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Abstract  

Background: Repetitive transcranial magnetic stimulation (rTMS) is used to investigate normal 

brain function in healthy participants and as a treatment for brain disorders. Various subject factors 

can influence individual response to rTMS, including brain network properties.  

Objective/Hypothesis: A previous study by our group showed that ‘virtually lesioning’ the left 

dorsolateral prefrontal cortex (dlPFC; important for cognitive flexibility) using inhibitory rTMS 

reduced performance on a set-shifting task. We aimed to determine whether this behavioural 

response was related to topological features of pre-TMS resting-state and task-based functional 

networks.  

Methods: Inhibitory (1Hz) rTMS was applied to the left dlPFC in 16 healthy participants, and to the 

vertex in 17 participants as a control condition. Participants performed a set-shifting task during 

fMRI at baseline and directly after a single rTMS session 1-2 weeks later. Functional network 

topology measures were calculated from resting-state and task-based fMRI scans using graph 

theoretical analysis.  

Results: The dlPFC-stimulated group, but not the vertex group, showed reduced set shifting 

performance after rTMS associated with lower task-based betweenness centrality of the dlPFC at 

baseline (p=.030) and a smaller reduction in task-based betweenness centrality after rTMS 

(p=.024). Reduced repeat trial accuracy after rTMS was associated with higher baseline resting 

state node strength of the dlPFC (p=.017).  

Conclusions: Our results suggest that behavioural response to inhibitory rTMS to the dlPFC is 

dependent on baseline functional network features. Individuals with more globally integrated 

stimulated regions show greater resilience to inhibitory rTMS, while individuals with more locally 

well-connected regions show greater vulnerability.  

Keywords: set-shifting, cognition, dorsolateral prefrontal cortex, graph analysis, rTMS, network 
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Abbreviations: 

BC – betweenness centrality 

dlPFC – dorsolateral prefrontal cortex 

FC – functional connectivity  

HF – high frequency 

LF – low frequency 

MMSE – Mini Mental State Examination 

NS – node strength 

PC – participation coefficient 

RER - repeat error rate  

RRT - repeat reaction time 

rTMS – repetitive transcranial magnetic stimulation 

SER - shift error rate 

SRT - shift reaction time  

 

Highlights 

• Functional brain network properties predict behavioural response to 1Hz DLPFC rTMS 

• Globally integrated stimulated regions are resilient to effects of inhibitory rTMS 

• Segregated, locally well-connected regions are vulnerable to inhibitory rTMS 

• Change in performance after rTMS correlates with change in network properties 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2019. ; https://doi.org/10.1101/735506doi: bioRxiv preprint 

https://doi.org/10.1101/735506
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fitzsimmons et al. (2019) 

4 

Introduction 

Repetitive transcranial magnetic stimulation (rTMS) is a method of non-invasively exciting (using 

high frequency (HF) stimulation, >5Hz) or inhibiting (using low frequency (LF) stimulation, ≤1 Hz) 

specific brain regions and connected networks through electromagnetic induction. It is used to 

investigate brain function in healthy subjects [1] and is becoming a common treatment in 

neurological and psychiatric patient populations[2]. However, individuals vary considerably in their 

response to rTMS. This variation in response is associated with a number of factors, including 

baseline structural[3] and functional connectivity[4] (FC) of the stimulated brain network.  

FC is a measure of the temporal correlation of activity between anatomically separate brain 

areas[5]. FC of the targeted area is predictive of the outcome of rTMS to the dorsolateral prefrontal 

cortex (dlPFC) for the treatment of depression[4,6,7], dorsomedial PFC for the treatment of eating 

disorders[8], and of change in motor-evoked potential amplitude after rTMS of the motor cortex[9]. 

However, given that rTMS also influences the activity of areas distant to the stimulated site[10], 

metrics that take the organisation of the wider functional network into account may be a more 

useful predictor of rTMS outcome than seed-based or region of interest (ROI)-based FC, which are 

limited to measuring FC between a priori-defined brain regions.  

An alternative method is to define the brain as a network consisting of nodes (brain regions) and 

edges (functional connections between regions), and then apply graph theoretical analysis to 

evaluate the organisation and topology of this network [11]. Graph measures can be extracted 

from the whole network, individual nodes, or subnetworks of more densely interconnected regions 

(modules[12]), allowing characteristics of the network to be evaluated at different spatial scales. 

