Milligan & Cooper, 1985), here, we adopt the criterion of selecting the best number of clusters 

based on a majority rule (Charrad, Ghazzali, Boiteau, & Niknafs, 2014). Failure to establish a 

majority of the indexes indicating the same correct number of clusters may hint at the lack of a 

definitive community pattern. This is usually accompanied by at least one of the indexes rejecting 

the existence of community structure altogether (see Appendix C). Fig. 2c shows an example in 

which the majority of the validation measures indicate the existence of 𝑘 = 4 clusters, to finalize 

the illustration of the basic pipeline of our method. For the networks considered in this paper, 

distributions of nodes in up to 20 clusters only were investigated.   

 

Fig. 2 goes around here  

Fig. 2. Clustering network nodes. a)  For each IMF, ‘features’ are constructed so that nodes 

appearing together between zero-crossings of the IMF are assigned a logical 1. For example, 

Feature 2 here corresponds to the highlighted nodes for IMF4 of Fig. 1b. Such description is 

extended through all zero-crossings of one IMF and to other walkers to guarantee a proper 

sampling of the network nodes and their close acquaintances in the temporal scale. b) The obtained 

data matrix feeds a k-modes clustering algorithm. For one instance of the data and 𝑘 = 4 clusters, 

the algorithm returns the solution shown (e.g. nodes 76, 77 and 78 are in “community 3”). c) After 
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exploring the 𝑘-space, all the solutions are considered according to several validation indexes. In 

the example, the Calinski-Harabasz index and the silhouette width, both presenting an absolute 

maximum, together with C-index and the Duda-Hart measure (having absolute minimums), 

suggest the existence of 4 clusters in the data. This is sufficient to come to a conclusion although 

the resting indexes (Dunn and Davies-Bouldin) present relative maximum and minimum at 𝑘 = 4, 

respectively, which according to their definition may as well indicate the presence of network 

organization in 4 communities. Values of 𝑘 for which k-modes yields singleton communities are 

not shown (𝑘 = [13, 20], 𝑘 ∈ ℕ).  

The process illustrated in this figure should be performed for many combinations of walkers (to 

build consensus partitions) and for all the IMFs (to unveil hierarchical organization).   

 

The exploration over values of k should be performed for each of the IMFs. The following 

intuitive rule of thumb is followed. First, take the slowest IMF in the decomposition of the signal 

corresponding to the fraction of walkers. After running the clustering algorithm, determine the 

number of communities existing. Move on to the next IMF and determine its corresponding 

partition and the number of clusters present. If this number is equal to any obtained beforehand, 

reject the previous partition and accept only the current one. Else, retain both partitions (with 

different numbers of clusters). Proceed with the analysis until all the IMFs have been considered. 

This way, a hierarchical organization is unveiled.  

One last issue to consider is the stochasticity that is inherent to most community detection 

techniques (Bassett et al., 2013; Fortunato & Hric, 2016). In our method, this is expressed as sets 

of randomly chosen walkers which are considered to build clustering features. The application of 

the clustering algorithm over those subsets of features can yield slightly different partitions. To 
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present unique partitions, we use consensus clustering (Strehl & Ghosh, 2003). One starts by 

building a consensus matrix, 𝑻, that accounts for the co-occurrence of nodes in communities. Non-

significant relationships between nodes are removed by thresholding the co-occurrence matrix. 

Such threshold is set to the highest value of all co-occurrences in the association matrix resulting 

from random permutations of the original partitions (Bassett et al., 2013). Then, the algorithm is 

applied over 𝑻 until all the partitions are identical (the ‘true-partition’). The results reported in this 

paper correspond to the consensus partition after applying k-modes clustering to 50 sets of 

independent features for each of the networks. Their similarity with known ground-truth 

communities is analyzed by using adjusted mutual information, AMI (N. Vinh, Epps, & Bailey, 

2010) (see Appendix D).  

2.4 Data description and processing 

2.4.1 Benchmarks 

Artificially generated graphs and a real network with known group structure were used to 

assess the performance of our algorithm. We chose simple benchmark graphs with features alike 

the brain networks for which the application was intended, e.g. similar number of nodes. 

2.4.1.1 Girvan-Newman benchmarks (GN) 

These graphs are random with known community structure. A GN benchmark consists of 

128 nodes and four communities, with 32 nodes each. The average expected degree of a node is 

16 (Girvan & Newman, 2002).  A fraction of those connections (𝜇) is made to vertices in other 

communities. As such fraction increases, algorithms usually struggle to pinpoint the underlying 

community structure. Here, we set 𝜇 = 0.1 (Lancichinetti & Fortunato, 2009) and applied our 

detection algorithm over both binary and weighted versions of the GN model. One limitation of 

GN is its inability to reproduce the scale-free property of real networks (heterogeneous node degree 
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distributions, node degree and community sizes following a power-law distribution) (Lancichinetti 

et al., 2008).  

2.4.1.2 Lancichinetti-Fortunato-Radicchi benchmarks (LFR) 

A more realistic benchmark, LFR does account for the heterogeneous and skewed 

distribution of the degree and community size. Both these parameters are chosen from power-law 

distributions.  Networks are built by joining stubs at random (Fortunato & Hric, 2016; 

Lancichinetti et al., 2008). We kept the value of the mixing parameter at 0.1. The average degree 

in a network of 𝑛 = 100 nodes was set to 13 and the upper extreme of the degree distribution to 

27. Consequently, the randomly generated networks (binary and weighted) utilized here had 5 

communities, with sizes [26, 23, 21, 20, 10].  

The GN and LFR networks used in this work were generated by using code available from 

(https://sites.google.com/site/santofortunato/inthepress2). All the code parameters were set to their 

default values except for the ones above-mentioned.  

2.4.1.3 Zachary’s karate club 

The karate club network collects the interactions of 34 individuals over three years (Zachary, 

1977). A conflict over the price of the karate lessons escalated and provoked the fission of the 

group as the supporters of the club’s instructor formed a new organization, separate from the 

original one that stayed with the president. Thus, Zachary’s data encompasses one of the few 

examples of nearly-definitive ground-truth communities, the two resulting groups (Hric et al., 

2014). Many of the detection algorithms existing in the literature are tested on their ability to 

recuperate Zachary’s factions. Such task is usually performed over a binary connectivity matrix 

for the members of the club (Girvan & Newman, 2002; Hric et al., 2014; Newman, 2004). In this 

study, instead, we used the weighted version provided by Zachary, in which the strength of an edge 
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is given by the number of external contexts where interactions between two individuals were 

observed (see Appendix A, Fig. S1, for the adjacency matrix that fixes some inconsistencies in 

Zachary’s report). The weights were normalized to the [0,1] interval.  

