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ABSTRACT 34 

Background: Obesity and its associated diseases are major health problems characterized 35 

by extensive metabolic disturbances. Understanding the causal connections between these 36 

phenotypes and variation in metabolite levels can uncover relevant biology and inform novel 37 

intervention strategies. Recent studies have combined metabolite profiling with genetic 38 

instrumental variable (IV) analyses to infer the direction of causality between metabolites and 39 

obesity, but often omitted a large portion of untargeted profiling data consisting of unknown, 40 

unidentified metabolite signals. 41 

Methods: We expanded upon previous research by identifying body mass index (BMI)-42 

associated metabolites in multiple untargeted metabolomics datasets, and then performing 43 

bidirectional IV analysis to classify these metabolites based on their inferred causal relationships 44 

with BMI. Meta-analysis and pathway analysis of both known and unknown metabolites across 45 

datasets were enabled by our recently developed bioinformatics suite, PAIRUP-MS. 46 

Results: We identified 10 known metabolites that are more likely to be the causes (e.g. 47 

alpha-hydroxybutyrate) or effects (e.g. valine) of BMI, or may have more complex bidirectional 48 

cause-effect relationships with BMI (e.g. glycine). Importantly, we also identified about 5 times 49 

more unknown than known metabolites in each of these three categories. Pathway analysis 50 

incorporating both known and unknown metabolites prioritized 40 enriched (p < 0.05) metabolite 51 

sets for the cause versus effect groups, providing further support that these two metabolite 52 

groups are linked to obesity via distinct biological mechanisms. 53 

Conclusions: These findings demonstrate the potential utility of our approach to uncover 54 

causal connections with obesity from untargeted metabolomics datasets. Combining genetically 55 

informed causal inference with the ability to map unknown metabolites across datasets provides 56 
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a path to jointly analyze many untargeted datasets with obesity or other phenotypes. This 57 

approach, applied to larger datasets with genotype and untargeted metabolite data, should 58 

generate sufficient power for robust discovery and replication of causal biological connections 59 

between metabolites and various human diseases.  60 
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INTRODUCTION 61 

Abnormal blood metabolite levels are important, frequent, and quantifiable feature of 62 

obesity and its associated phenotypes, which are major health problems globally1–5. Recently, 63 

systematic metabolite profiling (metabolomics) studies have described widespread alterations in 64 

the obesity metabolome and identified metabolite markers associated with risk of obesity-related 65 

diseases6–9. However, these studies broadly have two key analytic challenges limiting the 66 

biological interpretation and scope of their findings: these correlative studies have not generally 67 

been able to distinguish the cause and effect relationships between metabolites and phenotypes, 68 

and only a portion of the thousands of metabolite signals measured by untargeted profiling 69 

technology could be chemically identified and thereby routinely investigated. 70 

Genetic instrumental variable (IV) analysis (for causal inference) and novel 71 

bioinformatics tools (for analysis of untargeted metabolite data) now provide the means to 72 

overcome these limitations and enhance our understanding of the metabolome of any phenotype. 73 

The genetic IV framework, also known as Mendelian randomization, uses genetic variants as 74 

instruments to infer causality from observational data in the presence of unmeasured 75 

confounding, provided certain methodological assumptions are met10,11. Bidirectional genetic IV 76 

analysis, using in turn genetic variants affecting metabolite levels and variants affecting a 77 

phenotype such as body mass index (BMI), offers a way to ascribe directionality of causal 78 

relationships and to prioritize potentially causal metabolite-phenotype associations. Previous 79 

genetic IV studies have utilized variants identified in genome-wide association studies (GWAS) 80 

to infer causality between obesity-related phenotypes and curated sets of metabolites (e.g. 81 

branched-chain and aromatic amino acids)12–16. However, most studies did not perform 82 

comprehensive bidirectional IV analysis and only focused on the metabolites that could be 83 
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identified and curated from profiling data, thus likely capturing only a limited slice of obesity 84 

biology and, even within that constraint, not assessing causality. 85 

Previously, metabolites of unknown chemical identities – a large portion of untargeted 86 

profiling data – were mostly excluded from analyses (including GWAS) because inter-study 87 

comparison and biological interpretation were technically onerous or intractable17,18. To address 88 

these issues, we recently developed a bioinformatics suite, PAIRUP-MS18, to match up unknown 89 

metabolites across mass spectrometry-based untargeted profiling datasets, thereby enabling 90 

meta-analysis of multiple datasets and increasing statistical power for detecting biologically 91 

interesting unknowns. In addition, PAIRUP-MS provides a framework for annotating unknown 92 

