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Abstract 
The gene regulatory network (GRN) of human cells encodes mechanisms to ensure proper             
functioning. However, if this GRN is dysregulated, the cell may enter into a disease state               
such as cancer. Understanding the GRN as a system can therefore help identify novel              
mechanisms underlying disease, which can lead to new therapies. Reliable inference of            
GRNs is however still a major challenge in systems biology.  

To deduce regulatory interactions relevant to cancer, we applied a recent           
computational inference framework to data from perturbation experiments in squamous          
carcinoma. GRNs were inferred using several methods, and the false discovery rate was             
controlled by the NestBoot framework. We developed a novel approach to assess the             
predictiveness of inferred GRNs against validation data, despite the lack of a gold standard.              
The best GRN was significantly more predictive than the null model, both in crossvalidated              
benchmarks and for an independent dataset of the same genes under a different             
perturbation design. It agrees with many known links, in addition to predicting a large              
number of novel interactions, a subset of which were experimentally validated. The inferred             
GRN captures regulatory interactions central to cancer-relevant processes and thus provides           
mechanistic insights that are useful for future cancer research.  
Data available at GSE125958. 
Inferred GRNs and inference statistics available at https://dcolin.shinyapps.io/CancerGRN/ 
Software available at https://bitbucket.org/sonnhammergrni/genespider/src/BFECV/  
Keywords: cellular regulation, gene regulatory network inference, oncogenic mechanism 

Author Summary 
Cancer is the second most common cause of death globally, and although cancer             
treatments have improved in recent years, we need to understand how regulatory            
mechanisms are altered in cancer to combat the disease efficiently. By applying gene             
perturbations and inference of gene regulatory networks to 40 genes known or suspected to              
have a role in cancer, we deduce their underlying regulatory interactions. Using a recent              
computational framework for inference together with a novel method for cross validation, we             
infer a reliable regulatory model of this system in a completely data driven manner, not               
reliant on literature or priors. The novel interactions add to the understanding of the              
progressive oncogenic regulatory process and may provide new targets for therapy.  
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Introduction 
Cancer can be seen as an altered state of the regulatory systems that control cell               
proliferation and cell death. Such systems are generally not sensitive to individual gene             
malfunctions, but an aggregation of aberrations can lead to sufficient dysregulation to cause             
cancer. Reliable models of these regulatory interactions would offer insight into key            
mechanistic alterations for therapeutic targeting. Cancer subtype-specific gene regulatory         
networks (GRN) encode intracellular dynamics [1], and offer understanding into the           
functional changes driving disease development. Inference of such models generally          
exploits certain aspects of the experimental setup, such as pooling among replicates to             
amplify signal, or makes use of prior knowledge [2,3]. The experimental techniques, setup,             
and data collection quality determine the quality of an inferred GRN model. However,             
practical limitations of experimentation, such as high noise levels and few experiments            
relative to the vast combinatorial landscape of possible regulatory interactions, often prevent            
any GRN inference methods from inferring a correct GRN[4]. Methods using data from             
known and systematic perturbations have shown greater accuracy among inference          
techniques since more information is available to determine regulatory causal mechanisms           
in the system[5].  
 
GRN inference has proven its value to unravel novel regulatory links of biological             
significance. For instance, ARACNe was applied to gene expression profiles to predict a             
glioma-specific GRN, revealing that C/EBPbeta and STAT3 are master regulators of           
mesenchymal transformation, which was validated experimentally [6]. In another study, eight           
key genes were knocked down by siRNA, and the gene expression together with prior              
knowledge were used to infer a GRN network in the RAS pathway with good validation               
performance [7]. 
 
A large number of GRN inference algorithms exist. In a survey by the DREAM5 project [8] of                 
35 inference methods, it was shown on simulated and E. coli data that some methods               
performed better than random predictions. However, many methods did not outperform           
random, and on yeast data no method performed much better than random. Since this study,               
the community has convergently evolved methods of integrating various priors:          
literature/database, TF, ChIP-Seq, or protein data to increase information about the system,            
increasing accuracies by some 30%[9]. Similarly, in another benchmark ARACNe2 [10]           
performed only marginally better than random with an average AUROC of 0.58 across             
different sized networks, which is consistent with another benchmark study [11]. These            
benchmarks testify to the fact that network inference remains a very challenging task,             
especially when constrained to a single data modality. While GRN inference has been             
shown to be extremely valuable, it has also been shown that existing algorithms leave much               
room for improvement, especially in terms of limiting inclusion of false positives [12].  
 
