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ABSTRACT 
 
Genetic variation within the major histocompatibility complex (MHC) class I is a well-known 

risk factor for psoriasis. While the mechanisms behind this variation are still being fully 

elucidated, human leukocyte antigen (HLA) presentation of auto-antigens as well as the 

interaction of HLA-B with killer cell immunoglobulin-like receptors (KIRs) have been shown to 

contribute to psoriasis susceptibility. Here we demonstrate that the interaction of HLA class I 

molecules with leukocyte immunoglobulin-like receptors (LILR), a related group of 

immunomodulatory receptors primarily found on antigen presenting cells, also contributes to 

psoriasis susceptibility. We used previously characterized binding capacities of HLA-A, HLA-B, 

and HLA-C allotypes to two inhibitory LILRs, LILRB1 and LILRB2, to investigate the effect of 

LILRB1/2 binding in two large genome wide association study cohorts of psoriasis patients and 

controls (N = 10,069). We found that the strength of binding of LILRB2 to HLA-B was 

inversely associated with psoriasis risk (p = 2.34E-09, OR [95% CI], 0.41 [0.30-0.55]) 

independent of individual class I or II allelic effects. We thus propose that weak binding of 

inhibitory LILRB2 to HLA-B may play a role in patient susceptibility to psoriasis via increased 

activity of antigen presenting cells.  
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INTRODUCTION 
 

The strongest signal for genetic susceptibility to psoriasis resides within the major 

histocompatibility complex (MHC), particularly near MHC class I loci (Okada et al., 2014). 

However, the mechanistic basis for how these MHC associations confer psoriasis risk has yet to 

be fully elucidated. Fine-mapping studies in this region have identified multiple independent 

effects for various class I alleles, with specific amino acids in the peptide binding groove of 

HLA-B and HLA-C being important (Chen et al., 2012, Okada et al., 2014). This suggests that 

psoriasis risk may be mediated through HLA presentation of auto-antigens. However, MHC class 

I have other important immunoregulatory functions, including binding and regulation of natural 

killer (NK) cells through killer cell immunoglobulin-like receptors (KIRs) or regulation of 

antigen presenting cells (APCs) through leukocyte immunoglobulin-like receptors (LILR). We 

have previously shown that HLA-B can mediate psoriasis risk through interaction with KIRs 

(Ahn et al., 2016). Here, we demonstrate that HLA-B can also mediate psoriasis susceptibility 

through differential binding to LILRs. 

LILRs are a cousin of KIRs, closely located on chromosome 19, but are primarily found 

on APCs such as dendritic cells and macrophages, as well as subsets of B-cells, T-cells, and NK 

cells (Jones et al., 2011). LILRs participate in regulation of APC function through engagement of 

either activating receptors (LILRA) or inhibitory receptors (LILRB). LILRA increase secretion 

of inflammatory cytokines and basophil degranulation by increasing monocyte activation 

(Hudson and Allen, 2016). Conversely, LILRB inhibit co-stimulatory proteins on APCs, may 

reduce antigen presentation on these cells, and facilitate an increased regulatory T cell response 

(Bashirova et al., 2014, Hudson and Allen, 2016). 
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LILR have been associated with several autoimmune and infectious diseases (Zhang et 

al., 2017). To further elucidate the basis of psoriasis susceptibility due to HLA alleles, we 

examined the distribution of binding affinities of LILRB1 and LILRB2 to HLA-A, -B, and -C in 

two large psoriasis genome-wide association study (GWAS) cohorts totaling 10,069 subjects. 

 

RESULTS 

We examined the role of LILRB1 and LILRB2 in psoriasis by testing six variables: 

LILRB1 or LILRB2 binding to HLA-A, -B, and -C. In the Wellcome Trust Case-Control 

Consortium (WTCCC) discovery cohort, stepwise regression of these six variables along with 

inclusion of all individual imputed HLA class I and class II alleles, adjusted for gender and the 

first ten principal components of ancestry, revealed a number of independently associated 

variables (Table 1). As expected, the strongest signal was for HLA-C*06:02. However, we also 

identified an association between the binding strength of LILRB2 to HLA-B (LILRB2-B) with 

an OR [95% CI] of 0.44 [0.28-0.68], p = 2.33E-04. This OR being < 1 implies stronger LILRB2-

B binding decreases the risk for psoriasis; alternatively stated, weaker binding increases risk for 

psoriasis. No other LILRB variable demonstrated significance at the level of p<0.01. In a second, 

independent cohort (Genetic Association Information Network (GAIN)), we validated that 

reduced binding of LILRB2 to HLA-B allotypes promotes psoriasis (p=3.43E-03, OR 0.50 

[0.32-0.80]), (Table 1). 