While functional network features have been shown to be predictive of HF rTMS outcome in 

depression[13], this method has not yet been applied to the prediction of cognitive outcomes of LF 

rTMS. 

In an earlier study by our group in healthy participants [14], we applied LF rTMS to the left dlPFC, 

a region important for executive function, specifically the ability to flexibly adapt to changes in rules 

or environment[15,16]., Following rTMS, subjects showed a reduction in performance on a set-
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shifting task (testing cognitive flexibility), during fMRI. In the present exploratory re-analysis of 

resting-state and task-based fMRI data acquired before and after rTMS, we aimed to determine 

whether baseline functional network characteristics are predictive of behavioural response to 

inhibitory rTMS, and whether TMS-induced change in network characteristics is associated with 

change in performance. 

We limited our choice of graph measures to those known to be markers of resilience and 

vulnerability to lesions, as we were investigating LF rTMS that causes a temporary ‘virtual lesion’. 

Centrality (i.e. how well-connected a node is[12]) is an important determinant of network 

resilience[17]. We applied three different centrality measures to the stimulated region: node 

strength (NS) that describes the total strength of a node’s connections, and is considered to be an 

indicator of local connectivity; betweenness centrality (BC), that measures how many high strength 

paths in the network pass through a node; and participation coefficient (PC), which describes 

whether a node is connected mostly to its own module or to other modules[12]. Different types of 

centrality may have different implications for the rTMS-induced behavioural effects. Since the loss 

of highly locally connected nodes (such as those with high NS) is predictive of network 

disruption[17,18], we predicted that this measure may be associated with greater vulnerability to 

the effects of inhibitory rTMS. On the other hand, nodes with high global connectivity (such as 

those with high BC or PC) are associated with greater cognitive flexibility[19], suggesting that they 

may be resilient to cognitive disruption. Therefore, we expected that higher BC and PC of the 

stimulated node would be associated with higher resilience to inhibitory rTMS. 
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Material & Methods  

Participants 

Our sample consisted of 33 healthy participants originally recruited for a previous study[20]. 

Participants were not included if they suffered from neurological or psychiatric illnesses, substance 

abuse, cognitive deficits, or had a family history of epilepsy. Sixteen participants (mean age of 55 ± 

9 years, 9 men) were randomly appointed to dlPFC (verum) rTMS and 17 age and gender 

matched participants (mean age of 57 ± 10 years, 11 men) to vertex (active control) rTMS. All 

participants were screened for the presence of psychiatric disorders using the Structured Clinical 

Interview for DSM-IV Axis-I Disorders[21], depressive symptoms using the Beck Depression 

Inventory[22], anxiety symptoms using the Beck Anxiety Inventory[23], and general cognitive 

status using the Mini-Mental State Examination (MMSE)[24]. We used the Dutch version of the 

national adult reading test[25] to provide an estimate of intelligence. The study protocol was 

reviewed and approved by the Research Ethics Committee of the VU University medical center 

(VUmc) and all participants provided written informed consent. 

 

Experimental procedure 

Full details of the experimental procedure and set-shifting task are reported in Gerrits et al 

2015[14]. In brief, participants performed a set-shifting task during two fMRI sessions separated by 

an average of 16.9 ± 11.2 and 15.9 ± 7.7 days in the verum and control condition, respectively 

(figure 1A). Participants received inhibitory rTMS to either the dlPFC or vertex directly prior to the 

second fMRI session. For participants in the verum group, fMRI data acquired during a set-shifting 

task in this first session were used to determine coordinates for TMS coil localisation using neuro-

navigation software (ASA4.1 software, ANT Neuro, The Netherlands). Specifically, the peak voxel 

of the switch>repeat contrast was used – group mean MNI coordinates were x=-42, y=28, z=31 

(see below for more details about the set shifting task). For participants in the control condition, we 

used individual anatomical T1-weighted MR scans to determine the location of the vertex (mean 

stimulated MNI coordinates x=0, y=-34, z=70). During the second session, 1Hz rTMS was applied 

for 20 minutes (1200 pulses total) using a hand-held figure-of-eight TMS coil (Medtronic 
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MagOption, Medtronic Denmark A/S, Copenhagen, Denmark) at 110% of the individual motor 

threshold to ‘virtually lesion’ the dlPFC or vertex. Participants then performed the set-shifting task 

for a second time during fMRI. The median interval between stimulation and the beginning of the 

set-shifting task was 5’19’’ for the verum and 5’56’’ for the control condition. 