In this study, we deployed perturbations through siRNA gene knockdown of each gene in              
our literature-curated set of cancer-related regulator genes, each followed by transcriptomics           
measurements of all genes, in order to measure the global influence of each individual gene.               
Knockdown experiments are more informative about the system than irreversible and           
complete knockout which may cause drastic rewiring of the network into another system.             
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Assuming a linear dynamical system (LDS) [13] model, once the system has reached a              
steady-state equilibrium, a GRN can be inferred by solving a set of first order ordinary               
differential equations (ODEs)[14] in the form of our linear model (eq.1). Importantly,            
however, our linear model is reliant upon a known perturbation design, which additionally             
informs our model. In this way a selected set of 40 genes relevant to cancer were perturbed,                 
and the transcriptomic response data were used to construct a model of underlying             
regulatory interactions. We inferred these interactions by relating the effect of the gene             
perturbations to the expression of the readout genes, using three GRN inference algorithms             
specifically tuned to our linear model and incorporating perturbation design: LASSO, LSCO,            
and TLSCO.  
 
A drawback of all GRN inference algorithms is that they generally produce erroneous GRNs              
if the noise level is high [11,15]. To ensure inference of reliable GRNs, we employed               
NestBoot [12], a recent framework implementing nested bootstrapping, wrapped around any           
individual GRN inference method to better account for sample variation and noise.            
Contained within the GeneSPIDER package [11], NestBoot generates bootstrap support          
distributions for links inferred from measured as well as shuffled data [16], and minimizes             
false links by comparing them. This way Nestboot is able to discard links even if they have                 
high bootstrap support, if they also have this in the null distribution. NestBoot has been               
shown to give substantially increased inference accuracy across both synthetic and           
experimental datasets when compared to the methods in their native implementation.  
 
Lacking a gold standard, we first measured the inference accuracy by the GRN’s ability to               
predict the data compared to a distribution of GRNs with the same topology as the inferred                
one but whose links have been shuffled. We complemented this performance evaluation by             
measuring the GRN’s ability to predict the data compared to a distribution of shuffled data.               
Finally, we present the best performing GRN as the most reliable one, although the other               
inferred GRNs are largely subsets of each other and mostly perform well too. Two of the                
novel links of the best GRN were experimentally validated. The presented GRN captures             
regulatory interactions central to cancer-relevant processes and we foresee that it can            
provide mechanistic insights that can help to guide future cancer research. For instance,             
many cancers are caused by dysregulation of the MYC oncogene, hence our finding of a               
new regulator of MYC may potentially lead to new therapies. 
 
 

Methods 

Knockdown Data Collection 
A set of genes was assembled from different pathways and complexes, each interacting to              
some degree with the oncogene MYC [17] (Table S2 and S3). Each readout gene is               
perturbed in the human squamous carcinoma cell line A431 via transfection with short             
interfering RNAs (siRNAs). We then harvest, purify and prepare libraries using the Ambion             
Library Construction Kit[18]. A precise record of perturbations is key to modeling (next             
section). In order to minimize siRNA off target effects, two to three siRNA are used per target                 

 2 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2019. ; https://doi.org/10.1101/735514doi: bioRxiv preprint 

https://paperpile.com/c/zXZWa3/uWFj
https://paperpile.com/c/zXZWa3/A6AT
https://paperpile.com/c/zXZWa3/mOzF+GCFj
https://paperpile.com/c/zXZWa3/0TVT
https://paperpile.com/c/zXZWa3/GCFj
https://paperpile.com/c/zXZWa3/EKQW
https://paperpile.com/c/zXZWa3/LE0Y
https://paperpile.com/c/zXZWa3/TjKn
https://doi.org/10.1101/735514
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