metabolites using preexisting metabolic pathways and performing pathway analysis 93 

incorporating both known and unknown metabolites.  94 

In this study, we demonstrate how the combination of bidirectional genetic IV framework 95 

and PAIRUP-MS can be used to analyze multiple untargeted metabolomics datasets and 96 

characterize causal connections between a phenotype and the metabolome. We identified both 97 

known and unknown BMI-associated metabolites, and then performed GWAS for each 98 

metabolite and for BMI, followed by bidirectional genetic IV analysis to identify metabolites 99 

likely to be causes or effects of obesity. In addition, we highlighted distinct biological pathways 100 

enriched for the cause versus effect metabolites, confirming that the bidirectional IV approach 101 

prioritized two distinct sets of BMI-associated metabolites. This initial work illustrates an 102 

approach that can now be generalized and scaled up to much larger datasets, which will enable 103 

well-powered studies to uncover novel metabolic causes and effects of obesity or any other 104 

phenotype of interest.  105 
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MATERIALS AND METHODS 106 

 A schematic overview of our analysis plan is shown in Figure 1 and each step is 107 

described in more detail below. 108 

 109 

Metabolomics datasets and data processing 110 

Study populations: The study populations have been described previously18–20: (1) 111 

Obesity Extremes (OE): N = 300 sampled equally from lean, obese, and the general Estonian 112 

Biobank (EB) population, (2) Mexico City Diabetes Study (MCDS): N = 865 in a prospective 113 

study, and (3) BioAge Labs Mortality Study (BioAge): N = 583 in a retrospective mortality 114 

study nested in EB. All participants provided informed consent. Individual studies were 115 

approved by their respective local ethics committees. Boston Children’s Hospital Institutional 116 

Review Board approved this research. 117 

Metabolite data processing: Untargeted liquid chromatography-mass spectrometry (LC-118 

MS) profiling of plasma samples, quality control, and missing value imputation of the data have 119 

been described previously18. The processed OE dataset contained 298 samples and 13,613 120 

metabolite signals (322 known); MCDS contained 821 samples and 7,136 signals (242 known); 121 

BioAge contained 583 samples and 14,617 signals (603 known). Within each dataset, we 122 

performed rank-based inverse normal transformation on each signal and used the resulting 123 

abundance z-scores in downstream analyses. For OE and MCDS data used in BMI and genetic 124 

association analyses, we performed covariate adjustment (age, sex, and fasting time for OE; age 125 

and sex for MCDS) before the transformation. In this paper, we refer to both known and 126 

unknown metabolite signals as “metabolites” for simplicity, recognizing that an unknown signal 127 

does not always represent an independent, functional circulating metabolite. 128 
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 129 

Mapping and identifying BMI-associated metabolites (Figure 1a) 130 

Mapping metabolites across datasets: Using the imputation-based matching algorithm in 131 

PAIRUP-MS18, we identified 1,780 metabolite pairs (207 shared known metabolites measured in 132 

both datasets and 1,573 matched unknown or unshared known metabolites) that could be 133 

compared directly across OE and MCDS and restricted subsequent analyses to these metabolites. 134 

For pathway analyses requiring the BioAge-based metabolite set annotations (see below), we 135 

furthered mapped 1,743 (200 shared known and 1,543 matched) of these metabolite pairs to 136 

metabolites measured in BioAge. 137 

 Identifying BMI-associated metabolites: Within each cohort, we adjusted raw BMI 138 

(available for 298 OE and 818 MCDS samples) for age and sex, performed rank-based inverse 139 

normal transformation on the residuals, and used the resulting BMI z-scores in all further 140 

analyses. (Since the OE obese and lean samples were drawn from the BMI extremes of EB, all 141 

EB samples were used to calculate population-based z-scores.) To identify BMI-associated 142 

metabolites, we performed linear regression of BMI on each metabolite within each dataset, 143 

followed by inverse variance weighted meta-analysis across the two datasets, and applied a 144 

Bonferroni significance threshold (p < 0.05/1,780) in the meta-analysis. 145 

 146 

Bidirectional instrumental variable analyses (Figure 1b) 147 

Metabolite instrument (GM) selection: GWAS of the BMI-associated metabolites using 148 