 

Set-shifting task and behavioural data 

During the set-shifting task (programmed in E-Prime version 2.0, Psychology Software Tools, 

Sharpsburg, PA, USA), an arrow appeared either on one of four sides of a fixation cross in the 

centre of the screen, pointing either down, up, left or right. The participant had to respond by 

pressing the up, down, left or right key depending on whether the current classification rule for the 

arrow was location or direction. The participant was informed about incorrect repeat trials or a 

change in the classification rule (i.e. set-shift) by the presentation of a red screen. A green screen 

signalled a correct response. The task continued until the participant had completed 40 correct set 

shift trials. Two versions of the set-shifting task were counterbalanced between the first and 

second session that differed in the starting location and orientation of the arrow. All behavioural 

responses were recorded using an MRI compatible response box. The task was practiced prior to 

data collection to obtain a stable level of performance. Each response during the task was 

classified as correct repeat, incorrect repeat, successful shift, incorrect shift, or no shift/no repeat. 

Data from these responses (reaction time (RT) and error rate (ER)) were used to calculate the 

following behavioural outcome measures: 

• Percentage change in repeat reaction time (RRT) and shift reaction time (SRT) from 

baseline: 

 
RT session 2 - RT session 1

RT session 1
 × 100= % change in RT 
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• Percentage change in repeat error rate (RER) and shift error rate (SER) from baseline. A 

constant (c) was added to the ER of session 1 when calculating percentage change to 

prevent dividing by zero:  

 failed trials per session
total trials per session

 = ER per session 

 

ER session 2 - ER session 1
ER session 1 + c 

× 100= % change in ER 

Image acquisition 

Functional imaging was performed at the VUmc, Amsterdam using a GE Signa HDxt 3-T MRI 

scanner (General Electric, Milwaukee, USA) using whole-brain gradient echo-planar imaging (EPI) 

sequences. Eyes-closed rsfMRI images (TR 1,800ms; TE = 30ms; 64x64 matrix, flip angle = 80°), 

were acquired with 40 ascending slices per volume (3.75 x 3.75 mm in-plane resolution; slice 

thickness = 2.8 mm; inter-slice gap = 0.2 mm). At baseline, rsfMRI scans were acquired before 

task-based scans. Functional images during the set-shifting task (TR=2,100ms; TE=30ms; 64×64 

matrix, flip angle=80°) with 40 ascending slices per volume (same resolution as rsfMRI) were 

acquired in two runs; runs varied in length between participants, as the set shifting task lasted for 

as long as it took to achieve 40 correct set shifting trials. In the post-TMS task-based fMRI, the 

dlPFC group took on average 9.13 ± 0.95 mins and 8.17 ± 0.39 mins for the first and second run, 

respectively. The control group 9.17 ± 0.70 and 8.16 ± 0.61 mins. A sagittal 3D gradient-echo T1-

weighted sequence (256×256 matrix; voxel size=1×0.977×0.977mm; 172 sections) was also 

acquired for co-registration and parcellation. 

 

fMRI analysis 

We chose to analyse the task-based scans as two separate runs in order to carry out a replication 

of our own analyses. Image processing of the two runs of the task scan and rsfMRI scan was 

performed using FMRIB’s software library version 5.0.8 (FSL)[26] (figure 1B) and included 

discarding the first four volumes of the functional scan to reach magnetization equilibrium, motion 

correlation, 5 mm spatial smoothing, and high-pass filtering (see Appendix A for more details). The 

brain was parcellated into 225 brain regions using 210 cortical regions from the Brainnetome 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2019. ; https://doi.org/10.1101/735506doi: bioRxiv preprint 

https://doi.org/10.1101/735506
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fitzsimmons et al. (2019) 

9 

atlas[27], 14 individually segmented subcortical areas and one cerebellar ROI from FSL’s 

cerebellar atlas [28]. To account for EPI distortions near air/tissue boundaries during scanning, we 

excluded any nodes with less than four signal containing voxels [29]. A total of 193 regions 

common to all fMRI runs remained: excluded regions were located in the orbitofrontal gyrus, 

inferior temporal gyrus, parahippocampal gyrus, and thalamus. 