(Table S3), which are then averaged to purify the effects of the targeted siRNA perturbation.               
Cells were collected at 72 hours after siRNA knockdown and washed of Phosphate-Buffer             
Solution (PBS), and lysed using CelluLyser[19]. Cell counts were calculated using the            
resazurin fluorescence assay. Since no endogenous gene can be assumed to be free of              
MYC regulation, which is thought to be a universal transcriptional amplifier [20], a spike-in              
RNA transcript was added to each sample to act as a reference gene for the quantitative                
polymerase chain reaction (qPCR) analysis, added in proportion to the cell count before             
RNA isolation. It consisted of a 1000-base sequence with a 5' cap and a polyA tail. This was                  
only used for normalization of mRNA level across samples[21]. Negative controls are            
included, which siRNA does not map to human genes, as well as an untreated control               
absent of any siRNA. The cDNA was prepared from the RNA and preamplified in preparation               
for the high-throughput qPCR screening. Finally, the transcript profiles with respect to the 40              
genes were determined with TaqMan qPCR assays (Table S4) using Fluidigm Biomark            
96x96 Dynamic Array integrated fluidic circuits. Raw qPCR output was then processed as a              
function of the samples’ initial quantity returning a measure of fold change [22] via the              
experimental controls. Three experimental replicates were made per targeted perturbation          
and five outlying replicates were discarded due to clear machine read error, thus the dataset               
is composed of 40 genes (N) and 115 samples. Including all controls, a total of 18432                
qPCRs were performed on 192 samples. Two technical replicates were performed to ensure             
minimal machine error. They generated very similar values up to 25 qPCR cycles (Fig. S1). 
 
Experimental validation of individual interactions was performed on GTML2 brain tumor           
cells, which were cultured in serum-free stem cell medium as previously described [23] and              
treated for 2 hours with DMSO or JQ1 (500 nM). RNA was purified using the RNeasy Kit                 
(Qiagen). RNA sequencing was performed using the Ion Proton™ System for           
Next-Generation Sequencing at NGI, SciLifeLab, Uppsala Biomedical Center (BMC),         
Sweden. All treatment conditions were performed in triplicates. All RNA sequence reads            
were processed and the differentially expressed genes were analyzed as previously           
described [23].  

Model Generation 
The fold change is calculated in comparison to the spike-in for all knockdown experiments. It               
is used in combination with the collective experimental design matrix (describing the location             
of perturbed and readout genes) to determine the GRN, i.e. the interaction matrix A, of               
instantaneous regulatory effects. We use a linear ODE model, similar to [13], which             
simplifies to 
 

− (P )Y = A† − F + E (1) 
 
where Y is an expression matrix of calculated fold changes, with N genes and M               
experiments. In Eq. 1, P is the design matrix if we solve for , where the Moore-Penrose             A†     
generalized inverse, denoted † , is used throughout in place of the inverse due to              
computational intractability wherein sparse GRNs might be rank deficient. However as we            
want to solve for and not , we reformulate Eq. 1 to a traditional regression problem on    A    A†            
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errors-in-variables form, . The error in Y and P are represented as  P ) (Y )− ( − F = A − E           
measurement error E and process error F, respectively, as defined in Table 1. 
 
Table 1. Description of matrix contents used in the linear model for GRN inference. 

matrix dimension contents description/ value range 

Y 115 x 40 Gene 
expression 

SNR=0.014, max=3.3, min=-8.7, condition 
number=55.3 

A 40 x 40 Interaction 
matrix (GRN) 

Range dependent on BFE per init; initial 
inference returns variously sparse, weighted 
A, which is reweighted (see BFE section) 

P 115 x 50 Perturbation/ 
design 

Targeted perturbations (-1=KD, 0=no KD) 

F 115 x 40 Input error Range dependent on BFE per init 

E 115 x 40 Output error Range dependent on BFE per init 

 
 
Three methods are employed based on their ability to mix model selection and parameter              
estimation. LSCO (least squares with a cut off to produce variably sparse networks)[25] for              
its value as a standard method, LASSO (least absolute shrinkage and selection            
operator)[26] was chosen for its proven ability to find the solution of minimum error, and               
TLSCO (total least squares with the same sparsity inducing cut off as LSCO,[27]) for its               
ability to model error in both the dependent and independent variables [15]. Each method is               
encapsulated within the nested bootstrapping framework to estimate the linear model in an             
accurate and reproducible manner by limiting false discovery rate (FDR), in their native             
configuration.  
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Model Selection & Validation 
Only the measurement error can be estimated from the expression matrix Y, while the error               
in P cannot be estimated directly from data. This optimization occurs during the leave one               
out procedure (Algorithm 1), using the CVX convex optimization package (v1.22)[28] for            
MATLAB , where the left out gene (g) is expressed as a linear combination of the other                 
experiments (crossvalidation) as follows: 

