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Abstract 24 

The complexity of brain activity has been observed at many spatial scales and there exists 25 

increasing evidence supporting its use in differentiating between mental states and disorders. 26 

Here we proposed a new measure of network (global) complexity that is constructed as the sum 27 

of the complexities of its nodes (i.e, local complexity). The local complexity of each node is 28 

regarded as an index that compares the sample entropy of the time series generated by the 29 

movement of a random walker on the network resulting from removing the node and its 30 

connections, with the sample entropy of the time series obtained from a regular lattice (the 31 

ordered state) and an Erdös-Renyi network (disordered state). We studied the complexity of 32 

fMRI-based resting-state functional networks. We found that positively correlated, or “pos”, 33 

network comprising only the positive functional connections has higher complexity than the 34 

anticorrelation (“neg”) network (comprising the negative functional connections) and the 35 

network consisting of the absolute value of all connections (“abs”). We also found a significant 36 

correlation between complexity and the strength of functional connectivity. For the pos network 37 

this correlation is significantly weaker at the local scale compared to the global scale, whereas 38 

for the neg network the link is stronger at the local scale than at the global scale, but still weaker 39 

than for the pos network. Our results suggest that the pos network is related to the information 40 

processing in the brain and should be used for functional connectivity analysis instead of the abs 41 

network as is usually done. 42 

 43 
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 47 

1. Introduction 48 

The development of a quantitative measure of complexity has proven difficult because of 49 

the variety of systems that may be labelled as ‘complex’. In the case of the complexity of 50 

networks, perhaps the most popular approach has been the use of information-based measures 51 

(Bonchev & Buck, 2005; Dehmer, Barbarini, Varmuza, & Graber, 2009). The basic principle to 52 

construct these measures is to select an arbitrary graph invariant X, partitioned as ��,…, ��. 53 

Probabilities can be inferred for each partition using the entities  �� � ��/ ∑ ��
�
���  since it holds 54 

that ∑ �� � 1�
���  . The information content of the graph is then computed using the Shannon 55 

formula (Shannon, 1948): � � ∑ ��	
����
�
��� . Another important definition of complexity was 56 

proposed by Kolmogorov (Kolmogorov, 1968). The Kolmogorov complexity of a network is the 57 

length of the shortest computer program that produces the network as output. Although 58 

Kolmogorov complexity is uncomputable it can be approximated to a degree that allows its 59 

practical use (Li & Vitányi, 2008).  60 

The measures of complexity described above assume it to be a monotonically increasing 61 

function of disorder. However, complexity can also be defined as a monotonically increasing 62 

function of order, as shown by McShea (McShea, 1991), who found that the morphological 63 

complexity of organisms changed with the level of self-organization, and the latter with order. 64 

Finally, complexity can be defined as a convex function of disorder; i.e., a quantity that attains a 65 

minimum for both completely ordered and completely disordered systems, and a maximum at 66 

some intermediate level of disorder or order (López-Ruiz, Mancini, & Calbet, 1995; Shiner, 67 

Davison, & Landsberg, 1999; Tononi, Edelman, & Sporns, 1998). Here, we adopt this latter 68 

notion by assuming that network complexity achieves a minimum for random networks, also 69 
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known as Erdös-Renyi (ER) networks (Erdös & Rényi, 1959), and regular lattice (RL) networks 70 

(Watts & Strogatz, 1998).  71 

In addition to the global complexity of the brain network, in this work we are interested in 72 

computing the local complexities (a measure for each of the different brain areas), such that the 73 

global complexity of the network is the sum of the local ones; i.e, the complexity of the system is 74 

the sum of the complexity of its parts. To estimate the complexities, we let a random walker 75 

diffuse on the network and construct a time series of the strengths of the nodes (brain areas) 76 

visited by the walker. The sample entropy (SampEn) (Richman & Moorman, 2000) of the time 77 

series is then calculated. Local complexities are obtained by iteratively removing a node and all 78 

its connections, constructing the time series from the walker movement in the resulting network, 79 

computing the SampEn, and comparing this value to the average value obtained from 1000 ER 80 

and 1000 RL networks with the same degree distribution and connections strengths.  81 