2.4.2 Brain networks 

The community structure of several brain graphs was investigated. The anatomical 

connections of both the macaque and human brains as well as a model of functional interactions 

based on Kuramoto oscillators that were considered here are detailed in what follows.  

2.4.2.1 Macaque visual and sensorimotor anatomical network  

Cortico-cortical connections existing between large-scale areas of the macaque neocortex 

have been identified through anatomical tracing studies (Malcolm P Young, 1993). Among all the 

areas and pathways summarized in Young’s paper, only those lying in the cortical visual and 

somatosensory-motor systems are considered here (see Fig. S2). This connectivity matrix, with 46 

nodes, is only slightly different than the one utilized in the network structure study by Honey et al. 

(Honey, Kotter, Breakspear, & Sporns, 2007), where visual areas were labelled following 

(Felleman & Van Essen, 1991). Several connections are reciprocal. However, in general, the 

network is directed and binary, with 1’s in a row indicating the efferent projections reported for 

the given area –see (Van Essen & Felleman, 1991; M P Young, 1993) for more details on the 

cortical areas.  

2.4.2.2 Human brain anatomical network 

An average human brain anatomical network (Yasser Iturria-Medina, Sotero, Toussaint, & 

Evans, 2014) was also constructed and analyzed in this study. The original data is freely available 

by The Cognitive Axon (CoAx) Lab, in the Center for the Neural Basis of Cognition and 

Department of Psychology at Carnegie Mellon University 
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(http://www.psy.cmu.edu/~coaxlab/data.html), who acquired and processed the data. Participants 

in the study included 60 subjects (29 males and 31 females; ages 18 to 45 years, mean 26 ± 6), 

recruited from the local Pittsburgh community and the Army Research Laboratory in Aberdeen 

Maryland. All subjects were neurologically healthy, with no history of either head trauma or 

neurological or psychiatric illness.  

2.4.2.2.1 Ethics statement 

The procedure was approved by the institutional review board at Carnegie Mellon 

University. Participants provided informed consent to participate in the study and consent to 

publish any research findings based on their provided data (Dunovan, Lynch, Molesworth, & 

Verstynen, 2015). 

 2.4.2.2.2 Image acquisition 

Participants were scanned on a Siemens Verio 3T system in the Scientific Imaging & Brain 

Research (SIBR) Center at Carnegie Mellon University using a 32-channel head coil. Image 

collection was performed with the following parameters: 50 min, 257-direction DSI scan using a 

twice-refocused spin-echo EPI sequence and multiple q values (TR = 9916 ms, TE= 157 ms, voxel 

size = 2.4×2.4×2.4 mm, FoV = 231×231 mm, b-max = 5,000 s/mm2, 51 slices). Head movement 

was minimized during the scan. 

2.4.2.2.3 Image processing 

 All images were processed using a q-space diffeomorphic reconstruction method (Yeh & 

Tseng, 2011) to register the voxel coordinates into MNI space (Evans, Kamber, Collins, & 

MacDonald, 1994). Orientation distribution functions (ODFs) were reconstructed to a spatial 

resolution of 2 mm3.  As a result of the processing across all 60 subjects, a final template image 
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(CMU-60 DSI) was created by averaging the ODF maps. This template constitutes a detailed and 

unbiased representative map of the nervous fiber orientations in the young healthy brain.   

Next, we estimated probabilistic axonal connectivity values between each brain voxel and 

the surface of each considered gray matter region (voxel-region connectivity) using a fully-

automated fiber tractography algorithm (Y. Iturria-Medina et al., 2007) and the intravoxel fiber 

ODFs of the CMU-60 DSI Template. The tracking parameters were imposed as follows: a 

maximum of 500 mm trace length and a curvature threshold of ±90º. The anatomical regions were 

defined following the labeling procedure by Klein & Tourville (Klein & Tourville, 2012), from 

which 78 regions were considered –see (Y Iturria-Medina et al., 2016; Sanchez-Rodriguez et al., 

2018) for more details. Based on the resulting voxel-region connectivity maps, the anatomical 

connection probability between any pair of regions 𝑖 and 𝑗 (0 ≤  𝐴𝐶𝑃𝑗𝑖  ≤  1, 𝐴𝐶𝑃𝑗𝑖 = 𝐴𝐶𝑃𝑖𝑗) was 

calculated as the maximum voxel region connectivity value between both regions. For any pair of 

regions 𝑖 and 𝑗, the 𝐴𝐶𝑃𝑗𝑖 measure (Y. Iturria-Medina et al., 2007) reflects the degree of evidence 

supporting the existence of the hypothetical white matter connection, independently of the 

density/strength of this connection. A network backbone, containing the dominant connections in 

the regional connectivity map, was computed using a minimum-spanning-tree based algorithm 

(Rubinov & Sporns, 2010). It was the resulting minimum spanning tree the network that we used 

(Fig. 3a).  

2.4.2.3 Human brain functional network 

To construct a representation of functional interactions in the brain, simulations of the 

Kuramoto model (Kuramoto, 1975) were performed. The Kuramoto model is a classical dynamical 

system that describes the behavior of a set of coupled oscillators. For the sake of consistency and 

contrast, the anatomical parcellation described in the previous section was conserved, while the 
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relative coupling between two nodes in the network of oscillators corresponded to the backbone-

𝐴𝐶𝑃 measure between regions 𝑗 and 𝑖. The evolution of the phase of the 𝑖-th oscillator, 𝜃𝑖, is given 

by (Daffertshofer & van Wijk, 2011): 

𝜃̇𝑖 = 𝜔𝑖 +
𝜅

𝑛
∑ 𝐴𝐶𝑃𝑗𝑖 sin(𝜃𝑗 − 𝜃𝑖)𝑛

𝑗=1         (3) 

where 𝜅 is a global coupling strength and 𝜔𝑖 is the intrinsic frequency of node 𝑖. In all our 

simulations, we drew the natural frequencies from a standard Gaussian distribution and the initial 

conditions from a uniform distribution in the interval [0, 2𝜋). A total of 250 sets of natural 

frequencies and initial conditions were used. System (3) was numerically solved via an Euler 

scheme, with time step Δ𝑡 = 0.001𝑠 and 𝑡𝑡𝑜𝑡𝑎𝑙 = 50𝑠. The first simulated 10𝑠 were discarded in 

all occasions to reduce the effect of transients in the results.  