294 OE and 637 MCDS samples (with available genetic data) and subsequent inverse variance 149 

weighted meta-analysis were performed as described previously18. To select GM, we first 150 

identified the SNP (single nucleotide polymorphism) with the best meta-analyzed p-value for 151 
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each metabolite. Next, to avoid using redundant GM, we “clumped” the best SNPs for all 152 

metabolites to select independent SNPs that have r2 < 0.5 or are > 250 kb apart, and only kept the 153 

independent SNPs as GM (along with their best-associated metabolites) in further analyses. For 154 

known metabolites in our causality groups (see below), we performed an additional sensitivity 155 

analysis using (where available) genome-wide significant (p < 5 × 10-8) SNPs from published 156 

metabolite GWAS21–26 as individual GM.  157 

BMI instrument (GB) selection: We used 97 BMI-associated SNPs (Gb) previously 158 

identified in GIANT27 and their effect estimates (βb) in our UK Biobank (UKB) GWAS to 159 

calculate a weighted genetic risk score for use as GB (i.e. GB = Σ βb × Gb). We performed BMI 160 

GWAS in UKB using 453,397 European-ancestry samples and sex-combined BMI z-scores, 161 

using BOLT-LMM28 to account for relatedness and population structure (Supplementary Text 162 

1). Analysis of the UKB data was approved by its governing Research Ethics Committee and the 163 

Broad Institute Institutional Review Board. The GIANT, UKB, and metabolomics cohorts have 164 

no known sample overlap. We confirmed that GB was significantly associated with BMI in OE 165 

and MCDS and that none of the Gb are in linkage disequilibrium (r2 > 0.3) with the selected GM. 166 

Testing for metabolite-to-BMI causal effect using GM: The association between BMI and 167 

each GM was extracted from the UKB GWAS summary statistics and used to calculate the Wald 168 

ratio IV effect estimate of the metabolite (shared known or matched pair) on BMI. The p-value 169 

for the Wald estimate was calculated using an asymptotic standard error estimate as described 170 

previously29. This p-value –  a test of the null hypothesis of no causal effect of the metabolite – 171 

was used to rank metabolites as more or less likely to be causal for BMI. 172 

Testing for BMI-to-metabolite causal effect using GB: We performed linear regression of 173 

each BMI-associated metabolite on GB in OE and MCDS separately, followed by inverse 174 
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variance weighted meta-analysis. The Wald ratio IV effect estimate of BMI on each metabolite 175 

was calculated using the meta-analyzed statistics, and the corresponding p-value was used to 176 

rank metabolites as more or less likely to be effects of BMI. As a sensitivity analysis, we 177 

performed the MR-PRESSO global test30 to assess overall horizontal pleiotropy among the 178 

individual SNPs (Gb) contained within GB, using metabolite-Gb association in the OE-MCDS 179 

meta-analysis and BMI-Gb association in UKB for 96 of 97 BMI SNPs (rs2033529 was excluded 180 

due to absence in our metabolite GWAS). 181 

 182 

Defining cause, effect, and bidirectional metabolite groups (Figure 1c) 183 

 To rank BMI-associated metabolites as more or less likely to be the causes or effects of 184 

obesity, we used the -log10 p-value of the IV effect estimate for either the metabolite (GM) or 185 

BMI (GB) instrument, reasoning that the statistical significance of these estimates is informative. 186 

Metabolites in the top and bottom quartiles of these two p-value-based rankings were assigned to 187 

three distinct groups corresponding to different types of causal connections with BMI: (1) 188 

“cause”: metabolites that were ranked in the top quartile using GM and the bottom using GB, and 189 

thus are likely to be upstream causes for BMI ; (2) “effect”: metabolites that were ranked in the 190 

bottom quartile using GM and the top using GB, and thus are likely to be downstream effects of 191 

BMI; (3) “bidirectional”: metabolites that were in the top quartiles of both rankings, suggesting 192 

complex bidirectional cause-effect relationships with BMI. 193 

 194 

Pathway analyses of the defined metabolite groups (Figure 1d) 195 

 Metabolite set annotations: BioAge data and PAIRUP-MS were used to generate 196 

metabolite set annotations as described previously18. Briefly, pathway annotations from 197 
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ConsensusPathDB31 were consolidated into 690 metabolite sets with unique metabolite 198 

combinations (i.e. one metabolite set may correspond to multiple pathways containing identical 199 

sets of metabolites). We then used metabolite correlations in BioAge to expand the metabolite 200 

sets to include both known and unknown metabolites, calculating a membership score for each 201 

metabolite in each set. 202 

Pathway analyses: We applied the pathway analysis framework in PAIRUP-MS to 203 

identify enriched metabolite sets for the cause, effect, and bidirectional metabolite groups we 204 

defined. We compared each of the three groups individually versus all other BMI-associated 205 

metabolites and, in a fourth analysis, compared the cause versus effect groups. First, for each 206 

metabolite set in each comparison analysis, a two-tailed Wilcoxon rank-sum test was performed 207 

to compare the membership scores of the two groups of metabolites. Next, to account for 208 

correlation structure in our data, iterations of this procedure were performed using “null” 209 

metabolite groups to calculate a permutation-based enrichment p-value for each metabolite set 210 