 

Graph analyses 

Connectivity analyses (figure 1C) were performed using in-house scripts and the Brain 

Connectivity Toolbox[12] in MATLAB R2012a (The MathWorks, Inc, Natick, MA, USA). A 

connectivity matrix was created for each subject by calculating Pearson correlation coefficients 

between time-series from all nodes. All weights in the connectivity matrix were absolutized. Using 

the absolute values prevents loss of important interactions between brain regions[30] and using 

weighted rather than thresholded or binarised connectivity matrices, prevents discarding weaker 

but potentially relevant connections[31]. We carried out additional motion correction by ‘scrubbing’ 

all time points with >0.5 mm of framewise displacement prior to making the correlation matrices (as 

recommended by Power et al[32]). 

Graph measures were calculated on a global and nodal scale. In order to identify the dlPFC node 

for each subject, we defined spherical ROIs (5 mm radius) corresponding to the coordinates of the 

stimulated brain area, and selected the atlas region that the ROI overlapped with most. A node in 

the visual cortex (node 202 from the Brainnetome Atlas, left V5) was also selected as a control 

node. We hypothesised that this node was unlikely to be affected by dlPFC rTMS, and was the 

node that appeared least frequently across individual participants’ dlPFC-containing modules as 

calculated by Louvain modularity (see Appendix B for more details). 

We calculated the following centrality graph measures in both groups for the dlPFC node and the 

control node in the visual cortex [12]:  

• Betweenness centrality (BC): the fraction of strongest weighted shortest paths that pass 

through a given node. This suggests that high BC nodes will be well connected throughout 

the entire network[12]. 
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• Participation coefficient (PC): an assessment of the type of connections a node has. Low 

PC indicates more high weighted connections with one’s own module;  high PC more high 

weighted connections to other modules[33].  

• Node strength (NS): the sum of all edge weights, indicating how strongly connected a node 

is to its neighbours[12]. 

 

Statistical analyses 

Statistical analyses were carried out in SPSS Statistics 22 (IBM Corp., Armonk, NY, USA) and R. 

Independent samples t-tests or Mann-Whitney U tests (two tailed, α=0.05) were used to compare 

demographic and behavioural characteristics of verum and control condition, depending on the 

distribution. Since graph measures were not normally distributed, nonparametric tests were used 

for statistical analysis. Mann-Whitney U tests were used to compare baseline and rTMS-induced 

changes in graph measures between the verum and control group. Correlations between graph 

measures and behavioural outcomes were carried out using Kendall’s Tau-b correlations with 

bootstrapped 95% confidence intervals (CIs). Due to high levels of correlation between network 

measures and the exploratory nature of this study, these analyses were not corrected for multiple 

comparisons. The data did not meet the assumptions for regression analysis; therefore, to 

compare Kendall’s tau coefficient between verum and control groups we first converted Kendall’s 

tau to Pearson’s r using the formula r = sin (0.5 π τ)[34] and calculated z scores using a Fisher’s r-

to-Z transform[35]. 
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Results 

 

Demographic characteristics and session information 

The verum and control groups were well matched in terms of age (p=.606), sex (p=.619), and 

MMSE (p=.360), but the vertex group had a higher estimated intelligence (p=.012) (Table 1). The 

interval between session 1 and session 2 (p=.930) and between rTMS and task (p=.053) did not 

differ significantly between groups (Table 1). 

 

Change in set shifting performance after rTMS 

Groups did not differ in set shifting performance at baseline[14] (see also Appendix C, Table S1). 

There was a small rTMS-induced increase in shift trial error rate (SER) in the verum group 

compared with the control group (p=.049, Table 1). There were no other significant between-group 

differences in rTMS induced changes in set shifting performance. For both groups there was, in 

general, an improvement in performance between session 1 and session 2 in all behavioural 

measures except for SER. None of the changes in behavioural outcomes correlated with 

intelligence, educational level, MMSE or rTMS-task interval (see Appendix C, table S2). 