Intuitively, the collective behavior of the system depends on the parameter 𝜅. Stronger 

interactions (high 𝜅) overcome the dispersion of the intrinsic frequencies yielding coherence in the 

network, whereas in the low−𝜅 regime oscillators tend to remain asynchronous (Breakspear, 

Heitmann, & Daffertshofer, 2010; Daffertshofer & van Wijk, 2011). The degree of synchrony of 

the oscillators is quantified through the phase uniformity (K. V. Mardia, 1975): 

𝑅(𝑡) =
1

𝑛
|∑ 𝑒𝜄𝜃𝑗(𝑡)𝑛

𝑗=1 |          (4) 

In our calculations, a grand-average phase uniformity value for each coupling strength, 𝜅, 

was obtained by averaging 𝑅(𝑡) in the considered time interval across all simulations with such 𝜅 

(Fig. S3). Similarly, a so-called 𝜅-dependent functional connectivity matrix was also calculated. 

To do so, we followed Cabral et al. (Cabral, Hugues, Sporns, & Deco, 2011) and assumed an 

electrophysiological measure of the brain activity, such as a the mean firing rate or excitatory 

postsynaptic potential over the brain region, to be given as 𝑦𝑖(𝑡) = 𝑦0 sin(𝜃𝑖(𝑡)). Functional 

connectivity for a pair of nodes was then defined as the Pearson correlation between their 𝑦𝑖(𝑡) and 
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𝑦𝑗(𝑡) signals, for each simulation (Bordier, Nicolini, & Bifone, 2017). The representative 

interaction matrix associated with 𝜅 was finally obtained after Fisher-transforming the pairwise 

correlation coefficients, averaging, performing one sample t-tests (𝛼 = 0.05), correcting by false-

discovery rate and applying the inverse transformation. Functional connectivity matrices for 𝜅 =

5 (𝑅 ≈ 0.12), 𝜅 = 30 (𝑅 ≈ 0.47) and 𝜅 = 150 (𝑅 ≈ 0.98) are shown in Fig. 3b, Fig. 3c and Fig. 

3d, respectively.  

 

Fig. 3 goes around here  

Fig. 3. Human brain networks used in the study. a) Anatomical connections between 78 brain 

areas. b) Functional connectivity obtained from superimposing Kuramoto oscillators to the matrix 

in (a). The global coupling strength is 𝜅 = 5. c) As in (b), with 𝜅 = 30. d) As in (b) and (c), 

with 𝜅 = 150.  

 

2.4.3 Data and code availability statement 

The datasets and codes analyzed during the current study are available from public 

repositories, which have been referenced throughout the paper. A specific set of codes containing 

a demonstration on how to concatenate the method pipeline is offered 

at https://www.soterolab.com/software. All calculations but the detection of clusters were 

performed in MATLAB R2018a (The MathWorks Inc., Natick, MA, USA). Python 2.7 (Python 

Software Foundation, https://www.python.org/) was used for an implementation of the k-modes 

algorithm.  

3. Results  

3.1 Community detection in benchmark graphs 
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Table 1 shows the results of the application of our method in benchmark graphs (see 

Methods, Benchmarks). The AMI value (see Appendix D), appearing in the last column, illustrates 

the degree of similarity between the obtained partitions and the ground-truth community structure 

known for each of the graphs. For both instances of the GN model (binary and weighted), the right 

partition was found over a range of IMFs. In the case of the LFR benchmarks, our method unveiled 

the 5 communities planted at IMF6.  Over slower IMFs than the ones reported in Table 1, coarser 

organization of the networks was in some cases observed, e.g. one of the ground-truth communities 

stood alone and the rest merged. The analysis of faster IMFs did not return any community 

structure (see Appendix B and Appendix C). Finally, in the case of the karate club, the two known 

fractions in which it split were nearly obtained over IMF3.  

 

Network No. Nodes No. Communities IMF found AMI 

GN (binary) 128 4 8-4 1 

GN (weighted) 128 4 8-4 1 

LFR (binary) 100 5 6 1 

LFR (weighted) 100 5 6 1 

Zachary’s  34 2 3 0.83 

Table 1. Characteristics of the benchmarks and results of the application of our detection method. 

For each network, the number of nodes and known communities existing are given. The IMFs over 

which our method finds the right number of communities appear in the fourth column. In the last 

column, the adjusted mutual information values quantifying the degree of similarity between the 

solutions returned by the algorithm and the ground-truth structures are shown.  
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The results for the network of Zachary’s karate club are further illustrated in Fig. 4. A 

schematic representations of the two-communities structure that was revealed appears in Fig. 4a. 

Fig. 4b contains information regarding the validation measures, showing the selection, by a 

majority rule, of two clusters in the data (see Appendix B). Likewise, other runs of the algorithm 

signaled the existence of two clusters. The left panel in Fig. 4c shows 50 of such partitions (one 

per row). In some of those, node 10 was assigned to the community we have called “1” (in blue). 

Thus, a consensus matrix (Fig. 4c, center panel) basically consists of binary values for the co-

occurrences of all nodes in communities but those including node 10. Re-running the algorithm 

yielded 50 identical partitions (Fig. 4c, right).  This partition (Fig. 4a) corresponds to the division 

reported by Zachary through observations of the karate club except for one member (node 9). This 

result is expected, according to the original paper and many others in which the karate club has 

been analyzed (Girvan & Newman, 2002; Hric et al., 2014), as the data apparently supports node 

9’s membership to the wrong faction.  

The other structure (Fig. 4d) was obtained at IMF2. This consists of three communities and 

suggests a pattern in which the two leaders (node 1, the instructor, and 34, the president) often 

interact with what presumably are their intimate friendship circles (nodes colored in blue and 

green, respectively) and the rest of the network conforms a different group. It is important to bear 

in mind that our analysis was performed over a weighted matrix accounting for several contexts in 

which the members of the club were seen interacting. Thus, the broader community found may 

represent a set of passive actors in the fission of the social network, some who “sit and wait” for 

the inputs coming from the rapidly exchanging groups of leaders and close followers. Therefore, 

the consideration of temporal scales –essential to our methodology– could be a key aspect to 

uncover new and interesting phenomena.  
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Fig. 4 goes around here  

Fig. 4. Communities of Zachary’s karate club. a) Representation of the community structure 

obtained over IMF3. The two groups in which the network split after the conflict largely coincide 

with this pattern. The instructor’s (president’s) faction is shown in blue (green). The node colored 

in olive is misclassified as belonging to the president’s faction, when compared to the ground-

truth. The edges drawn are proportional to the weights of the connections. b) Validation indexes 

supporting the selection of 𝑘 = 2 clusters in the data corresponding to IMF3. Values of 𝑘 for which 

k-modes yields singleton communities are not shown (𝑘 = [4, 20], 𝑘 ∈ ℕ). c) Consensus clustering 

for partitions obtained with 50 different sets of random features of IMF3. d) Over IMF2, a new 

partition of three communities is obtained with small clusters including the instructor and the 

president.  