Functional connectivity in the brain is defined as the synchronization of neurophysiological 82 

events among anatomically separated brain areas (Friston, Jezzard, & Turner, 1994). Biswal and 83 

colleagues (Biswal, Yetkin, Haughton, & Hyde, 1995) were the first to report that during resting-84 

state the primary motor regions in the left and right hemispheres were positively correlated. Later 85 

studies identified positive correlations between regions that are now known to comprise the 86 

default mode network (DMN) (Buckner, Andrews-Hanna, & Schacter, 2008; Raichle et al., 87 

2001). In addition to the reported correlated networks, anticorrelated networks have also been 88 

reported by several studies (Michael D. Fox, Zhang, Snyder, & Raichle, 2009; Gopinath, 89 

Krishnamurthy, Cabanban, & Crosson, 2015; Liang, King, & Zhang, 2012). Although 90 

anticorrelations have been attributed to the global signals removal recent studies suggest a 91 

physiological basis (Michael D. Fox et al., 2009; Kazeminejad & Sotero, 2019). For this reason, 92 
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in this paper we computed three different functional connectivity matrices for each subject using 93 

the Pearson correlation between the resting-state functional magnetic resonance imaging (fMRI) 94 

signals recorded from each of the 116 brain areas considered. A matrix consisting of the absolute 95 

value of all connections (denoted as abs), a matrix consisting of only the positive connections 96 

(denoted as pos) representing the positively correlated network, and a matrix comprising the 97 

absolute value of only the negative connections (denoted as neg) representing the anticorrelation 98 

network. We then compute the local complexities of the 116 brain areas, as well as the global 99 

complexities of the entire brain network, and seven known functional networks of the brain 100 

(Sedeño et al., 2016): default mode network (DMN), frontoparietal (FP), salience (SAL), 101 

sensorimotor (SM), visual (V), cerebellar (CER), and temporo-basal-ganglial (TBG) networks. 102 

Our results show that the pos network has higher global complexity than the neg and abs 103 

networks. We also found a link between complexity and functional connectivity which changes 104 

with the spatial scale and the type of brain network. For the pos network this link is significantly 105 

weaker at the local scale compared to the global scale, whereas for the neg network the link is 106 

stronger at the local scale than at the global scale, but still weaker than for the pos network. Also 107 

in the pos network global complexity was strongly correlated to the network integration and 108 

segregation, whereas neg was not significant correlated with integration and segregation. The 109 

network formed by taking the absolute value of the functional connectivity (abs) presented lower 110 

correlations than the pos case. Our results suggest that the pos network is related to the 111 

information processing in the brain network and should be used for functional connectivity 112 

analysis instead of the abs network. 113 

 114 

2. Methods 115 
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2.1. Data acquisition and preprocessing 116 

The resting-state fMRI dataset of 89 subjects from the NIH Human Connectome Project 117 

(HCP) (https://https://db.humanconnectome.org) (Van Essen et al., 2013) is used in this research. 118 

Each subject was involved in 4 runs of 15 minutes each using a 3 T Siemens scanner, while their 119 

eyes were open and had a relaxed fixation on a projected bright cross-hair on a dark background. 120 

The data were acquired with 2.0 mm isotropic voxels for 72 slices, TR=0.72 s, TE=33.1 ms, 121 

1200 frames per run, 0.58 ms echo spacing, and 2290 Hz/Px bandwidth (Moeller et al., 2010). 122 

Therefore, the fMRI data were acquired with a spatial resolution of 2 × 2 × 2 mm and a temporal 123 

resolution of 0.72 s, using multibands accelerated echo-planar imaging to generate a high quality 124 

and the most robust fMRI data. The fMRI data were spatially preprocessed to remove spatial 125 

artifacts produced by head motion, B0 distortions, and gradient nonlinearities (Jovicich et al., 126 

2006). Since comparison of fMRI images across subjects and studies is possible when the images 127 

have been transformed from the subject’s native volume space to the MNI space, fMRI images 128 

were wrapped and aligned into the MNI space with FSL’s FLIRT 12 DOF affine and then a 129 

FNIRT nonlinear registration (Jenkinson, Bannister, Brady, & Smith, 2002) was performed. In 130 

this study, the MNI-152-2 mm atlas (Mazziotta et al., 2001) was utilized for fMRI data 131 

registration. 132 

2.2. Construction of functional connectivity matrices 133 

The peak voxel in each region, that is, the voxel of maximal activation, was selected by 134 

computing the Root Mean Square (RMS) for each voxel's fMRI signal over all time. It has been 135 

shown that the peak voxel provides the best effect of any voxel in the ROI (Sharot, Delgado, & 136 