Joint analysis of the WTCCC and GAIN cohorts indicated a significant effect of 

LILRB2-B binding level in both stepwise regression analysis (p=2.20E-09, OR 0.41 [0.30-0.55]) 

and multivariate analysis (p=2.34E-09, OR 0.41 [0.30-0.55]) (Table 2). These results indicate 
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that psoriasis is associated with weaker binding of HLA-B to LILRB2, independent of class I or 

II allelic effects. 

To understand the cellular localization of LILRB2 in human skin, we examined LILRB2 

gene expression in FACS-sorted keratinocytes, myeloid dendritic cells, and T lymphocytes from 

the skin of healthy human subjects (Ahn et al., 2017). We found robust expression of LILRB2 in 

cutaneous dendritic cells and negligible expression in keratinocytes and T cells (Figure 1). We 

also found that LILRB2 is significantly overexpressed (p < 5.0E-08, fold change=2.2) in 

psoriasis lesional skin (n=58) compared to healthy skin (n=64) (Table 3), consistent with the 

known increased number of dendritic cells in psoriatic skin. We have previously shown that the 

ability of monocyte-derived dendritic cells to induce proliferation of allogeneic CD4 T cells after 

exposure to a panel of recombinant class I molecules is inversely proportional to binding scores 

of the HLA allotype to LILRB2; whereby weak binding to LILRB2 results in high proliferation 

and strong binding to LILRB2 results in lower proliferation (Bashirova et al., 2014). CD4 T cell 

proliferation in this mixed leukocyte reaction was enhanced by the addition of LILRB2 siRNA 

(Bashirova et al., 2014). Thus, while dendritic cells expressing LILRB2 are commonly observed 

in skin, their ability to enhance T cell proliferation may be diminished in the presence of HLA 

allotypes that bind strongly to inhibitory LILRB2. 

   

DISCUSSION 

Our results indicate that psoriasis patients, on average, harbor HLA-B alleles with decreased 

binding affinity to LILRB2. As LILRB2 is an inhibitory receptor, this decreased affinity may 

lead to a reduction in APC inhibition that results in more potent T cell reactivity. HLA-B*57:01 

and HLA-B*27:05 have been associated with psoriasis in multiple studies (Chen et al., 2012, 
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Okada et al., 2014) and these two alleles are among those with the lowest LILRB2 binding 

affinities (Table S1). The positive signal observed in our study for the binding of LILRB2 to 

HLA-B but not HLA-C or HLA-A may be explained by the fact that HLA-C is expressed on the 

cell surface at roughly one-tenth the level of HLA-A and HLA-B (Apps et al., 2015), and by the 

observation that there is a much smaller range of variation for LILRB2 binding to HLA-A 

compared to HLA-B. 

The role of LILR molecules in the prevention and pathogenesis of diseases is beginning to 

become more highly recognized. LILRB2 binding to HLA-B has been shown to significantly 

impact HIV-1 viral control, whereby weaker binding between LILRB2 and HLA-B was 

associated with better HIV control via increased dendritic cell function  (Bashirova et al., 2014). 

For autoimmune disease, a large genetic study of Takayasu’s arteritis identified genetic epistasis 

between LILRA3 and HLA-B*52, demonstrating a multiplicative interactive effect on disease 

susceptibility (Terao et al., 2018). In addition, a genetic study of ankylosing spondylitis found a 

protective effect of LILRB1, implying that inhibition of dendritic cells through inhibitory LILR 

molecules may subvert development of autoimmune or inflammatory disease (Majorczyk et al., 

2019). Similarly, a study of systemic lupus erythematous patients showed decreased inhibitory 

activity by LILRB1 on T cells and reduced expression on B cells compared to healthy controls 

(Monsivais-Urenda et al., 2007).  In contrast, the activating LILRA3 receptor has been shown to 

be increased in both rheumatoid arthritis and multiple sclerosis patients, as well as associated 

with disease severity in the latter (An et al., 2010, An et al., 2016).  