Visualization of the community structures was achieved by means of SpringVisCom (Jeub, 

Balachandran, Porter, Mucha, & Mahoney, 2015). 

  

3.2 Community detection in brain networks 

3.2.1 The macaque visual and sensorimotor network  

After testing the reliability of our method in several networks for which the community 

structure is known, we proceeded to its application to brain graphs. The first network considered 

was that of binary connections between cortical structures of the macaque visual and 

somatosensory-motor systems (see Methods, Macaque visual and sensorimotor anatomical 

network). As such, a certain distribution of network nodes between those two functional systems 

was expected. Fig. 5 shows the hierarchical tree returned as consensus clustering for the macaque 
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anatomical network. At the highest level (two-clusters partition), the communities found 

correspond with the documented distinction between visual and sensorimotor areas (Hilgetag, 

Burns, O’Neill, Scannell, & Young, 2000; Van Essen & Felleman, 1991; M P Young, 1993). The 

sensorimotor system retained a single hierarchy, comprised of areas 3a, 3b, 1, 2, 5, Ri, S2, 7b, IG, 

ID, 4, 6 and SMA, at the following level whereas the other community split in two (showed in 

variations of blue). The first of the groups is composed of areas V1, V2, V3, VP, V3a, V4, V4t, 

MT, MSTd, MSTl, FST, PO, PIP, LIP, VIP and DP. The following cortical regions appear in the 

other set discovered: VOT, PITd, PITv, CITd, CITv, AITd, AITv, STPp, STPa, TF, TH, 7a, FEF, 

46, TGV, ER and 35. These two smaller clusters largely resemble the traditional anatomical 

subdivision of the primate visual system in groups of ‘ventral’ and ‘dorsal’ areas (Hilgetag et al., 

2000).  

To further explore the performance of the algorithm herein introduced, we compared our 

results to the more conventional Louvain-like community detection methods –Newman-Girvan 

null model, implemented in the Brain Connectivity Toolbox (Rubinov & Sporns, 2010). Fig. S4 

shows the results of 50 initial runs and the consensus partitions obtained in both cases. Both widely 

used criteria for the selection of the resolution parameter of the Louvain algorithm, i.e., 𝛾 = 1 or 

𝛾 chosen as the value for which partitions are more similar, yielded the same result, which is a 

three-clusters structure. This organizational pattern echoed our last result (Fig. 5, Fig. S4b), with 

the exception of the ventral occipitotemporal (VOT) cortex which in some partitions appeared 

together with the ventral cortex though was eventually grouped with most dorsal areas.    

 

Fig. 5 goes around here  
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Fig. 5. Dendrogram for the hierarchical consensus clustering of the primate visual and 

sensorimotor cortex. Somatosensory and motor areas are colored in green. Regions largely 

regarded as part of the visual system appear in blue. These are divided in two groups for 

predominantly dorsal and ventral anatomical areas.  

 

3.2.2 The human brain networks 

We have also applied our community detection algorithm to the network of cortical and 

subcortical neural conglomerates of the human brain (see Methods, Human brain anatomical 

network and Human brain functional network). Fig. 6 summarizes the results. Firstly, the 

anatomical connectivity matrix was considered. We obtained two organizational levels, which are 

depicted in Fig. 6a and 6b. The highest of the two (Fig. 6a) consists of two communities which are 

the left and right hemisphere of the brain. Running the clustering algorithm with the features of a 

different IMF yielded a structure of subdivisions of the two hemispheres (Fig. 6b). This four-

community organization is practically symmetrical with the exception of the postcentral gyrus, the 

pallidum and the thalamus proper, which switch communities from one hemisphere to the other 

(see Fig. 6b and Table S1). The two communities to the top of the brain representation in the panel 

are mainly part of the frontal lobe, the cingulate cortex and the basal ganglia. On the other hand, 

those shown toward the bottom generally correspond with parietal, occipital and temporal areas 

(Klein & Tourville, 2012; Lanciego, Luquin, & Obeso, 2012). An instance of the validation 

indexes supporting the existence of four communities in this data was given as a demonstrative 

example in Fig. 2c.  

The three synthetic functional networks (Fig 3b-d) resulting from superimposing Kuramoto 

oscillators to the matrix of anatomical connections were explored lastly. In Fig. 6c, the only 
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communities found in the 𝜅 = 5 case are shown. Two of those communities are a set of neural 

structures belonging to either the left (in blue) or right (in green) hemisphere. However, a third 

community (in maroon) consists of fifteen inter-hemispherical regions, all of which except for the 

right posterior cingulate appeared in a symmetrical manner in both hemispheres, including the 

totality of the occipital areas (see also Table S1). Fig. S5 shows the consensus clusters identified 

by using the two standard criteria for the resolution parameter in Louvain-modularity 

maximization. While three regions are grouped inter-hemispherically with those of their kind, in 

general, modularity maximization seems to fail at recognizing the functional relationships that are 

supposed to exist in this data, e.g., the mixed community pinpointed by our method. The tendency 

to split communities to obtain higher modularity values is also observed in Fig. S5 as anatomical 

communities are divided in a virtually arbitrary way (compare to Fig. 6b, for example). For 𝜅 =

30, our algorithm (and Louvain-maximization) returned the same two-hemispheres structure 

illustrated in Fig. 6a. Nevertheless, for 𝜅 = 150, no community structure was found over any of 

the IMFs and combinations of walkers considered (one cluster encompassed all nodes). This 

conclusion was reached by applying the criteria of Appendix C.  

 

Fig. 6. Representation of the communities of the human brain anatomical and functional 

networks. a) Two-communities structure obtained for the anatomical network. b) Four-

communities structure obtained for the anatomical network. c) Three-communities structure 

obtained for the functional network with global coupling parameter of the Kuramoto oscillators 

𝜅 = 5. Colored nodes correspond to communities and their location, to average coordinates of the 

brain regions in MNI space. 
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Visualization of the community structures was achieved by means of BrainNet Viewer (Xia, 

Wang, & He, 2013). 

 

4. Discussion  

The problem of identifying modular structures at different scales of a network has captured 

the attention of the neuroscience community in recent times. Notably, Jeub et al. (Jeub et al., 2018) 

and Ashourvan et al. (Ashourvan et al., 2019) have introduced variants for the sweep through the 

Newman-Girvan modularity’s γ-space eventually yielding hierarchical architecture. These 

methods have been tested in brain networks with encouraging results. Inherent limitations exist 

however, as the algorithms build on multi-scale modularity functions. Consequently, the exposed 

structures depend on the selection of several parameters and a null model, as in regular Louvain-

like community detection (Blondel et al., 2008). Specifically, authors tend to recommend the 

utilization of null models that suit the characteristics of the data perfectly (Betzel et al., 2017). 