 
Algorithm 1 : BalanceFitError (BFE) with Crossvalidation  

1. For each perturbed gene g : 
a. Remove all experiments perturbing g from Y, P → Y !g, P!g 

b. While (Frel - Erel > t) 
i. Minimize +  subject toE|

|
|
| !g

|
|
|
|
2

F ro
F|

|
|
| !g

|
|
|
|
2

F ro
  

(Y ) P )A 
 !g − E!g =  − ( !g − F !g  

 

=E|
|
|
| !g

|
|
|
|
2

F ro
< 1

χ (α,N )2  

=  ||A Y ||F|
|
|
| !g

|
|
|
|
2

F ro
< w !g

2
F ro  

ii.  and Erel =
||E ||!g

2
F ro

||Y ||!g
2
F ro

F rel =
||P ||!g

2
F ro

||F ||!g
2
F ro  

iii. Use bisectioning to find the value of w that minimises  Frel - Erel . 
c.  (P P )F g = F !g

†
!g  g  

d. , where wRSSP g = cov(P )g

P −P||
︿

g g||2F ro P
︿

g = P g − F g   

e. , where wRSSY g = cov(Y )g

Y −Y||
︿

g g||2F ro −  PY
︿

g = A† ︿
g  

 
2. RSS wRSSY wRSSPw = Σ g + Σ g  

 
 
Here A contains the GRN structure (topology), with each non-zero value representing an               
interaction and each zero a lack of interaction. For each experiment in the dataset one               
creates new Y and P matrices by leaving out said gene’s perturbations. The noise of Y,                
represented as E, is used as an estimate of the variance inherent to the cells’ expression as                 
well as error in plate reading [29]. In addition, since there is no true GRN to measure                
inference accuracy, part of this read error is distributed as a proxy for methodological error,               
balanced from Eg to process error, Fg. Since error is ultimately a function of the degrees of                 
freedom of the given matrix, relative error (Erel , Frel ) is used to more equally balance these                
input and output errors. All norm calculations are of the frobenius variant. Each inference run               
returns a GRN for each parameter setting in the hyper parameter space. From step i. to iii.                 
all matrices have the perturbation experiments of the left out gene g removed and are thus                
denoted !g . However, A maintains all genes, remaining square throughout, and later the left              
out experiments can be inferred from the remaining data. All inference methods used here              
have a regularization parameter that determines the number of nonzero parameters in the             
models, which is varied to span the complete range from empty to full network. 
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Because our leave out procedure assesses individual gene prediction errors, we assembled            
null GRN performance distributions by shuffling GRN links and fitting these new networks to              
the data to create both a standardized and fairly conservative link weight using a constrained               
least squares (CLS) algorithm [25,30]. To this end we implement a Monte Carlo sampling              
method, sampling links to maintain the node indegree and preserving hubs thereby            
approximating an estimated link null distribution based on the inferred GRN judged to             
generate conservative and fair null GRNs. For a fair comparison, both the inferred and              
shuffled GRNs are fit to the original data. However topology and sign are preserved in the                
GRNs. To obtain a measure of the goodness of fit of both inferred and shuffled GRNs,                
crossvalidation was used to calculate the weighted residual sum of squares (wRSS) of the              
original training data. We are able to predict a left out gene in step c and d by expressing it                    
as a linear combination of the other genes. This goodness of fit measure was also made of                 
the inferred GRN’s ability to under crossvalidation predict the original data compared to the              
distribution of prediction errors using shuffled data. The relative error metric comparing            
measured and shuffled wRSS (Fig. 2, 3, S3, S4, S7, S8) is complemented by R2 values (Fig.                 
S6). Before calculating these, the condition number of each GRN was reduced to ensure              
that the predicted response remain similarly bounded as the observed gene expression. This             
was done by performing singular value decomposition of the GRN, setting singular values             
below a cutoff to zero, and then reconstructing the GRN without the smallest singular values.               
The GRN with reduced condition number was then fit to training data under crossvalidation              
to generate predicted expression responses in the same way as described above. The cutoff              
on the minimum singular value was set independently for each GRN to ensure that the               
predicted expression values were within the range of the measured values. The small             
singular values generally represent noise if the data is ill-conditioned and removing them             
reduces the effect of noise.  
 