Phelps, 2004). Additionally, the peak voxel activity correlates well with evoked scalp electrical 137 

potentials than approaches that average activity across the ROI. This means that the peak voxel 138 
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represents the ROI’s activity better than other choices (Arthurs & Boniface, 2003). The peak 139 

voxel in each region is determined using previously published Talairach coordinates (after 140 

conversion to MNI coordinates and using AAL 116 atlas) (M. D. Fox et al., 2005).  The resulting 141 

signal was filtered to keep only low frequency fluctuations (0.01–0.08 Hz) (Yan & Zang, 2010). 142 

Finally, the global signal (i.e., the average of the fMRI signals over the whole brain (Michael D. 143 

Fox et al., 2009)) was regressed out.  144 

We then computed the Pearson correlation between all possible pairs of time series 145 

creating a 116x116 functional connectivity matrix for each subject. Three different networks 146 

were obtained from this matrix. A network consisting of the absolute value of all connections 147 

(denoted as abs) which is the most commonly used in fMRI connectivity studies (Meier et al., 148 

2016; Meszlényi, Hermann, Buza, Gál, & Vidnyánszky, 2017; Salvador et al., 2005), a network 149 

consisting of only the positive connections (denoted as pos), and a network comprising the 150 

absolute value of only the negative connections (denoted as neg). In all cases p-values were 151 

corrected by means of a multiple comparison analysis based on the false discovery rate (FDR) 152 

(Benjamini & Hochberg, 1995). 153 

2.3. Construction of the time series of the random walker’s movements on the connectivity matrix 154 

We first consider an unweighted network consisting of � nodes. We place a large number 155 

��� � �
 of random walkers onto this network. At each time step, the walkers move randomly 156 

(with the same probability) between the nodes that are directly linked to each other. We allow 157 

the walkers to perform � time steps. As a walker visits a node, we record the degree of the node. 158 

Thus, after � time steps, we obtain � time series reflecting different realizations of the random 159 

walker’s movement on the network.  Nodes with high degree (hubs) will appear more frequently 160 

in the series than nodes with low degree.  161 
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In the case of weighted networks,  such as the functional connectivity matrix representing 162 

the brain network, the transition probability ���  from brain area i to brain area j is given by   163 

��� � ���/ ∑ ���
�
��� , where ��� is the weight of the connection from area i to area j (Zhang, 164 

Shan, & Chen, 2013). We then construct a time series with the strengths of the nodes i visited by 165 

the walker: ���� � ∑ ���
�
��� .  166 

2.4. Computing the entropy of the time series 167 

In this paper we use sample entropy (SampEn) (Richman & Moorman, 2000) to estimate 168 

the complexity of the time series of the diffusion of the random walker in the network.  SampEn 169 

improved from approximate entropy (ApEn) (Pincus, 1991) by reducing the bias caused by self-170 

matching. For a time series ���
, 1 � � � �, of finite length �, we first reconstitute the � �171 

� � 1 vectors ����
 following the form: 172 

                                    ����
 � ����
, ��� � 1
, … , ��� � � � 1
�,                                             (1) 173 

 � � 1,2, … , � � � � 1 

where � is the embedding dimension.  174 

Let !�
���
 be the probability that any vector ���"
 is within distance � of ����
: 175 

                                           !�
���
 � �

�����
∑ Θ$%��� � �&�����
���                                                 (2) 176 

where %��� is the distance between the vectors ����
 and ���"
, defined as: 177 

                                                %��� � �'��|��� � )
 � ��" � )
|
,                                             (3) 178 

) � 0,1, … , � 

When the embedding dimension is m, the total number of template matches is: 179 

                                                      +���
 � �

���
∑ !�

���
���
���                                                     (4) 180 

Similarly, when the embedding dimension is m+1, the total number of template matches is: 181 
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                                                    ,���
 � �

���
∑ !�

�����
���
���                                                   (5) 182 

Finally, the SampEn of the time series is estimated by: 183 

                                                  -'��./��, �, �
 � �	/ 0	�
��

�
��

1                                              (6) 184 

2.5. Computing local complexities and global complexity 185 

We propose to obtain local complexities 2�  by 1) iteratively removing a node and all its 186 

connections, 2) constructing the time series from the random walker diffusion in the resulting 187 

network, and 3) computing the SampEn of the time series obtained in the previous step. For node 188 

i, the resulting SampEn is labelled as ��� . Then we compare this value to the average SampEn 189 

(computed followed the same procedure outlined before) of 1000 ER (�3��) and  1000 RL 190 

networks  ��3��
 of the same size (i.e, N-1) and connections strengths taken from the original 191 

matrix. The local complexity is the percent this value is of the square of the entropy of the 192 

original matrix ��
, multiplied by the probability ���
 of the appearance of the node in the time 193 

series: 194 

                                                2� � 100�� |
�����
�
���
���������|

��
                                                     (7) 195 

Figure 1 shows the steps described above for computing the local complexities. The global 196 

complexity of the network C is then computed as the sum of the local complexities: 197 

                                                                    4 � ∑ 2��
���                                                                 (8) 198 

3. Results 199 

3.1.1 Global complexity of simulated complex networks 200 

As stated before, the goal of this work is to propose a new measure of structural 201 

complexity that is useful for brain networks. To demonstrate the usefulness of the quantity we 202 

defined, we start by measuring how changes in the underlying network structure affects the 203 
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observed values of global complexity. To this end, we devised a scenario in which the network 204 

gradually transforms from the perfectly orderly state (regular lattice network) to a completely 205 

random state (Erdos-Renyi network). Following equations (7) and (8) we expect complexity to 206 

have a minimum at these states. Network states different from these minimums would have a 207 

mixture of order and disorder and thus were modeled using the small-world model (Watts & 208 

Strogatz, 1998). In this model, nodes of the network are placed on a regular k-dimensional grid 209 

and each node is connected to m of its nearest neighbours, producing a regular lattice of nodes 210 

with equal degrees. Then, with probability p, each connection is randomly randomly rewired. 211 

The RL network corresponds to the value � � 0. When � 5 0, edge rewiring is applied, and this 212 

changes the degree distribution of nodes. On the other end of the spectrum is the ER model 213 

(Erdös & Rényi, 1959), obtained when � � 1, in which there is no connectivity pattern between 214 

nodes. In between, SW networks, obtained for values 0 6 � 6 1, present high clustering and 215 

short path length (Watts & Strogatz, 1998).  216 

Graph theoretical studies of mammalian cortical networks recreated from tract tracing 217 

experiments demonstrated that the cat and macaque interareal anatomical networks share similar 218 

small world properties of short path length and high clustering (Hilgetag & Kaiser, 2004; Sporns 219 

& Zwi, 2004). Additionally, studies of anatomical and functional connectivity networks 220 

estimated from human neuroimaging data also found small world characteristics (Bassett & 221 

Bullmore, 2006; Salvador et al., 2005). To simulate RL, SW and ER networks we use Matlab 222 

function ‘WattsStrogatz.m’ which has as inputs the parameters k and �.  223 

Figure 2A shows examples of matrices of size � � 100, for five different values of the 224 

rewiring probability �, and three values of the mean node degree k. The weights in the network 225 

were generated from a uniform random distribution with values between 0 and 1. We then placed 226 
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10� random walkers onto these networks. The steps for estimating the global complexity of the 227 

network are presented in Figure 1 and described in detail in the Methods section. Figure 2B 228 

shows the global complexity of a network as a function of the rewiring probability �. Three 229 

different values of the average node degree were used ) � 6,8,10. The results show that for a 230 

fixed network size the maximum global complexity decreases with the increase of ) (the 231 

network gets denser). Additionally, the probability at which the peak in complexity was 232 

achieved, also decreased with the increase of ).  233 

3.1.2 Complexity analysis of large-scale human brain networks 234 

Figure 3A displays these matrices for one subject. Figure 3B shows the node degree of the 235 

three matrices average across all subjects, figure 3C shows their entropy, and figure 3D their 236 

global complexity. Our results show that the pos matrices are sparser than the neg matrices but 237 

have approximately the same entropy. This results in the pos network having a higher global 238 