 

Prediction of behaviour change after rTMS from baseline resting state graph measures 

The verum and control groups did not differ significantly in any resting state graph measures at 

baseline (see Appendix C, table S3). In the verum group, there was a positive correlation between 

the change in repeat error rate (∆RER) and baseline NS of the dlPFC node (τ= 0.447, p=.017, 95% 

CI [0.138, 0.781]) (figure 2A) – i.e. the higher the pre-stimulation NS, the greater the increase in 

repeat errors after rTMS. This association was not seen in the control group (τ= -0.170, p=.343, 

95% CI [-0.527, 0.214]), and the association in the verum group was also significantly stronger 

than that seen in the control group (z=2.696, p=0.007). In the verum group there was no significant 

association between NS in the control node within the visual cortex and ∆RER (τ=0.380, 95% CI [-

0.049, 0.698]). None of the other resting state graph measures examined showed significant 

correlations with change in cognitive performance (see Appendix C, table S4). 
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Prediction of behaviour change after rTMS from baseline task-based graph measures 

In the verum group, BC of the dlPFC node correlated negatively with percentage change in shift 

response time (∆SRT) for both the first (τ= -0.403, p= .030, 95% CI [-0.733, -0.031]) and second 

run of task-based fMRI (τ=-0.367, p=.048, 95% CI [-.692, 0]) (figure 2b); i.e. the lower the BC, the 

greater the increase in shift response time after rTMS. This relationship was not seen for BC of the 

dlPFC in the control group (τ = -0.067, p=.710, 95% CI [-0.327, 0.267]) or for the BC of the control 

node of the verum group (τ = -0.017, p=.928, 95% CI [-0.482, 0.440]). The correlation in the dlPFC 

group was also significantly stronger than that of the control group (z=-2.040, p=0.04). Correlations 

between other task-based graph measures and changes in behaviour were not significant (see 

Appendix C, table S6). 

 

Change in task-based graph measures after rTMS 

There was no significant difference between verum and control groups in terms of change in 

network topology after rTMS in either the first or second run of task-based fMRI (see Appendix C, 

table S7).  

 

Association of change in behaviour with change in task-based graph measures 

In the verum group, percentage change in shift error rate (∆SER) between sessions was positively 

correlated with change in BC (∆BC) of the dlPFC node, but only for the second run (τ = 0.424 p= 

.024, 95% CI [0.150, 0.669]) (figure 3). In other words, subjects showing an rTMS-induced 

decrease in BC also had a decreased SER after rTMS. Conversely, those with no change or an 

increase in BC had an increased SER. There was no significant correlation between ∆SER and 

∆BC in the vertex group (τ =-0.180, p=.319, 95% CI: [-0.454, 0.129]) and there was no correlation 

with ∆BC of the control node (τ = -0.059 p=.752, 95% CI:[-0.581, 0.415]). Furthermore, the 

correlation coefficients differed significantly between groups (z=2.617, p=0.008). There was no 

other significant correlation between changes in task based graph measures and changes in 

behaviour (see Appendix C, table S8). 
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Discussion  

 

We investigated whether functional network topology of pre-stimulation rsfMRI or task-based fMRI 

was predictive of the change in set-shifting performance after inhibitory rTMS to the dlPFC, and 

whether this change was also related to change in graph features after stimulation. Our findings 

indicate that individuals with a higher pre-TMS BC of the dlPFC during set-shifting are less affected 

by inhibitory rTMS, and also show a large decrease in task-based BC following rTMS. Additionally, 

individuals with a higher pre-TMS NS of the dlPFC during resting state are more affected by 

inhibitory rTMS. 

 

Functional network topology and response to LF rTMS  

BC gives an indication of the level of global integration of a node. In our study, the detrimental 

effect of LF rTMS was greater in subjects with a lower pre-TMS BC of the dlPFC, resulting in an 

rTMS-induced increase in SRT. Conversely, subjects with a higher BC of the dlPFC appeared to 

be less affected and showed rTMS-induced improvement in SRT. We also found that subjects 

whose behavioural performance was least affected by the LF rTMS not only had a higher baseline 

BC of the dlPFC but also showed the greatest rTMS-induced decrease in BC. This suggests that 

the capacity to ‘lose’ BC and thereby buffer the effects of LF rTMS is a possible determinant of 

resilience to inhibitory rTMS. In other studies, a high level of network-wide connectivity of the 

dlPFC has been linked to shorter reaction time in attention tasks[36] and higher fluid intelligence 

scores[19]. Taken together with our findings, this suggests that a dlPFC that allows more 

integrated information flow throughout the whole network may provide increased cognitive flexibility 

and therefore greater capacity to adapt to insults. This apparent resilience of globally well-

integrated nodes may only be true in the case of inhibitory rTMS, where brain excitability is 

temporarily reduced rather than blocked completely: a computational lesion study showed that full 

deletion of nodes with high BC resulted in global network dysfunction.[17]  

 