(Supplementary Figure 1). 211 

 212 

Performing m/z query for unknown metabolites 213 

To assess if the unknown metabolites captured information redundant to the known 214 

metabolites in our dataset (and to look up potential identities of unknowns classified in the three 215 

causality groups), we performed m/z query as described previosly18, using the “LC-MS Search” 216 

tool in the Human Metabolome Database (HMDB)32. The unknowns were annotated as an m/z-217 

matched adduct of a known metabolite in our data, an m/z-matched adduct of an HMDB 218 

metabolite not identified in our data, or as a metabolite without a match in HMDB. 219 
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RESULTS 220 

Identifying known and unknown metabolites associated with BMI 221 

We used untargeted metabolomics data from OE and MCDS to identify metabolites 222 

associated with BMI. First, we identified 207 pairs of shared known metabolites measured in 223 

both cohorts, and used PAIRUP-MS to match 1,573 additional pairs of unknown or unshared 224 

known metabolites likely to represent identical or highly correlated metabolites. Then, by 225 

performing meta-analysis of both the shared known and matched pairs across the cohorts, we 226 

identified 577 BMI-associated metabolites at Bonferroni significance (p < 0.05/1,780), the 227 

majority of which were unknown metabolites: 418 (72.4%) consisted of two paired unknown 228 

metabolites, 59 (10.2%) consisted of a known metabolite matched to an unknown metabolite, 229 

and only 100 (17.3%) consisted of shared known metabolites. When we clustered these 230 

metabolites, we observed metabolite clusters that consisted mostly or entirely of matched pairs of 231 

unknown chemical identities (Supplementary Figure 2). Therefore, including these unknown 232 

metabolites in downstream analyses increased the number of candidate metabolites by nearly 233 

five-fold, and allowed us to investigate aspects of obesity biology not represented by the curated, 234 

known metabolites. 235 

 236 

Identifying metabolites more likely to be causal for BMI 237 

 Before we could determine whether the BMI-associated metabolites are likely to be 238 

causal for BMI, we first needed to identify the SNP best-associated with each metabolite to use 239 

as genetic instrument (GM in Figure 1). We therefore performed GWAS of metabolite levels in 240 

both OE and MCDS, followed by meta-analysis. We identified genome-wide significant (p < 5 × 241 

10-8) SNPs for 204 (35 shared known and 169 matched) of the BMI-associated metabolites 242 
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(Figure 2); 66 (14 shared known and 52 matched) of these were also significant after correction 243 

for multiple hypothesis testing (p < 5 × 10-8/577). Overall, the matched, unknown metabolites 244 

showed comparable degree of genetic associations as the shared known metabolites, even in loci 245 

not associated with any of the knowns. Analyzing the unknowns thus greatly improved our 246 

ability to obtain significant and novel genetic instruments for metabolite signals, despite a 247 

relatively small GWAS sample size. 248 

We observed that all 577 BMI-associated metabolites had best-associated SNPs with at 249 

least suggestive significance (maximum p = 2.5 × 10-6) and therefore considered the best-250 

associated SNP for each metabolite as potential instrument. To avoid analyzing metabolites 251 

sharing the same instruments, we included only genetically independent GM (r2 < 0.5 or > 250kb 252 

apart) and the 324 (40 shared known and 284 matched) metabolites best-associated with these 253 

instruments in subsequent IV analyses (Supplementary Table 1). For each metabolite, we 254 

estimated the association between GM and BMI using a large independent cohort, UKB, in a two-255 

sample design to calculate the metabolite-to-BMI IV effect estimate. We identified 50 (11 shared 256 

known and 39 matched) metabolites with nominally significant (p < 0.05) metabolite-to-BMI IV 257 

p-values, which indicates that they are more likely to be upstream causes for BMI 258 

(Supplementary Table 1). 259 

 260 

Identifying metabolites more likely to be effects of BMI 261 

Next, to determine if the BMI-associated metabolites are likely to be effects of BMI, we 262 

combined 97 BMI SNPs previously identified in GIANT into a weighted genetic risk score using 263 

UKB effect estimates as weights. As expected, the score is a valid genetic instrument for BMI 264 