To further verify both accuracy and generalizability, these GRNs are also applied to a              
second independent, validation dataset based on the same genes knocked down in pairs, in              
single replicates. While this data is not used to infer GRNs, we apply the same               
cross-validation strategy as for the original data to validate the GRNs. This is necessary for               
parameter fitting, since the process error is different from the single knockdown data.             
Furthermore, by running the same pipeline we obtain a comparable measure of how well the               
independent data fits our inferred GRNs, and build null distributions of expected error from              
shuffled GRNs  to examine an inferred GRNs’ ability to predict the data.  
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Fig. 1. Workflow of project. siRNA      
perturbation experiments were carried    
out systematically per gene, resulting in      
a change in mRNA level which elicits a        
regulatory response over time before     
reaching steady state when gene     
expression was measured.  
 
GRN inference: Nested bootstrapping    
was applied to three inference methods,      
producing GRNs with an FDR set to 5%.  
 
GRN Selection: Estimate goodness of fit      
under crossvalidation and error    
balancing, and compare to shuffled     
topologies (Algorithm 1).  
 
Independent Validation: Each inferred    
GRNs’ ability to predict an independent      
dataset was evaluated in comparison to      
a distribution of shuffled topologies.     
Finally, the overall most accurate GRN      
was selected. Two novel links were      
experimentally validated. 

 

Results 
A four step procedure was implemented to generate a cancer-centric GRN oriented towards             
the MYC oncogene (Fig. 1). First, a list of 340 cancer associated genes was ranked               
heuristically by what was known of each, giving preference to genes with known             
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associations to both cancer and MYC. The criteria were as follows, in decreasing order of               
rank: i. members of a complex with MYC affecting or not affecting transcripts, ii. genes               
directly affecting MYC or MYC transcripts (activating/repressing), iii. genes affecting MYC           
targeted transcripts, and iv. genes indirectly affecting MYC transcripts. Only genes           
expressed in the used cell line were further considered. The 40 top ranked genes were               
perturbed by siRNA in the well characterized human A431 squamous carcinoma cell line             
(Tables S2 and S3). Of the selected genes, 31 are transcriptional regulators, 10 are              
oncogenes, and 7 are tumor suppressors. 
 
RNA silencing experiments were carried out to knock down the expression of each individual              
gene, whereafter the expression of all genes in response to the perturbation was measured.              
The experiments were carried out with three biological replicates per gene. At steady-state,             
gene expression was measured using high-throughput RT-qPCR, totalling 18432         
quantifications. Most targeted genes were seen to have dramatic reduction in expression,            
generally a stronger effect than for the other genes (Fig. S2). In fact 31 targets were                
significantly downregulated (p < 0.1 and log 2 fold change < -2). 
 
The perturbation response gene expression data were used for network inference with three             
methods, LASSO, LSCO, and TLSCO, each run in conjunction with nested bootstrapping.            
Each GRN inference method was run with varying parameters to produce GRNs in a range               
of different sparsities. Nested bootstrapping was then used to select the significantly            
supported links in each GRN, resulting in final sparsities that tend to never exceed 4               
links/gene even if the natively inferred GRN had 40 links/gene, for example. In order to               
select the GRN that has the links most likely to exist in reality, we compared how well each                  
inferred GRN’s topology fits the data compared to shuffled topologies of the same GRN. The               
reason for validating the topology rather than the complete GRN including the actual             
parameter values is that those parameters are optimized to fit the data and therefore no               
suitable null model exists. Note that by topology we mean the structure of the GRN, i.e. the                 
inferred links and their sign. For each topology, the parameters were fit to the observed data                
using crossvalidation, and the error was measured as the difference between predicted and             
observed values of the hold-out samples, after assembling the individual gene predictions            
into the full predicted matrix via the iterative BFE. This was done with the novel               
BalanceFitError algorithm (Algorithm 1), which ensures that the error is balanced between            
input and output, i.e. that the error is not merely pushed from the output to the input or vice                   
versa.  
 