We also found an association between higher resting state NS of the dlPFC and rTMS-induced 

increase in repeat errors. This implies that regions with a higher NS are more vulnerable to the 
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inhibitory effects of rTMS. As NS is a measure of the strength of the connections of a node with its 

neighbours[12], their loss may lead to network dysfunction[17]. Previous seed-based FC fMRI 

studies also suggest that the effectiveness of rTMS is dependent on the strength of the 

connections of the stimulated site; stimulation of regions that have a greater FC at baseline[6,37], 

results in a greater rTMS response. Inhibitory rTMS may therefore be more effective in subjects 

with a high baseline resting NS because it allows the effects of inhibition to spread more easily to 

functionally connected regions.  

 

Differences between resting state and task based graph measures 

Interestingly, different graph measures were associated with a reduction in different aspects of 

behavioural performance during set-shifting after rTMS in task-based and rsfMRI. BC and ∆BC in 

task-based scans were specifically associated with change in set shifting performance, while NS in 

resting state scans was associated with errors on repeat trials. The prominence of BC in the task-

based fMRI and NS in rsfMRI could be due to the changes in functional network topology that take 

place when transitioning from rest to task states. The brain network is more integrated during task 

execution (with higher BC of the relevant nodes) [38–40],, while measures related to node strength 

are more important during rest[38,39]. The specificity of task-based scans to set shifting 

performance rather than repeat trial performance (which may be a measure of more general 

aspects of cognitive performance such as attention and working memory[41]) is perhaps due to the 

fact that the stimulation location was chosen from the area of maximum activation on fMRI during 

set shifting[14]. This indicates that although resting state and task-based networks have a similar 

intrinsic structure[42], network measures derived from task-based fMRI may have more relevance 

for predicting rTMS-induced behavioural changes on the same task. 

 

Limitations and strengths 

Our exploratory study has some limitations. Firstly, the relatively small sample size means that our 

power is limited and any effects present may be inflated[43]. Secondly, the rTMS-induced 

performance changes are subtle. Tasks with higher cognitive loads or stronger rTMS stimulation 

may give larger and more robust effects. Thirdly, the interval between pre-rTMS scan and the 
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actual day of rTMS was approximately 2 weeks – it is unknown how representative the networks 

measured at session 1 were of the pre-stimulation networks actually present at session 2 (though 

functional connectivity measures have been shown to stay largely stable over time[44,45]). Our 

cohort also has a wide age range (39-75) and an average age of 56. This may mean that our 

results are less applicable to younger age groups as graph features have been shown to vary with 

age[46] (though graph measures showed no correlation in our sample (Appendix C, Table S9)). 

Replication of this study in a larger cohort with a more demanding task could help tackle these 

problems. Our study also has a number of strengths. The association of low baseline task-based 

BC with increase in switch response time was reproduced in the second run of task-based fMRI. 

The observed effects also survive strict ‘scrubbing’ motion correction. 

 

Implications and future work 

Our results have implications for the selection of rTMS targets. Baseline functional network 

topology may be an important factor to consider when choosing stimulation targets for therapies 

involving inhibitory rTMS (for example in the treatment of obsessive-compulsive disorder, stroke, 

and auditory hallucinations[2]) or in the experimental modelling of the cognitive deficits seen in 

these diseases in healthy controls. Future work could explore whether the effects demonstrated in 

this exploratory study are consistent across other stimulation sites, for other cognitive tasks, or for 

clinical improvement in disease states; which graph measures predict the outcome of excitatory 

rTMS; and whether specifically targeting nodes with high NS or low BC results in more consistent 

rTMS outcome.  

 

Conclusions 

We have shown that changes in cognitive performance after inhibitory rTMS to the dlPFC are 

associated with baseline resting state and task-based functional network graph measures. 