(GB in Figure 1) in OE and MCDS (meta-analyzed BMI-GB association p = 5.9 × 10-7). For each 265 
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of the 324 BMI-associated metabolites, we estimated the association between GB and the 266 

metabolite using OE and MCDS data to calculate the BMI-to-metabolite IV effect estimate. A 267 

total of 56 (8 shared known and 48 matched) metabolites had nominally significant (p < 0.05) 268 

BMI-to-metabolite IV p-values and thus are more likely to be downstream effects of BMI 269 

(Supplementary Table 1).  270 

 271 

Defining cause, effect, and bidirectional metabolite groups 272 

In order to further characterize the causal relationships between BMI and its associated 273 

metabolites, we ranked the metabolites based on the significance of their GM and GB IV effect 274 

estimate p-values (i.e. metabolite-to-BMI or BMI-to-metabolite IV p-values, respectively), and 275 

classified a subset of them into “cause”, “effect”, or “bidirectional” groups using quartile cutoffs 276 

of the rankings (Figure 3). We defined 25 metabolites as more likely to be cause (5 shared 277 

known and 20 matched), 26 as more likely to be effect (3 shared known and 23 matched), and 19 278 

as more likely to be bidirectional (2 shared known and 17 matched) with respect to BMI. The 279 

shared known metabolites in each group are listed in Table 1; the top cause, effect, and 280 

bidirectional metabolites are alpha-hydroxybutyrate, valine, and glycine, respectively. Details for 281 

all metabolites in each group are shown in Supplementary Table 1. We also performed m/z 282 

query in HMDB to obtain potential identities for the unknowns in the matched metabolite pairs 283 

(Supplementary Table 2) and found only 6 out of the 60 matched pairs to be potentially 284 

redundant with the known metabolites curated in our data. Hence, we identified about 5 times 285 

more matched, unknown metabolites in the three causality categories compared to only 286 

analyzing the known metabolites. In addition, we performed sensitivity analyses to assess how 287 

our genetic IV and classification scheme would be influenced by weak instrument or pleiotropy 288 
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bias (Supplementary Text 2 and Supplementary Table 3); we obtained results that generally 289 

support the robustness of our approach. 290 

 291 

Prioritizing enriched pathways for cause, effect, and bidirectional metabolites 292 

We identified many more matched, unknown metabolite pairs in the cause, effect, and 293 

bidirectional groups compared to the shared known metabolites, but it is difficult to hypothesize 294 

on their roles in obesity biology without knowing their chemical identities. Therefore, to extract 295 

useful information from the unknowns and to gain clues about the biology broadly captured by 296 

the three causality groups, we performed PAIRUP-MS pathway analyses encompassing both 297 

known and unknown metabolites, using metabolite set annotations generated from a separate 298 

cohort, BioAge. First, we carried out three separate analyses to identify pathways with nominally 299 

significant (p < 0.05) enrichment for metabolites in the cause, effect, or bidirectional groups, 300 

respectively, when compared against all other BMI-associated metabolites (Supplementary 301 

Table 4). While the most enriched metabolite sets in each analysis are associated with different 302 

pathways, several metabolite sets were enriched in multiple analyses (e.g. “NAD de novo 303 

biosynthesis” was enriched for both cause and effect metabolites). 304 

Hence, in order to identify pathways that are the most distinct between the defined 305 

metabolite groups, we next performed a pathway analysis directly comparing the cause versus 306 

effect metabolites, prioritizing 40 metabolite sets at nominal significance (p < 0.05; 307 

Supplementary Table 4). The 13 cause metabolite sets (in which cause metabolites have higher 308 

membership scores than effect metabolites) are associated with various pathways, such as those 309 

connected to inflammation (e.g. nitric oxide signaling), redox metabolism (e.g. 310 

cysteine/methionine metabolism), and appetite regulation (e.g. endocannabinoid signaling). The 311 
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27 effect metabolite sets also contain varied pathways including those related to lysine 312 

catabolism, neurobiology (e.g. addiction and catecholamine biosynthesis), and stress response 313 

(e.g. FoxO signaling). While the known metabolites in our analysis have been linked to some of 314 

the enriched metabolite sets in literature, the unknown metabolites contributed most of the data 315 

used to prioritize these sets.   316 

Finally, to better visualize the distinguishing features between the cause versus effect 317 

metabolites in terms of their roles in biological pathways, we constructed a heat map of the 318 

metabolites’ membership scores in the enriched metabolite sets using unsupervised clustering 319 

(Figure 4). The metabolites formed two major clusters consisting of metabolites that are mostly 320 

in the cause or effect groups, with a handful of metabolites clustering with the contrasting group 321 