Each inferred GRN was shuffled a hundred times, and the data was fit the same way to                 
these topologies to estimate a null distribution of expected inference error. Note that since              
the parameters of the shuffled topologies are fit to minimize the error, this is a very stringent                 
test of the inferred topology and for a suboptimal GRN one expects some of its shuffled                
topologies to by chance have lower error. Yet, several of the inferred GRNs greatly              
outperformed their null model, both when using the original training data (Fig. 2) and the               
independent validation data with double knockdown design in the same cell line (Fig. S3).              
This is shown to be a fair proxy for accuracy, which link-calling based measure is not                
attainable in gold-standardless investigations such as this, in Fig S7 and S8. These figures              
demonstrate that when an inferred GRN outperforms its shuffled topologies, it tends to also              
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have high prediction accuracy. We also calculated R2 values to show the proportion of the               
variation that our GRNs explain (Fig S6). All GRNs are available at            
https://dcolin.shinyapps.io/CancerGRN/. Five of the inferred topologies had 1000 times lower          
error than the median of the shuffled null model. The most accurate GRNs were inferred by                
Lasso, in terms of outperforming their null distributions. All but one GRN outperformed the              
median of their null distributions, and eight of the nineteen GRNs across all three methods               
outperformed all shuffled GRNs in their respective null distribution.  

 
 
Fig. 2. Validation of inferred GRNs’ topologies. Each x-axis tick mark shows the prediction              
performance in terms of the wRSS error of each inferred GRN topology (circles) fit to training data                 
under crossvalidation, compared to its shuffled topologies. The box displays the median and             
interquartile range, and whiskers bound points maximally extending 1.5 times this range. Beyond this,              
outlier points are shown. 

 
 
 
We also applied another null model to test how well the data fits the inferred GRN. Here we                  
shuffled the original data one hundred times and fit these datasets to the inferred GRN in                
order to generate a null distribution. For many inferred GRNs the error was significantly              
lower than the median of the null distribution, both for the original training data (Fig. 3) and                 
for independent validation data(Figs. 3 and S4). 
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Fig. 3. Validation of the inferred GRNs’ fit to the measured data. Each x-axis tick mark shows the                  
prediction performance in terms of the wRSS of an inferred GRN topology fit to training data under                 
crossvalidation, compared to its ability to fit shuffled data. X marks represent the inferred GRNs. The                
filled color box displays the median and interquartile range, and whiskers bound points maximally              
extending 1.5 times this range. Beyond this, outlier points are shown. 

 
 
The GRN that outperformed its null distribution by the largest margin was            
Bolasso_network_L1145_M115_support97.5_1.52e-03, which we will refer to as the best         
GRN, with 125 links, including 39 self-links, between 39 genes (Fig. 4) and a sparsity of 3.2                 
links/gene. The full name indicates certain properties, namely that 1145 links were natively             
inferred before NestBoot, 115 experiments were used, 97.5% bootstrap support was           
attained at FDR=0.05, and 1.52e-03 is the sparsity penalty parameter used. In this GRN’s              
overlap plot (Fig. 5) one can see the distributions of bootstrap values for both measured and                
shuffled data. The frequency of bootstrap support for measured data increases sharply at             
the right end above 98%, suggesting that this part of the distribution represents real and               
therefore highly reproducible links. In contrast, the shuffled data decreases towards           
support=1. The fact that some links inferred from shuffled data can attain such high              
bootstrap values can be attributed to the fact that the inference is done at a sparsity that                 
yields very dense GRNs which may result in spurious links with high bootstrap support.              
However, the nested bootstrap framework monitors the distribution of spurious links and            
takes them into account when calculating FDR. The plot shows how FDR varies for different               
bootstrap support cutoffs.  
 
One can also see the level of overlap between one hundred nested bootstrap runs in Fig. 5.                 
Each run yields a bootstrap support for every link, which can be converted to a GRN for a                  
given cutoff. For the measured data, the overlap (Jaccard) between runs stays relatively high              
(0.6) all the way to links with 100% bootstrap support, indicating that the reproducibility is               
high. In contrast, for the shuffled data not a single link with bootstrap support above 70%                
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overlaps with another nested run, indicating poor reproducibility despite relatively high           
bootstrap support. 
 