Subjects with stimulated regions that are globally well-connected during a task are more resilient to 

the effects of inhibitory rTMS, while those with stimulated regions with strong local connections in 

the resting state are more vulnerable to inhibitory rTMS. These results have important implications 
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for our understanding of individual variability in response to rTMS, and for the practical application 

of this non-invasive brain stimulation technique. 
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Tables 

 

Table 1: Demographic characteristics, session information and change in set shifting 
performance after rTMS 

 dlPFC group 
n=16 

Vertex group 
n=17 

p 

Demographics    
Age (years) 55 ± 9 (39-75) 57 ± 10 (41-70) .606a 

Sex (no./% men) 9/56% 11/65% .619b 

Level of education reached c 
(median, range, % > 5) 

6 (4-7) 69% 6 (3-7) 59% .721b 

Estimated IQ 98 ± 12 (73-123) 110 ±14 (82-130) .012 
MMSE 29 ± 1 (28-30) 29 ± 1 (27-30) .360 
Session information    
Interval session 1 - session 2 
(days) 

17 ± 11 (7-56) 16 ± 8 (7-35) .772a 

Interval rTMS - task (s) 319 ± 54 (240-488) 356 ± 137 (277-800) .053 
Change in set shifting performance after rTMS (% change from baseline) 
RRT -2.44 ± 14.70 (-30.65-33.41) -6.00 ± 17.72 (-30.47-27.40) .488 
SRT -5.08 ± 8.01 (-21.75-14.36) -9.17 ± 15.59 (-38.93-18.95) .465 
RER -0.26 ± 0.54 (-1.50-0.73) -0.06 ± 0.65 (-1.09-1.67) .533 
SER 0.43 ± 0.96 (-1.13-3.12) -0.27 ± 1.05 (-2.56-1.37) .049 

Values are presented as mean ± standard deviation (range) unless otherwise indicated 

Significance of group differences tested using an Independent Samples Mann-Whitney U test unless otherwise indicated. 
a Independent samples t-test 
b Pearson’s χ2 test. 
c Level of education expressed as the Verhage 7-point scale[47]: 1=no finished education; 5=secondary school, medium 
level; 7=university training. Proportions of people scoring ≤ 5 and >5 compared using χ2 test. 

dlPFC, dorsolateral prefrontal cortex; MMSE, mini-mental state examination; RRT, repeat response time; SRT, switch 
response time; RER, repeat error rate; SER, switch error rate. 
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Figure legends 

 

Figure 1: Study design and image processing/analysis. A. Study design. All participants attended two 
sessions. During the first session, participants underwent an rsfMRI scan and carried out a set-shifting task 
during two separate runs of fMRI. Participants were then randomised to either dlPFC or vertex rTMS groups. 
16-17 days later, participants attended the second session. They received either dlPFC or vertex rTMS, 
followed directly by carrying out the set shifting task during 2 separate runs of fMRI. B. Image processing 
steps: fMRI scans were preprocessed and parcellated into 225 regions. This was followed by exclusion of 
regions containing <4 voxels. C. Image analysis steps: FC and graph theoretical analysis: The BOLD 
timeseries was extracted from each parcellated region. Pearson correlations were carried out between each 
pair of regions, giving a 193x193 correlation matrix for each participant. These matrices were then used to 
calculate centrality graph measures. 
 

Figure 2: Correlations between baseline fMRI graph measures and change in cognitive performance 
after LF rTMS: A. Higher resting state NS of the dlPFC node is associated with an increase in RER in the 
verum group (τ= 0.447, p=.017, 95% CI [0.138, 0.781]) but not in the control group (τ= -0.170, p=.343, 95% CI 
[-0.527, 0.214]; z=2.696, p=0.007). B. Lower BC of the dlPFC node is associated with an increase in SRT in 
the verum group after TMS (τ= -0.403, p= .03, 95% CI [-0.733, -0.031]) but not in the control group (τ = -0.067, 
p=.710, 95% CI [-0.327, 0.267]; z=-2.040, p=0.04). Shaded areas on plot correspond to (linear) 95% CIs. Note 
that a linear correlation line and 95% CIs are drawn in these figures, but this association was tested non-
parametrically. NS, Node strength; dlPFC, dorsolateral prefrontal cortex; BC, betweenness centrality 
 

 

Figure 3: Change in task-based BC of the dLPFC after rTMS is associated with change in shift error 
rate after rTMS: Participants with no change in task-based BC of the dlPFC after rTMS showed an increase 
in shift errors, while participants with a decrease in BC after rTMS was showed  an improvement or no change 
in shift errors (verum group: τ = 0.424, p= .024, 95% CI [0.150, 0.669] ; control group: τ =-0.180 p=.319, 95% 
CI:[ -0.454, 0.129], z=2.617, p=0.008). Shaded areas on plot correspond to 95% CIs. Note that a linear 
correlation line and 95% CIs are drawn in these figures, but this association was tested non-parametrically. 
BC, betweenness centrality; dlPFC, dorsolateral prefrontal cortex. 
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