(i.e. cause metabolite "misclassified" in the effect cluster or vice versa). Even more strikingly, 322 

the cause and effect metabolite sets formed two pure clusters consisting of all cause or all effect 323 

sets. This clustering pattern provides further evidence that the cause and effect metabolites we 324 

defined are involved in distinct biological processes and thus may be associated with BMI 325 

through different mechanisms.  326 
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DISCUSSION 327 

The study of comprehensive metabolite profiles defines an exciting frontier in human 328 

pathophysiology. However, metabolite-phenotype associations discovered in metabolomics 329 

studies are often correlative in nature and additional causal inference approaches, such as genetic 330 

IV analysis, are required to help assess causality between metabolites and phenotypes. 331 

Furthermore, unknown metabolite signals are often filtered out prior to analysis of untargeted 332 

metabolomics data, greatly limiting investigation to a priori candidate metabolites, reducing the 333 

search space, and hindering downstream analyses such as pathway enrichment. Here we present 334 

a paradigm for combining untargeted metabolomics, genomics, and our recently described 335 

bioinformatics suite, PAIRUP-MS, to overcome these challenges. Using obesity as an exemplar 336 

state of metabolic dysregulation, we illustrate the potential utility of this approach to advance our 337 

understanding of causal connections in metabolic diseases.  338 

In this study, we meta-analyzed hundreds of unknown metabolites from two cohorts 339 

using PAIRUP-MS, identifying novel associations between the unknowns, BMI, genetic 340 

variants, and biological pathways. Indeed, using bidirectional genetic IV analysis, we discovered 341 

about 5 times as many unknown than known metabolites with potential causal connections to 342 

BMI. While these unknowns are likely not all fully independent and functional circulating 343 

molecules, their associations with genetic variants and BMI, distinct from those with known 344 

metabolites, suggest that a sizable number of unknown metabolites reflect aspects of BMI 345 

biology not captured by known metabolites. Furthermore, the much larger number of candidate 346 

metabolites allowed us to perform PAIRUP-MS pathway analyses that account for potential 347 

redundancy, prioritizing biological pathways specific to the metabolites with cause or effect 348 

relationships to BMI. Because of the relatively small sample sizes of our cohorts, some of our 349 
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results did not meet stringent multiple hypothesis testing significance thresholds; nevertheless, 350 

they demonstrate a useful and generalizable analytic framework to probe the metabolome of 351 

obesity and other diseases as larger datasets become available. 352 

We identified novel metabolites that may be causes of obesity, as well as replicating two 353 

known metabolites, valine and tyrosine, that may be the effects of BMI14. The strongest causal 354 

evidence among known metabolites was for alpha-hydroxybutyrate, which has been linked to 355 

insulin resistance, oxidative stress, glutathione biosynthesis, and mitochondrial dysfunction6,33,34. 356 

The oxidative stress and glutathione connections are especially intriguing since “glutathione-357 

mediated detoxification” emerged as a significant causal pathway when we compared the cause 358 

and effect metabolite groups in pathway analysis. It is also notable that the IV effect estimate of 359 

alpha-hydroxybutyrate on BMI is protective while the observational association suggests this 360 

metabolite is obesogenic. We postulate that a mitochondrial dysfunction/altered redox state 361 

linked to high alpha-hydroxybutyrate level could lead to decreased weight gain, while shared 362 

common causes, such as an obesogenic diet, may lead to increases in both alpha-hydroxybutyrate 363 

level and BMI. This example highlights the advantage of genetic IV analyses over observational 364 

studies alone to explore the potential impact of a theoretical intervention targeted to obesity-365 

associated metabolites that have yet to be fully characterized35,36.  366 

The validity of genetic IV analysis rests upon several key assumptions. Specifically, the 367 

genetic instrument must explain variation in the exposure variable and the instrument must not 368 

be associated with the outcome variable except through its relationship with the exposure (no 369 

genetic pleiotropy). Weak instrument bias towards the null and pleiotropy bias away from the 370 

null may lead to misclassification of metabolites in our three causality groups. To address weak 371 

instrument bias for our known metabolite instruments, we performed sensitivity analysis using 372 
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stronger instruments from published metabolite GWAS, showing that our results are generally 373 

robust against weak instrument bias, although some misclassification is possible due to limited 374 

power of our internal instruments. However, we could not conduct similar analysis for the 375 

unknown metabolite instruments since there is not yet a straightforward way to obtain external 376 

instruments for comparison. To address pleiotropy bias for our BMI instrument, we used a 377 

recently developed method, MR-PRESSO, to show that our BMI IV estimates are likely robust 378 

against extreme cases of pleiotropy bias. We could not examine pleiotropy in the metabolite 379 

instruments due to the lack of multiple instruments for each metabolite (especially for the 380 

unknowns where additional instruments could not be obtained from published GWAS). 381 