Intriguingly, there appears to be an evolutionary balance between HLA alleles that promote 

robust immunity against certain infections, but which may also increase the risk of immune-

mediated diseases. For example, HLA Class I alleles that have been shown to be protective 
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against HIV-1 are enriched in psoriasis patients (Chen et al., 2012). Similarly, a compound 

genotype associated with delayed progression of HIV to AIDS (KIR3DS1 plus HLA-B Bw4-80I) 

also increases psoriasis susceptibly (Chen et al., 2012). Interactions of HLA to certain KIR 

molecules, such as KIR3DL1, have been shown to be beneficial in control of HIV (Martin et al., 

2002), but have also been associated with psoriasis susceptibility (Ahn et al., 2016). Moreover, a 

variant upstream of HLA-C associated with HLA-C expression was shown to have significant 

protective effects on the control of HIV; at the same time, this variant was associated with 

increased susceptibility to Crohn’s disease (Apps et al., 2013).  

Here we found another example of the dual effect on infectious control and autoimmune 

susceptibility for HLA-B and LILRB2. These findings all illustrate a key paradigm in 

evolutionary genetics: the precarious balance between genetic variants that boost the immune 

system’s efficacy against infectious disease with those that may overshoot and increase an 

individual’s susceptibility to autoimmune conditions (Kulkarni et al., 2008). Such opposing 

genetic forces of infectious versus autoimmune disease pathology may contribute to the 

differential binding of LILRB2 to HLA molecules. 

To our knowledge, our work is the first to identify a role for LILRB2 in psoriasis 

susceptibility. Our finding, supported by two independent datasets, expands our mechanistic 

understanding of the role of HLA in immune-mediated diseases, highlighting the importance of 

APC regulation.  

 

METHODS 

In order to code the binding affinity of LILRB1 and LILRB2 to various HLA alleles as a 

genetic variable in each individual, we utilized the previously published binding scores of 
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LILRB1 and LILRB2 to 31 alleles of HLA-A, 50 alleles of HLA-B, and 16 alleles of HLA-C 

(Bashirova et al., 2014, Jones et al., 2011), (Table S1). These scores were determined by 

incubating LILRB1-Fc or LILRB2-Fc fusion proteins with LABScreen HLA class I single 

antigen beads and measuring the median fluorescence intensity of each LILRB-HLA pairing 

(Jones et al., 2011). As previously described (Chen et al., 2012), we used HLA*IMP to impute to 

four-digit resolution HLA class I alleles (-A, -B, and -C) and HLA class II alleles (-DQA1, -

DQB1, and -DRB1) of two GWAS cohorts: the WTCCC cohort of 2,178 psoriasis cases and 

5,175 controls (Strange et al., 2010) and the GAIN cohort of 1,368 psoriasis cases and 1,348 

controls (Nair et al., 2009). We previously confirmed the accuracy of imputation by comparing 

results to directly genotyped patients and found a concordance rate of 97.4% (Chen et al., 2012). 

Each individual was assigned a LILRB1 or LILRB2 binding score for HLA-A, -B, and -C that 

was the sum of the binding scores of that individual’s two HLA-A, -B, or -C alleles to the 

respective LILRB locus (Bashirova et al., 2014, Chen et al., 2012).  
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TABLES 

Table 1. Stepwise regression analysis of the association of LILRB binding and individual HLA 
alleles with psoriasis in the WTCCC and GAIN cohorts 

WTCCC (Discovery Cohort) 

2,178 cases, 5,175 controls 

GAIN (Replication Cohort) 