However, null models appear as abundant as detection algorithms in the literature oftentimes, 

making its selection a key step for the success or failure of the application of an algorithm (Sporns, 

2013). Ideally, one would like to provide the user with minimum-input tools that can reveal the 

underlying structures of the data in natural ways.  

In the recent past, much of the discussion as to the directions of neuroscience research was 

centered on avoiding univariate statistical comparisons and, instead, looking at the network 

interactions as a whole (Telesford, Simpson, Burdette, Hayasaka, & Laurienti, 2011). What is 

more, we believe that to better capture the complexities of a system like the brain, with multiple 

spatio-temporal scales and dynamic reconfigurations, the mere application of generic network 

science methods is not sufficient. Tools must be developed to account for the brain’s unique 
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characteristics. Thus, in this paper, we have searched for organizational hierarchies through the 

temporal scales of the network’s random walker signals, without necessitating to fix any parameter 

model. By doing so, the characteristics of the information flow in the brain are also incorporated 

(Sotero et al., 2019). The integration of the network’s architecture with the dynamical interactions 

of the oscillatory modes in the brain is consequently suggested as an important consideration in 

clustering techniques.  

4.1 The brain organizes according to function 

In discussing the results of applying our methodology to the macaque visual and 

sensorimotor network, several insights can be gleaned. Firstly, the obvious and most 

straightforward precedent is the classification of areas according to the functional neural system 

they belong to, visual and sensorimotor (Van Essen & Felleman, 1991; M P Young, 1993). 

Additionally, two anatomical pathways have been identified in the visual system (Mishkin, 

Ungerleider, & Macko, 1983), which are usually known as dorsal (originating in the occipital 

cortex and terminating in the parietal lobe) and ventral (from occipital to temporal). These 

anatomically constrained divisions constituted the rationale for expecting the separation between 

somatosensory-motor and visual areas (which in turn was further divided into dorsal and ventral) 

by our community detection algorithm, given the numerous connections existing between areas in 

a functional system and somehow less connections with outsiders (Honey, Thivierge, & Sporns, 

2010). We highlight, however, that limbic structures like the entorhinal cortex (ER) and the 

perirhinal cortex (A35), usually considered together with the sensorimotor system (Van Essen & 

Felleman, 1991), were clustered with most visual areas. Also, the ventral occipitotemporal area 

(VOT) appeared in an otherwise dorsal community. This result is analogous to the one described 

by Hilgetag et al. (Hilgetag et al., 2000) in a study on cluster organization of a similar, larger 
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network using now obsolete techniques. Moreover, in that work, prototypical ventral and dorsal 

areas V4 and 7a were clustered with the opposite streams. Notwithstanding the slight differences, 

the subdivision of the visual community obtained here closely resembles the ventral and dorsal 

streams reported by Hilgetag et al. Several more recent studies utilizing modularity maximization 

methods have detected similar sets of communities, yet different macaque datasets have been used 

(Sporns & Betzel, 2016).  

We believe that the minor discrepancies in the analysis of the primate cortical network 

commented in the above paragraph are due to two main issues. First of all, we should revisit the 

limitations that exist intrinsic to each community detection method. These, of course, affect the 

partitions returned given any connectivity matrix, revealing the necessity of continuing to develop 

tools and migrating to more comprehensive approaches that use as much valuable network 

information as possible. Another important matter to recall is that imperfections exist in data as 

well. For example, the matrix of connections we used (M P Young, 1993) encompasses reports 

from several studies, which sometimes even employed different anatomical parcellations. Also, 

this matrix accounts only for the existence or absence of reports of links between areas of the 

macaque cortex, without considering the strength of the connections. Whether datasets accurately 

reflect the particularities of the connections existing in the brain or not will remain a fundamental 

question in neuroscience.  

The next application of our newly introduced community-finding method was to human 

brain networks. We considered a connectivity matrix in which each entry reflects the evidence of 

the existence of a white matter link between two brain regions (Y. Iturria-Medina et al., 2007), 

given a template of such connections in the young healthy brain (Dunovan et al., 2015). Dominant 

connections were retained through a minimum spanning tree algorithm. Although the minimum 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 22, 2019. ; https://doi.org/10.1101/743732doi: bioRxiv preprint 

https://doi.org/10.1101/743732


31 

 

spanning tree trims connections and does not contain loops, it is believed to provide a correct 

representation of any denser brain network to which it is applied, retaining paramount topological 

characteristics like its small-worldness and scale-freeness (Tewarie, van Dellen, Hillebrand, & 

Stam, 2015).  

We have found two partitions of the anatomical network, which seemingly follow physical 

proximity and functional specialization rules. In the case of the first partition, commissural fibers 

appear to act as those rare links to members of other communities for the two brain hemispheres 

were perfectly separated. Each hemisphere split into two communities over the other partition 

found. The four-communities structure was almost bilaterally symmetrical, as only the postcentral 

gyrus, pallidum and thalamus proper exchanged membership, i.e., they grouped with most frontal, 

cingulate and basal ganglia regions in the right hemisphere and with parietal-occipital-temporal 

areas in the left. Variations in local connections within hemispheres may be the reason why these 

regions behaved in such a way. In principle, the thalamus, as universal relay station, and the 

pallidum projecting to the thalamus (Lanciego et al., 2012) should have no constraints to belong 

to one or the other intra-hemisphere community found. The postcentral gyrus, although deemed 

part of the parietal lobe is located in the vicinity of the frontal lobe, possibly explaining its grouping 

with such neural structures. The association of brain regions to perform processes and functions 

could also be reflected in the anatomical network and, consequently, in the communities obtained. 

For instance, having the basal forebrain clustered with frontal areas may be justified by the fact 

that its projections to the prefrontal cortex are paramount for attention, learning and memory, and 

decision-making (Tashakori-Sabzevar & Ward, 2018).  

The study of the matrices for the interaction of oscillators over the anatomical frame yielded 

stimulating results. For one thing, the mechanism for the transitions between functional states 
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relates to the tuning of the coupling parameter in the model. Three communities appeared in the 

low-coupling regime (𝜅 = 5), one of them presenting areas from both brain hemispheres in a close 

to symmetrical pattern. When the coupling strength was raised to 𝜅 = 30, the mixed community 

was destroyed and the only recognizable pattern was the one of two separate brain hemispheres, 

which was one already existing in the anatomical network. This is because the connectivity matrix 

of a set of Kuramoto oscillators overcomes the dispersion of natural frequencies for higher values 

of the coupling parameter (Breakspear et al., 2010).  All in all, our results suggest additional 

evidence for the known link between structure and function in the brain (Honey et al., 2010). 