Larger GWAS of both known and unknown metabolites, conducted across multiple 382 

datasets, will make it possible to extend our paradigm to understand causal biological 383 

mechanisms for various metabolic diseases and alleviate the limitations described above. With 384 

more candidate metabolites and genetic instruments emerging from better-powered studies, our 385 

approach can be expanded to mediation analyses37, to pathway Mendelian randomization38, or to 386 

metabolite IV subsetting according to predicted biological pathway memberships39. In 387 

conclusion, this study showcases the benefit of combining untargeted metabolomics with a 388 

bidirectional genetic IV approach to define the metabolome of a major human disease state, 389 

obesity. We therefore advocate for broader sharing of untargeted metabolomics and genetic 390 

datasets, similar to the approach taken by international efforts to optimize GWAS of many other 391 

phenotypes. Broader sharing would improve power and reliability of methodological frameworks 392 

such as the one presented here, and would enable a fuller realization of the potential of 393 

metabolomics to generate important insights into human diseases.  394 
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FIGURE LEGENDS 519 

Figure 1. Overview for identifying and characterizing causal connections in the obesity 520 

metabolome. (a) OE and MCDS metabolomics datasets, matched using PAIRUP-MS, were used 521 

to identify known and unknown metabolites associated with BMI. (b) Independent genetic 522 

instruments (GM) for the BMI-associated metabolites were selected using OE and MCDS data, 523 

and then used to test for a metabolite-to-BMI (M � B) causal effect in UKB; in parallel, BMI 524 

genetic instrument (GB), a polygenic risk score built using GIANT BMI-associated SNPs (Gb) 525 

and UKB effect estimate weights (βb), was used to test for a BMI-to-metabolite (B � M) causal 526 

effect in OE and MCDS. (c) A subset of metabolites was categorized into “cause”, “effect”, and 527 

“bidirectional” groups based on the significance of the GM and GB IV effect estimate p-values, 528 

reflecting different types of causal connections between the metabolites and BMI. (d) Pathway 529 

analyses of the three metabolite groups were performed using metabolite set annotations 530 

generated using PAIRUP-MS and BioAge data. Y ~ X, regression of Y on X; U, unmeasured 531 

confounder; n, number of samples; m, number of metabolites; k, number of known (or shared 532 

known) metabolites; s, number of metabolite sets. 533 

 534 

Figure 2. Joint Manhattan plots summarizing GWAS of BMI-associated metabolites in OE 535 

and MCDS. Genetic associations for 100 shared known (top) or 477 matched (bottom) BMI-536 

associated metabolites were consolidated to plot the best p-value for each SNP (i.e. only the p-537 

value for the best associated metabolite was plotted for each SNP). Genome-wide significance 538 

threshold (p < 5 × 10-8) is marked by the orange lines. Genome-wide significant SNPs are plotted 539 

in red or blue, for shared known or matched metabolites, respectively. Lead SNPs of the most 540 
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significant loci (p < 1 × 10-15) are annotated with nearest genes (within 5kb), along with the best 541 

associated known metabolites if applicable. 542 

 543 

Figure 3. Classifying BMI-associated metabolites using IV effect estimate p-values for GM 544 

(metabolite-to-BMI direction, x-axis) and GB (BMI-to-metabolite direction, y-axis). Top and 545 

bottom quartile cutoffs along each axis are shown as dashed lines. Shared known metabolites in 546 

“cause” (orange), “effect” (blue), and “bidirectional” (pink) regions are labeled with their names.  547 

 548 

Figure 4. Clustered heat map of cause and effect metabolites’ memberships in metabolite 549 

sets prioritized by pathway analysis. Hierarchical clustering was performed using membership 550 

scores in the BioAge-based metabolite set annotations. Each column is a shared known (red 551 

label) or matched (black label) metabolite from the cause (yellow bar) or effect (blue bar) 552 

metabolite group. Each row is a significant (p < 0.05) metabolite set in pathway analysis in either 553 

the cause (yellow bar) or effect (blue bar) direction (with representative pathway name shown in 554 

label; see Supplementary Table 4 for full pathway list). Larger number in membership rank 555 