1,368 cases, 1,348 controls 

Variable p-value OR (95% CI) Variable p-value OR (95% CI) 
C0602 3.32E-26 4.20 (3.22-5.47) C0602 5.27E-35 4.41 (3.49-5.58) 
A0201 1.83E-13 1.70 (1.47-1.95) DQB0604 2.65E-06 0.37 (0.25-0.56) 
A0101 4.64E-08 1.62 (1.36-1.92) B5001 2.24E-03 0.43 (0.25-0.74) 
B3801 2.78E-02 1.82 (1.07-3.11) B3801 3.37E-04 2.20 (1.43-3.39) 
B5501 5.41E-05 1.93 (1.40-2.65) A0201 1.32E-03 1.34 (1.12-1.61) 
LILRB2-B 2.33E-04 0.44 (0.28-0.68) B3901 3.17E-03 2.08 (1.28-3.37) 
DQB0604 1.30E-02 0.64 (0.45-0.91) DRB0801 6.81E-03 0.56 (0.37-0.85) 
A1101 1.64E-02 1.31 (1.05-1.62) B5501 3.47E-03 1.91 (1.24-2.95) 
C1203 2.66E-02 1.54 (1.05-2.26) B0801 2.10E-03 1.45 (1.14-1.83) 
B1302 6.15E-04 1.74 (1.27-2.38) LILRB2-B 3.43E-03 0.50 (0.32-0.80) 
B5701 1.41E-02 1.49 (1.08-2.04)    
B4001 2.69E-02 0.75 (0.58-0.97)    
DQA0501 1.88E-03 0.77 (0.65-0.91)    
B0801 7.66E-03 1.36 (1.08-1.70)    
B4403 4.09E-02 0.77 (0.59-0.99)    

Abbreviations: GWAS, Genome Wide Association Studies; WTCCC, Wellcome Trust Case-
Control Consortium. 
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Table 2. Stepwise regression and multivariate association analysis of LILRB binding and 
individual HLA alleles with psoriasis in the combined WTCCC and GAIN cohorts. All variables 
from the stepwise analysis were included in the multivariate analysis. 

 Stepwise Univariate Analysis Multivariate Analysis 
Variable p-value OR (95% CI) p-value OR (95% CI) 
C0602 1.71E-123 5.29 (4.61-6.08) 1.33E-123 5.30 (4.62-6.09) 
B5001 1.71E-06 0.45 (0.33-0.62) 1.83E-06 0.45 (0.33-0.63) 
A0201 2.51E-15 1.57 (1.40-1.75) 2.32E-15 1.57 (1.40-1.75) 
A0101 3.68E-07 1.43 (1.24-1.63) 4.45E-07 1.42 (1.24-1.63) 
DQB0604 5.53E-06 0.53 (0.40-0.70) 4.94E-06 0.53 (0.40-0.69) 
B5501 2.39E-06 1.84 (1.43-2.37) 2.57E-06 1.84 (1.43-2.37) 
LILRB2-B 2.20E-09 0.41 (0.30-0.55) 2.34E-09 0.41 (0.30-0.55) 
B4001 3.58E-03 0.75 (0.62-0.91) 3.53E-03 0.75 (0.62-0.91) 
B4403 1.81E-03 0.73 (0.60-0.89) 1.83E-03 0.73 (0.60-0.89) 
C1203 4.29E-07 1.72 (1.40-2.13) 3.59E-07 1.73 (1.40-2.14)  
B0801 5.40E-05 1.75 (1.34-2.30) 6.54E-05 1.74 (1.33-2.29) 
DQA0501 1.35E-02 0.85 (0.75-0.97) 1.44E-02 0.85 (0.75-0.97) 
A1101 3.61E-02 1.20 (1.01-1.43) 3.87E-02 1.20 (1.01-1.43) 
C0701 3.09E-02 0.76 (0.60-0.98) 3.42E-02 0.77 (0.60-0.98) 
DRB0801 4.76E-02 0.75 (0.56-1.00) 5.47E-02 0.75 (0.56-1.01)  

Abbreviations: GWAS, Genome Wide Association Studies; WTCCC, Wellcome Trust Case-
Control Consortium. 
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Table 3. LILRB2 mRNA is significantly overexpressed in psoriasis lesional skin compared to 
healthy skin. 
 