 

 
Fig. 4. The overall best performing GRN. Each of the 125 links has at least 97.5% bootstrap support,                  
and the sparsity is 3.2 links/gene among its 39 genes. The 39 self links are not shown. The genes                   
involved in the external validation experiment, BDR4, CCNB1, and MYC, are highlighted pink. Blue              
links reflect up regulation while red reflect negative down regulation. The visualization was made by               
the provided shiny app. 
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A 

B 

 

Fig. 5. NestBoot output for the overall best performing GRN. A shows the entire bootstrap support                
range from 0 to 1, as well as overlap between all bootstrap GRNs for measured (blue) and shuffled                  
(red) data. The FDR is estimated via a null background model based on networks inferred from                
shuffled data. This is done to restrict inclusion of false links by setting FDR e.g. to 5%. The dashed                   
orange line represents the cutoff where this is reached, here at 97.5% bootstrap support. The dashed                
grey line shows how the FDR behaves as a function of the bootstrap support. B shows the fine detail                   
of the curves in the support levels between 0.9 and 1. These visualizations were made by the                 
provided shiny app. 
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Validation of the best GRN 
 
Of the 125 links inferred in the top performing GRN, two novel MYC-related links were               
experimentally validated. The novel regulatory relationships BRD4→CCNB1 and        
CCNB1→MYC (Fig. 3) were examined in an independent study [23] in which JQ1 was used               
to inhibit BRD4 in the GTML2 cell line, a mouse brain tumor cell line that overexpresses                
human MYCN. The inferred activation of CCNB1 by BRD4 was supported by a significant              
reduction of CCNB1 expression when BRD4 was inhibited, from 7.12 to 7.04 average             
log(CPM) after 6h (Fig. S5). However, in order to study immediate effects of BRD4 inhibition               
we here performed a new analysis in which GTML2 cells were treated with JQ1 for just 2                 
hours. Again, CCNB1 expression was significantly reduced, from 7.48 to 7.04 average            
log(CPM). Support for the inferred activation of MYC by CCNB1 was found by the fact that                
the CCNB1 expression changed from normal newborn mouse brain to adult mouse brain             
(from FPKM 20.3 to 0.2) which agrees with the change of MYC (from FPKM 9.2 to 0.8) [23].  
 
These validation experiments support a novel mechanism for MYC regulation inferred in the             
best GRN. While it is well known that BRD4 can activate MYC in some cancer types ([31]),                 
the best GRN presents a regulatory route that goes via CCNB1 (Cyclin B1). Bound with               
cyclin-dependent protein kinases, CCNB1 is involved in controlling the cell cycle at mitosis.             
The findings here suggest that CCNB1’s role in regulating biological processes such as             
proliferation and oncogenesis can proceed via the activation of MYC. 
 
Another type of validation is comparison to known links in public network resources. The              
links in the best GRN were searched for in the databases TRRUST [32], FunCoup [33],               
HumanNet [34] and STRING [35] as well as in our prior network from data mining. Where                
these reference networks contained undirected links, we compared them to an undirected            
version of our GRN. Many known interactions were witnessed in the best GRN, speaking to               
its ability to accurately infer what is known. The overlap with the other GRNs was significant                
(p < 0.1) in a hypergeometric test in all cases but one (Table S1). 

Discussion 
This study carries out a complete workflow for inferring reliable GRNs, from the selection of               
genes, experimental perturbation, data collection, and GRN inference, to validation of the            
inferred GRNs. It was applied to 40 cancer-related genes whose GRN was studied in a               
human squamous carcinoma cell line. The collected dataset was used to infer variously             
sparse GRN using three inference techniques within the NestBoot framework. The predictive            
accuracy of the inferred GRNs was estimated using the novel BalanceFitError algorithm            
under crossvalidation. Almost all inferred GRNs were more predictive than expected by            
chance, and some were vastly more predictive. These top performing GRN were also able to               
predict an independent pairwise-gene perturbation validation dataset significantly better than          
expected by chance. The best GRN contains many known links as well as proposes many               
novel links, two of which were verified experimentally.  
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The performed gene perturbations caused a range of fold changes in both targeted and              
readout genes (Fig. S2). Knockdown is advantageous for GRN inference compared to            
complete inhibition through knockout, as that could alter the gene functioning within the cells              
to such an extent as to potentially drive the cell to any number of non-native states by                 
activating alternative pathways to cope with the loss of the knocked out one. This would               
result in measurement of an altogether different cellular GRN which lacks the knocked out              
gene. With knockdown, a gene's effect is lowered in the hope of measuring an otherwise               
wild-type GRN from the perspective of the single gene perturbation, across the gene             
repertoire.  
 