Higher functional couplings amplify the anatomical subdivision of the network in two 

hemispheres.  

Other characteristics of the clusters of the functional networks are also noteworthy. For 

example, all the occipital areas (Klein & Tourville, 2012), responsible for vision (Johns, 2014), 

appeared in the mixed community of the 𝜅 = 5 -regime. Previous studies of modular organization 

in functional graphs found robust grouping in the occipital cortex (Meunier, 2009). Among the 

other areas present in the intra-hemispherical cluster: the superior parietal lobe has abundant 

connections with the occipital lobe and participates in visuospatial perception (Johns, 2014); the 

precuneus has a major role in visuo-spatial imagery (Cavanna & Trimble, 2006) and the posterior 

cingulate cortex is considered a core node of the default mode network (DMN) and to be involved 

in many tasks (Yasser Iturria-Medina et al., 2014). The inter-hemispherical community obtained 

appears to be one extended circuit concerned with the function of vision. The rest of the nodes 

within each hemisphere may consequently process all the non-visual stimuli, possibly constituting 

an optimal configuration for speedy and accurate performance on cognitive tasks (Garcia et al., 

2018). We believe that the detection of these communities supports the notion of functional 
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integration in the brain, whereas evidence for segregation can also be found in a division that 

isolates units specialized in handling with visual stimuli.  

4.2 On the strengths and limitations of the algorithm 

To conclude this section we would like to highlight important features of our method. One 

interesting scenario is the one of functional interactions with 𝜅 = 150. The large synchronization 

seen there yields a close-to- 𝑛-regular graph (Fig. 3d) that goes together with the algorithm 

identifying a single group of nodes. In fact, one recommended practice for testing new community 

detection algorithms is checking that they do not return group structure in the absence of it (Hric 

et al., 2014). Of further value is the effective performance shown when searching for the 

community structure of the benchmark graphs, all of which presented different network 

characteristics. On this topic, one must also mention the diversity of the real networks whose 

organization in groups was explored. The karate club is a small, weighted and undirected network. 

On the other hand, the macaque visual and sensorimotor network is binary and directed. The 

human brain networks, with larger dimension, had different levels of sparsity. Many algorithms, 

e.g. Infomap, are initially designed for a specific type of graph (Fortunato & Hric, 2016) and only 

later extended. However, our method seems to be primed to perform reliable community detection 

in moderate-size networks like the ones associated with the brain’s large-scale activity.  

It was not in our interest, though, to test its suitability for high-dimensional graphs.  In that 

case, the demand for computing resources would grow. Firstly, the computational cost of k-modes 

scales linearly with the number of objects and many random initializations of the modes are 

required to find a reliable clustering solution (Nguyen, 2017).  Secondly, the number of possible 

combinations of nodes appearing between zero-crossings of an IMF would increase as well, so the 

implementation of k-modes must be optimal to handle a large number of binary features. We 
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bypassed some of these complications by using the University of Calgary’s 

(https://hpc.ucalgary.ca/resources) and Compute Canada’s 

(https://docs.computecanada.ca/wiki/Getting_started) computing clusters resources, where 

calculations were run in parallel. The other two stages of the algorithm, namely the random walks 

and empirical mode decomposition are already fast enough through built-in functions in 

MATLAB. Other speeding-up alternatives for the clustering problem must be explored, however.  

One solution for reducing dimensionality is the selection of relevant features in the data (Ronan et 

al., 2016). Because the random choice of features (i.e., the set of walks) could also generate 

solutions that differ from the existing structure if many unrepresentative features were combined, 

the identification of a relevant set is also desired for the stability of the method.  Nevertheless, 

dimensionality reduction by feature selection is a complicated matter on its own (Steinbach et al., 

2004), especially in unsupervised learning, and state-of-the-art techniques degrade the results in 

some situations (Ronan et al., 2016). In short, we do not recommend the use of the method 

presented in this paper on large networks until further steps towards optimization are taken.  

5. Conclusion  

In summary, we have introduced an approach for the detection of modular organization by 

considering the temporal scales of the information flow over the networks of interest. This new 

tool insinuates particularly useful for the analysis of large-scale brain graphs, for which: 1) the 

transmission of information is a process of paramount importance and 2) a desirable balance 

between accuracy and computational complexity of the community detection algorithm can be 

achieved given the current implementation state. We find several organizational patterns existing 

in the brain anatomical and functional networks –also in the social network that we study. These 

structures may coexist together, in a dynamical way that is given by the temporal scales of the 
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activity they produce, guaranteeing functional independence and coordination. Our results promise 

a shift of focus in the discussion surrounding the occurrence of community structure.  
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Appendix A. Supplementary material 

Supplementary data related to this article can be found at [insert link here]. 

Appendix B. Cluster validation indexes  

In what follows, 𝑛 is the number of objects to be clustered and 𝑘 is the number of such 

clusters. Let {𝐶1, 𝐶2, ⋯ , 𝐶𝑘} be a partition of the integers from 1 to 𝑛 such that 𝑖𝜖𝐶𝑞 if the 𝑖th object, 

𝒙𝑖, belongs to the 𝑞th cluster. The centroid (mode) of a subset 𝐶𝑞 of 𝑛𝑞 objects is the vector 𝒎𝑞 that 

minimizes the sum of the distances to all the objects in 𝐶𝑞. Supposing the (mismatching similarity) 

distances between every 𝑖 and 𝑗, 𝑑𝑖𝑗 are known, which also applies for the distances between 

objects and their clusters’ centroids, then: 

- The Calinski-Harabasz index (Calinski & Harabasz, 1974), also known as pseudo-F ratio, 

is defined as:  

𝐹(𝑘) =
𝑆𝑆𝐴

(𝑘−1)⁄

𝑆𝑆𝑊
(𝑛−𝑘)⁄

          Eq. (A.1) 

SSW and SSA are the within-group sum of squares and the among-group sum of squares, 

respectively. Adapting (Anderson, 2001), these quantities are obtained from the matrix of distances 

between pair of objects: 

𝑆𝑆𝑊 = ∑
1

𝑛𝑞
∑ 𝑑𝑖𝑗

2
𝑖,𝑗∈𝐶𝑞

𝑖<𝑗

𝑘
𝑞=1         Eq. (A.2) 

𝑆𝑆𝐴 = 𝑆𝑆𝑇 − 𝑆𝑆𝑊, 𝑆𝑆𝑇 =
1

𝑛
∑ ∑ 𝑑𝑖𝑗

2𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1      Eq. (A.3) 

The among-group distances are large compared to the within-group distances in the case of 

high separateness and compactness. Thus, maximum values are taken to represent the correct 

number of clusters (Milligan & Cooper, 1985).  