complexity than the neg matrices. The abs matrices presented the lowest global complexity of 239 

the three cases.  240 

Figure 4A shows the linear fits between the global complexity and the sum of the 241 

functional connectivity strengths (SFCS) of the entire brain network for the abs, pos, and neg 242 

cases. We found that for the pos case, there is a strong correlation �� � 0.62, � � 9.5<���
 243 

between global complexity and SFCS, followed by the abs case �� � 0.28, � � 0.0077
. The 244 

anticorrelation network  was not significantly correlated with SFCS �� � 0.11, � � 0.29
. We 245 

also computed the linear fits between local complexities and the SFCS of each brain area (figure 246 

4B). We found that for the pos case the link between complexity and functional connectivity was 247 

significantly weaker at the local scale compared to the global scale �� � 0.22, � � 2<���
. For 248 

the anticorrelation network the link was stronger at the local �� � 0.18, � � 3<���
 than at the 249 
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global scale, but still weaker than for the pos case. The correlation between complexity and 250 

connectivity was essentially the same at the global and local scales for the abs case (figure 4).  251 

Complex networks are expected to present high values of both integration and segregation. 252 

Thus, we also explored the link between them and global complexity (figure 5). Integration and 253 

segregation were estimated using the global efficiency and average clustering coefficient of the 254 

network, respectively (Sporns, 2013). We found strong correlations between global complexity 255 

and both integration �� � 0.55, � � 2. 7<��
 and segregation �� � 0.59, � � 2<��
 for the pos 256 

network, and lower values for the abs case (� � 0.26, � � 0.016 for the correlation with 257 

integration and � � 0.28, � � 0.008 for the correlation with segregation). No significant 258 

correlations were found for the neg case.  259 

We also investigated the link between the three network types at the global (figure 6A) and 260 

local scales (figure 6B) finding that the pos and neg networks are not significantly correlated at 261 

any spatial scale.   262 

Figure 7 presents the local complexity of the 116 brain areas for the pos and neg cases. 263 

Seven resting-state networks (Sedeño et al., 2016) were considered (DMN, FP, SAL, CER, V, 264 

SM, TGB) as well as areas that were not allocated to a network (NA). In both pos and neg cases, 265 

the area with the highest complexity belongs to the DMN (Angular R and Frontal Med Orb R). 266 

Figure 8 displays the local complexity for the abs case and the sum of the complexities of the 267 

neg and pos case (neg+pos). In the abs case, the highest complexity was obtained for the left 268 

paracentral lobule, while the right angular gyrus presented the highest complexity for the 269 

neg+pos case. 270 

We computed the global complexity of the seven resting-state networks (figure 9A). We 271 

found that the network with the highest complexity for all cases was the cerebellar network, 272 
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while the network with the lowest complexity was the salience network. The DMN, FP, CER, V 273 

and SM networks presented more complexity in the pos than in the neg case, while the SAL and 274 

TGB networks were more complex in the neg case. When interpreting this result we need to be 275 

aware of the fact that since the global complexity of the network is computed as the sum of the 276 

local complexities (equation 8), networks comprising few brain areas (as is the case of the 277 

salience network) will have a low value of global complexity provided that the difference in the 278 

values of the local complexities is not high (see figures 7 and 8). To account for this issue, we 279 

also divided the global complexity of each network by the number of areas in each network 280 

(figure 9B). As a result, although the average contribution of the areas in the salience network to 281 

the network complexity is still the lowest among the seven resting state networks for the pos 282 

case, it is the areas in the visual network the ones with the lowest contribution in the neg case.  283 

Along these lines, hemispherical differences can be investigated as well. Previous studies 284 

have found interhemispheric asymmetry in brain connectivity during resting-state (Medvedev, 285 

2014). We found that the left hemisphere was significantly more complex than the right 286 

hemisphere for the seven resting-state networks (figure 10).  287 

 288 

Discussion 289 

In this study we proposed a new measure of network (global) complexity that is 290 

constructed as the sum of the complexities of its nodes. The complexity of each node (i.e, local 291 

complexity) was estimated as an index that compares the sample entropy of the time series 292 

generated by the movement of a random walker on the network resulting from removing the 293 

node and its connections, to the sample entropy of the time series obtained from a regular lattice 294 