(darker red) indicates higher membership score. Dashed light blue boxes highlight the two major 556 

cause and effect clusters according to the clustering dendrograms. 557 
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SET_652: HumanCyc:glutathione−mediated detoxification
SET_258: Reactome:Creatine metabolism
SET_322: Reactome:Conjugation of benzoate with glycine
SET_636: HumanCyc:superpathway of choline degradation to L−serine
SET_334: KEGG:Retrograde endocannabinoid signaling − Homo sapiens (human)
SET_440: Reactome:Synthesis of PC
SET_609: Wikipathways:Effects of Nitric Oxide
SET_612: Reactome:Nitric oxide stimulates guanylate cyclase
SET_675: Reactome:Degradation of cysteine and homocysteine
SET_683: KEGG:Sulfur metabolism − Homo sapiens (human)
SET_498: EHMN:Methionine and cysteine metabolism
SET_500: HumanCyc:superpathway of methionine degradation
SET_562: INOH:Methionine Cysteine metabolism
SET_618: Reactome:Metabolism of polyamines
SET_676: SMPDB:Spermidine and Spermine Biosynthesis
SET_363: BioCarta:phospholipids as signalling intermediaries
SET_138: Reactome:Lipoprotein metabolism
SET_445: EHMN:Glycerophospholipid metabolism
SET_628: Reactome:Catecholamine biosynthesis
SET_656: KEGG:Amphetamine addiction − Homo sapiens (human)
SET_527: KEGG:Central carbon metabolism in cancer − Homo sapiens (human)
SET_29: SMPDB:Lysine Degradation
SET_27: KEGG:Lysine biosynthesis − Homo sapiens (human)
SET_28: Reactome:Lysine catabolism
SET_419: HumanCyc:thymine degradation
SET_634: Reactome:Reuptake of GABA
SET_304: Reactome:Synthesis of very long−chain fatty acyl−CoAs
SET_125: SMPDB:Mercaptopurine Metabolism Pathway
SET_318: Reactome:Conjugation of phenylacetate with glutamine
SET_123: KEGG:FoxO signaling pathway − Homo sapiens (human)
SET_112: Reactome:Generic Transcription Pathway
SET_109: Reactome:Synthesis and interconversion of nucleotide di− and triphosphates
SET_110: HumanCyc:guanosine nucleotides de novo biosynthesis
SET_432: PID:PDGFR−beta signaling pathway
SET_649: Reactome:Synthesis of UDP−N−acetyl−glucosamine
SET_323: Reactome:Biotin transport and metabolism
SET_194: Reactome:The phototransduction cascade
SET_256: Reactome:Infectious disease
SET_428: PID:S1P2 pathway
SET_491: KEGG:Parkinson's disease − Homo sapiens (human)
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β B ~ M P  B ~ M SNP EA P  M ~ GM β P β P
alpha-hydroxybutyrate 0.235 7.09E-13 11:119745598 T 4.82E-07 -0.040 1.24E-03 -0.036 8.36E-01

C34:4 PC 0.153 3.45E-06 3:182171263 A 1.42E-07 -0.027 9.90E-03 0.019 9.15E-01
C6 carnitine 0.207 2.66E-10 1:76224010 C 2.88E-24 -0.010 3.09E-02 -0.076 6.69E-01

C18:1 CE -0.215 5.54E-11 20:38984849 T 3.44E-07 -0.016 4.23E-02 -0.018 9.17E-01
cotinine -0.169 3.10E-07 10:123918365 C 1.07E-06 0.012 8.03E-02 -0.022 9.02E-01
valine 0.445 1.20E-47 14:32724292 A 7.01E-08 -0.003 6.94E-01 0.708 1.46E-03

C22:6 LPC -0.180 4.38E-08 18:71068347 A 3.26E-07 -0.001 9.52E-01 -0.450 2.25E-02
C18 carnitine -0.193 4.65E-09 6:110760008 A 1.27E-07 0.001 9.41E-01 -0.351 6.53E-02

glycine -0.308 7.55E-22 2:211540507 A 2.35E-30 0.030 6.03E-10 -0.712 1.59E-03
tyrosine 0.376 6.22E-33 6:111477887 C 1.12E-07 -0.022 8.77E-03 0.334 7.46E-02

Cause

Effect

Bidirectional

Table 1. BMI-associated known metabolites classified into cause, effect, or bidirectional groups using the bidirectional IV effect estimate p -values. Y ~ X, 
regression of Y on X; B, BMI; M, metabolite; covariate adjustment for B and M as described in Methods; SNP, hg19 chromsome:position is shown; β, effect 
size estimate; EA, effect allele (i.e. metabolite level-increasing allele). Nominally significant p -values (< 0.05) for IV effect estimates are in bold italic.

Group Metabolite Observational Association Metabolite Instrument GM IV Estimate (M → B) GB IV Estimate (B → M)