- The C-Index (Milligan & Cooper, 1985) is calculated as: 
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𝐶(𝑘) =
𝑆𝑊−𝑆𝑚𝑖𝑛

𝑆𝑚𝑎𝑥−𝑆𝑚𝑖𝑛
         Eq. (A.4) 

where  𝑆𝑊 is the sum of the within-cluster distances: 

𝑆𝑊 = ∑ ∑ 𝑑𝑖𝑗𝑖,𝑗∈𝐶𝑞

𝑖<𝑗

𝑘
𝑞=1         Eq. (A.5) 

and 𝑆𝑚𝑖𝑛(𝑆𝑚𝑎𝑥) is the sum of the 𝑁𝑊 smallest (largest) distances in the dataset.  𝑁𝑊 is the total 

number of pair of objects in the same cluster, 𝑁𝑊 = ∑
𝑛𝑞(𝑛𝑞−1)

2

𝑘
𝑞=1  (Charrad et al., 2014). C-Index 

is restricted to the interval (0,1) and its minimum value suggests the optimal number of clusters 

(Milligan & Cooper, 1985).  

- The Duda-Hart (Duda et al., 2001) score is inspired in the fact that the sum of squared-

errors corresponding to a partition decreases with 𝑘. Thus, in conventional Euclidean-distance 

clustering problems, the optimal number of clusters is the smallest 𝑘 such that 
𝐽(𝑘)

𝐽(𝑘−1)
 is smaller 

than certain critical value (Milligan & Cooper, 1985). In our case of binary distances, we limit 

ourselves to request that ratio to be minimal, indicating a possible correct number of clusters, and 

define 𝐽(𝑘) as a “sum of mismatching similarity distances error”: 

𝐽(𝑘) = ∑ ∑ 𝑑(𝒙𝒊, 𝒎𝑞)𝑖∈𝐶𝑞

𝑘
𝑞=1         Eq. (A.6) 

- The Silhouette width (Kaufman & Rousseeuw, 1990) is calculated with the following 

expression: 

𝑆(𝑘) =
1

𝑛
∑

𝑏𝑖−𝑎𝑖

max{𝑎𝑖,𝑏𝑖}
𝑛
𝑖=1         Eq. (A.7) 

here,  𝑎𝑖 is the average distance from the 𝑖th point to every other object in its cluster: 𝑎𝑖 =

 
1

𝑛𝑞−1
∑ 𝑑𝑖𝑗𝑗∈{𝐶𝑞\𝑖}  and 𝑏𝑖 is the minimum average distance  from the 𝑖th object to all objects of 

other clusters, minimized over the clusters, namely: 𝑏𝑖 = min
𝑠≠𝑞

{𝑑𝑖𝐶𝑠
}; 𝑑𝑖𝐶𝑠

=
1

𝑛𝑠
∑ 𝑑𝑖𝑗𝑗∈𝐶𝑠

 (Charrad 

et al., 2014). The index can take values in the interval [−1,1] with negative values indicating the 
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clustering solution is not accurate, and understandably so, as the minimum average distance from 

many objects to other clusters would be bigger than the dissimilarity to objects of the clusters 

where they belong to. On the other hand, the maximum value is taken to represent the optimal 

number of clusters in the data (Charrad et al., 2014).  

- The Dunn index (Dunn, 1973) is generally defined as: 

𝐷(𝑘) =
min

1≤𝑟<𝑠≤𝑘
Ι(𝐶𝑟,𝐶𝑠)

max
1≤𝑞≤𝑘

Δ𝑞
         Eq. (A.8) 

where Δ𝑞 is the diameter of the 𝑞th cluster and Ι(𝐶𝑟 , 𝐶𝑠) is the intercluster distance between 𝐶𝑟 and 

𝐶𝑠. Out of the many variants available for computing both these quantities, we use the ones 

recommended by (Bezdek & Pal, 1998): 

Δ𝑞 =
1

𝑛𝑞
∑ 𝑑(𝒙𝑖, 𝒎𝑞)𝑖∈𝐶𝑞

        Eq. (A.9) 

Ι(𝐶𝑟 , 𝐶𝑠) =
1

𝑛𝑟𝑛𝑠
∑ 𝑑𝑖𝑗𝑖∈𝐶𝑟

𝑗∈𝐶𝑠

        Eq. (A.10) 

𝐷 is maximized when the clusters are compact (the diameter is small) and separate (the intercluster 

distance is large) (Milligan & Cooper, 1985). 

- The Davies-Bouldin index (Davies & Bouldin, 1979) is also a function of the ratio of 

within-cluster dispersions and the between-clusters separation. When using mismatching 

dissimilarities, it can be calculated as: 

𝐷𝐵(𝑘) =
1

𝑘
∑ max

𝑞≠𝑙
(

Δ𝑞+Δ𝑙

𝜎𝑞𝑙
)𝑘

𝑞=1        Eq. (A.11) 

where Δ𝑞 is defined as in Eq. (A.9) and 𝜎𝑞𝑙 is the distance between the centroids of clusters 𝐶𝑞 and 

𝐶𝑙, 𝜎𝑞𝑙 = 𝑑(𝒎𝑞 , 𝒎𝑙) (Charrad et al., 2014). The smaller 𝐷𝐵(𝑘), the better the partition (Dubes, 

1987).   
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The diameter, Δ𝑞, is zero for clusters with single members. Thus, as highlighted by Davies & 

Bouldin, theirs and most measures, have limited meaning for singleton clusters.  

Appendix C. Decision rules for random data 

The above-mentioned decision rules are not adequate for identifying the correct number of 

clusters in the limit case of two versus one cluster, as such indexes are not defined for partitions 

of a lone community (Dubes, 1987). Although the Duda-Hart index was originally designed to 

reject the existence of only one cluster in the data, the critical value used for such means was 

obtained by supposing that data came from a normal distribution (Duda et al., 2001), which does 

not hold in our case of binary variables. Two of the other measures had either simplistic or well-

established criteria that could be applied when they and the majority of the indexes signalled the 

presence of two communities. The first one is inspecting for negative silhouette values (Kaufman 

& Rousseeuw, 1990). The second rule checks for the presence of a significant drop in the curve of 

𝐷𝐵(𝑘) at 𝑘 = 2 (Dubes, 1987). An user can conclude one cluster is present when 𝐷𝐵(𝑘) has a 

minimum at 2 but 

𝐷𝐵(3) −  𝐷𝐵(2)  <
2

3
∑ |𝐷𝐵(𝑘𝑚𝑎𝑥 − 𝑘) − 𝐷𝐵(𝑘𝑚𝑎𝑥 − 𝑘 − 1)|3

𝑘=1    Eq. (C.1) 

These two criteria were applied to resolve the optimal number of clusters in the limit case 

situation over all the networks. Consistently, spurious two-clusters partitions over different IMFs 

were rejected (one single cluster existed). On the contrary, meaningful or real two-communities 

patterns were indicated as correct by our method, and restated by the silhouette and the 𝐷𝐵-based 

limit-case criteria.  