Gene Probe ID Adjusted P Value 
Fold Change 

(Psoriasis lesional (n=58) vs. healthy 
skin (n=64)) 

LILRB2 210146_x_at 3.84E-10 2.39 

LILRB2 207697_x_at 1.04E-09 2.20 

Source: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13355 
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FIGURES 
 
Figure 1. LILRB2 mRNA is significantly expressed in cutaneous dendritic cells compared to 
negligible expression in keratinocytes, T cells, and bulk skin cells. 
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SUPPLEMENTARY MATERIALS 
 
Table S1. HLA Class I allele-specific binding scores of LILRB1 and LILRB2 for viral load 
controlled determined via univariate model, from (Bashirova et al., 2014) 
HLA Class I Allele Binding Score 

LILRB1 
 

Binding Score 
LILRB2 

 
A*01:01  0.36  0.55 
A*02:01  0.11  0.60 
A*02:03  0.17  0.38 
A*02:06  0.28  0.52 
A*03:01  0.41  0.51 
A*11:01  0.48  0.48 
A*11:02  0.63  0.80 
A*23:01  0.38  0.51 
A*24:02  0.43 0.55 
A*24:03  0.41  0.98 
A*25:01  0.11  0.56 
A*26:01  0.11  0.67 
A*29:01  0.18  0.56 
A*29:02  0.13  0.53 
A*30:01  0.56  0.75 
A*30:02  0.21  0.40 
A*31:01  0.24  0.48 
A*32:01  0.10  0.58 
A*33:01  0.07  0.58 
A*33:03  0.12  0.66 
A*34:01  0.14  0.57 
A*34:02  0.26  0.50 
A*36:01  0.20  0.40 
A*43:01  0.07  0.39 
A*66:01  0.26  0.75 
A*66:02  0.20  0.53 
A*68:01  0.13  0.43 
A*68:02  0.11  0.43 
A*69:01  0.18  0.65 
A*74:01/2  0.04  0.53 
A*80:01  0.12  0.56 
B*07:02  0.22  0.56 
B*08:01  0.38  0.57 
B*13:01  0.12  0.50 
B*13:02  0.18  0.38 
B*14:01  0.27  0.40 
B*14:02  0.21  0.21 
B*15:01  0.31  0.44 
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B*15:02  0.37  0.29 
B*15:03  0.35  0.49 
B*15:10  0.22  0.20 
B*15:11  0.27  0.47 
B*15:12  0.39  0.38 
B*15:13  0.19  0.37 
B*15:16  0.27  0.31 
B*18:01  0.40  0.66 
B*27:05  0.27  0.14 
B*27:08  0.49  0.30 
B*35:01  0.36  0.41 
B*38:01  0.30 0.39 
B*39:01  0.35  0.32 
B*40:01  0.18  0.40 
B*40:02  0.23  0.33 
B*40:06  0.24  0.51 
B*41:01  0.39  0.39 
B*42:01  0.42  0.38 
B*44:02  0.19  0.36 
B*44:03  0.19  0.16 
B*45:01  0.45  0.54 
B*46:01  0.31  0.57 
B*48:01  0.14  0.52 
B*49:01  0.06  0.24 
B*50:01  0.26  0.32 
B*51:01  0.18  0.46 
B*51:02  0.23  0.33 
B*52:01  0.10  0.54 
B*53:01  0.36  0.47 
B*54:01  0.25  0.26 
B*55:01  0.21  0.52 
B*56:01  0.25  0.27   
B*57:01  0.07  0.09 
B*57:03  0.26  0.25 
B*58:01  0.03  0.12 
B*59:01  0.18  0.37 
B*67:01  0.47  0.41 
B*73:01  0.33  0.53 
B*78:01  0.34  0.72 
B*81:01  0.32  0.50 
B*82:01  0.36  0.41 
C*01:02  0.04  0.39 
C*02:02  0.19  0.54 
C*03:02  0.13  0.29 
C*03:03  0.20  0.30 
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C*03:04  0.39  0.37 
C*04:01  0.04  0.18 
C*05:01  0.24  0.49 
C*06:02  0.31  0.76 
C*07:02  0.15  0.62 
C*08:01  0.22  0.36 
C*12:03  0.21  0.54 
C*14:02  0.16  0.5 
C*15:02  0.36  0.45 
C*16:01  0.14  0.50 
C*17:01  0.08  0.27 
C*18:02  0.29  0.61 
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