The knockdown efficiency of each siRNA is unknown, and varies between genes. It may              
seem desirable to know the siRNA efficiency since this is a parameter in the perturbation               
design matrix that is used in the mathematical modelling. However, its value does not affect               
the inferred GRN’s topology, and since the topology is the main outcome of the inference,               
and what we compare to null, this lack of knowledge is inconsequential. Prior information,              
whether literature-curated, ChIP-seq, ATAC-seq has been shown to be of value in modern             
GRN investigations, and may also be helpful. Such integration could be built into the model               
as a method of constraining spurious link additions much the same as NestBoot restricts              
links based on shuffled link distributions. We find many accuracy improvements in this             
sampling and anticipate similar accuracy improvements from the addition of priors. However,            
such experimental information is not available for this study and we therefore pursued a              
strictly data driven approach. 
Despite our efforts to measure absolute mRNA levels using spiked-in RNA as qPCR             
reference, MYC was not found to be a universal amplifier as previously claimed [20,36,37].              
Our observation agrees with the results of [38]. In both their and our study, measurements               
were done after 72 hours. It is possible that MYC knockdown activates a response leading to                
rapid restoration of MYC expression, so that cells return to their original state within that time                
span, instead of reaching a new steady state. In our study, the targeted MYC transcript was                
not significantly repressed by the MYC siRNA. This may be caused by its unusually high               
turnover rate [39], which can make it difficult to knock down with siRNA [40]. The same lack                 
of observed knockdown for the target was noted for three other transcription factors: SP1,              
LMYC, and JUN. This seems to suggest a need for optimizing the experimental protocol to               
obtain perturbed steady state conditions when knocking down certain transcription factors. 
 
During the NestBoot procedure the sparsity of the native GRNs is varied from almost a full to                 
almost an empty network. However, as NestBoot selects the strongest supported links only,             
the sparsity of the GRNs output by NestBoot does not vary much for the denser GRNs, and                 
even less in gene makeup. We observe consistency across different sparsities, i.e. the             
smaller GRNs are mostly a subset of the larger ones. This consistency among sparsities              
adds further confidence beyond the GRNs’ predictiveness relative to a null distribution of             
shuffled topologies. Selecting the GRN with the optimal sparsity can be done in several              
ways. Here we followed the strategy of selecting the GRN with the best combination of               
coverage and predictiveness. Another criterion to select GRNs is the biological rationale that             
natural systems usually contain 3-5 links per gene [8]. 
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In this study we face the problem of how to measure accuracy in the absence of a true                  
network. Lacking such a gold standard it is impossible to determine if an inferred link is true                 
or false. Instead, we compared each inferred network to a null distribution of GRNs with the                
same sparsity and indegree distribution. Since the prediction error depends on the weights             
of the links, it is crucial to fit each shuffled-link GRN to the data to give it reasonable weight                   
estimates. To make the comparison fair, both the inferred GRN and the shuffled-link GRNs              
are refit to the data. By showing that the inferred GRN outperform their shuffled counterparts               
in terms of ability to explain the data, measured both by the wRSS and R2, we know that                  
they have a topology closer to the unknown real GRN. The exact same procedure can then                
be applied to other data, such as the independent validation dataset. With enough repeated              
shuffled-link GRNs to produce a sufficient null distribution, this results in an unbiased             
estimate of how predictive a given GRN is compared to what is expected, despite lacking a                
known gold standard network. Benchmarking on data with a known gold standard shows that              
increased predictiveness measured this way generally agrees with higher accuracy. 
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