Appendix D. Estimating the similarity of partitions 

To determine the effectiveness of our clustering technique in retrieving a planted structure, 

we computed the adjusted mutual information, which establishes a measure of similarity between 
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two partitions based on information theory while adjusting for chance (N. Vinh et al., 2010; Weir, 

Emmons, Gibson, Taylor, & Mucha, 2017):  

𝐴𝑀𝐼(𝑋, 𝑌) =
𝑀𝐼(𝑋,𝑌)−𝐸(𝑀𝐼(𝑋,𝑌))

max(𝐻(𝑋),𝐻(𝑌))−𝐸(𝑀𝐼(𝑋,𝑌))
       Eq. (D.1) 

 where 𝑀𝐼(𝑋, 𝑌) is the mutual information between random variables 𝑋 and  𝑌, 𝐻(𝑋) is the 

entropy of 𝑋 and the expected mutual information, 𝐸(𝑀𝐼(𝑋, 𝑌)), is obtained as in (N. X. Vinh, 

Epps, & Bailey, 2009). A MATLAB implementation of 𝐴𝑀𝐼 is available from the Network 

Community Toolbox (http://commdetect.weebly.com/).  
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Appendix A. Supplementary material 

 

Fig. S1. Matrix of interactions in the karate club. The values indicate the number of contexts in 

which two members of the club were seen interacting, normalized to the interval [0, 1] (dividing 

by the maximum value, 7). A number of connections present inconsistencies in Zachary’s original 

paper. When two values in symmetric positions differed, we chose the lowest one. See also: 

Zachary, W. W. (1977). An Information Flow Model for Conflict and Fission in Small Groups 

(https://www.jstor.org/stable/3629752).  
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Fig. S2. Connectivity matrix of the macaque neocortex. Pathways that have been identified in 

tracing studies are marked by 1’s. See also: Young, M. P. (1993). The organization of neural 

systems in the primate cerebral cortex (http://doi.org/10.1098/rspb.1993.0040) and Honey, C. J., 

Kotter, R., Breakspear, M., & Sporns, O. (2007). Network structure of cerebral cortex shapes 

functional connectivity on multiple time scales (http://doi.org/10.1073/pnas.0701519104).  
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Fig. S3. Grand average of the phase uniformity value, 𝑅 vs the coupling strength, 𝜅 = 0: 5: 150, 

of the Kuramoto oscillators. The blue squares represent the values of 𝜅 for which the correlation 

matrices shown in Fig. 3 were calculated.  
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Fig. S4. Consensus clustering for the three communities-partitions of the macaque visual and 

sensorimotor cortex. a) Partitions with the highest similarity (in terms of adjusted mutual 

information) obtained through runs of the Louvain community detection algorithm (left). This is 

for 𝛾 = 0.9. Consensus partitions (right). The consensus partition for the more conventional tuning 

of the resolution parameter, 𝛾 = 1.0, is identical to the one shown. b) Partitions returned by our 

clustering algorithm with 50 different sets of random features (left) and their consensus clusters 

(right).  
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Left frontal-

cingulate-basal 

Right frontal-

cingulate-basal 

Left parietal-

occipital-temporal 

Right parietal-

occipital-temporal 

Mixed 

functional  
caudal anterior cingulate caudal anterior cingulate cuneus cuneus L cuneus 

caudal middle frontal caudal middle frontal entorhinal entorhinal L isthmus cingulate 

lateral orbitofrontal lateral orbitofrontal fusiform fusiform L lateral occipital 

medial orbitofrontal medial orbitofrontal inferior parietal inferior parietal L lingual 

paracentral paracentral inferior temporal inferior temporal L pericalcarine 

pars opercularis pars opercularis isthmus cingulate isthmus cingulate L precuneus 

pars orbitalis pars orbitalis lateral occipital lateral occipital L superior parietal 

pars triangularis pars triangularis lingual lingual R cuneus 

posterior cingulate posterior cingulate middle temporal middle temporal R isthmus cingulate 

precentral precentral parahippocampal parahippocampal R lateral occipital 

rostral anterior cingulate rostral anterior cingulate pericalcarine pericalcarine R lingual 

rostral middle frontal rostral middle frontal precuneus precuneus R pericalcarine 

superior frontal superior frontal superior parietal superior parietal R precuneus 

insula insula superior temporal superior temporal R superior parietal 

accumbens area accumbens area supramarginal supramarginal R posterior cingulate 

basal forebrain basal forebrain transverse temporal transverse temporal  

caudate caudate amygdala amygdala  

putamen putamen hippocampus hippocampus  

 postcentral postcentral   

 pallidum pallidum   

 thalamus proper thalamus proper   

 

Table S1. List of the brain areas per communities in the organization of the human brain network. 

The first four columns present the arrangement of four-clusters found in the anatomical network 

(Fig. 6b). The last column lists all the areas that group inter-hemispherically in the functional 

network with global coupling strength of the Kuramoto model 𝜅 = 5 (Fig. 6c). The table cells of 

areas spoiling a completely symmetrical organization are shaded. See also: Klein, A., & Tourville, 

J. (2012). 101 Labeled Brain Images and a Consistent Human Cortical Labeling Protocol 

(http://doi.org/10.3389/fnins.2012.00171) and Iturria-Medina, Y., Sotero, R. C., Toussaint, P. J., 

Mateos-Perez, J. M., Evans, A. C. (2016). Early role of vascular dysregulation on late-onset 

Alzheimer’s disease based on multifactorial data-driven analysis 

(http://doi.org/10.1038/ncomms11934). 
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Fig. S5. Communities of the human brain functional network (𝜅 = 5) obtained through Louvain-

modularity maximization. a) Partition resulting from taking the resolution parameter 𝛾 = 1.0. b) 

Partition with the highest similarity (in terms of adjusted mutual information), existing at 𝛾 = 3.0. 

Colored nodes correspond to communities and their location, to average coordinates of the brain 

regions in MNI space. 

Visualization of the community structures was achieved by means of BrainNet Viewer 

(http://doi.org/10.1371/journal.pone.0068910).   
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