(the ordered state) and an Erdos-renyi network (disordered state). Our simulations demonstrated 295 
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that our measure of complexity (equations (7)-(8)), achieves a minimum for the regular lattice 296 

and Erdos-Renyi networks, and a maximum at some intermediate state, representing a small-297 

world network with both order and disorder characteristics (figure 2). The rationale behind the 298 

use of random walks is that diffusion process are capable of uncovering the large-scale 299 

topological structure of complex networks (Noh & Rieger, 2004; Simonsen, Astrup Eriksen, 300 

Maslov, & Sneppen, 2004; Skardal & Adhikari, 2018). For instance, random walks are the basis 301 

of Infomap (Rosvall & Bergstrom, 2008), a popular method for detecting community structure in 302 

complex networks. Past studies of anatomical and functional brain connectivity have found 303 

interlinked communities that form a partly decomposable modular architecture (Ashourvan, 304 

Telesford, Verstynen, Vettel, & Bassett, 2019; Meunier, Lambiotte, Fornito, Ersche, & 305 

Bullmore, 2009). Such architectures are hallmarks of complex systems and are thought to be of 306 

fundamental importance for understanding mental processing and cognition (Bola & Borchardt, 307 

2016). In the brain, hierarchies of linked communities span across several levels including brain 308 

regions, functional circuits and large-scale networks. This structural diversity cannot be captured 309 

by previous structural complexity measures relying mainly on Shannon entropy (Shannon, 310 

1948), but can be probed using random walks (Rosvall & Bergstrom, 2008).  311 

Once we constructed the time series of the random walker’s movement in the network, we 312 

needed a measure to estimate its complexity. There is a diversity of complexity measures based 313 

on different entropy definitions, such as: Shannon entropy (Shannon, 1948), Tsallis entropy 314 

(Tsallis, 1988), spectral entropy (Inouye et al., 1991), wavelet entropy (Rosso et al., 2001), 315 

approximate entropy (Pincus, 1991), sample entropy (Richman & Moorman, 2000), fuzzy 316 

entropy (Weiting Chen, Zhizhong Wang, Hongbo Xie, & Wangxin Yu, 2007), and permutation 317 

entropy (Bandt & Pompe, 2002). In this work we selected sample entropy since it can quantify 318 
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the amount of regularity and unpredictability of fluctuations in a time series (Richman & 319 

Moorman, 2000). This is important because of the presence of communities in brain networks 320 

(Ashourvan et al., 2019; Meunier et al., 2009), which will result in repetitive patterns of nodes in 321 

the time series of the random walker’s movement (Fortunato & Hric, 2016).  322 

Our study of brain complexity found interhemispheric asymmetry, where the left 323 

hemisphere was significantly more complex than the right hemisphere, for all the seven brain 324 

networks explored. Previous studies have also found interhemispheric asymmetry in brain 325 

connectivity during resting-state. For instance, a recent study used near-infrared spectroscopy 326 

(NIRS) signals to estimated functional connectivity matrices (Medvedev, 2014). Their results 327 

revealed significantly stronger and denser connectivity patterns in the right hemisphere in most 328 

subjects.  This denser pattern of connections in the right hemisphere compared to the left 329 

hemisphere can lead to a lower structural complexity if it is not accompanied with a significant 330 

increase in the entropy of the network. Thus, the balance between the entropy of the network and 331 

its density determines the network’s complexity. This was exemplified in figure 3 where we 332 

found that the entropy of the positive network and the anti-correlated network were essentially 333 

the same, but the positive network was sparser, which resulted in it being more complex than the 334 

anti-correlated network.  335 

 336 
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 503 

 504 

 505 

 506 

Figure 1. Methodology for computing local complexities. A) Given a connectivity matrix of size 507 

N, each node is removed iteratively and a new matrix of size (N-1)x(N-1) is obtained. Then a 508 

time series of node strengths is constructed from the diffusion of a random walker in the new 509 

matrix. B) A random network of size (N-1)x(N-1) with the same average degree and strengths as 510 

the matrices obtained in A. C) A regular network of size (N-1)x(N-1) with the same average 511 

degree and strengths as the matrices obtained in A. D) Local complexities.   512 
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 522 

Figure 2. Global complexity of simulated networks. A) All networks have the same size 523 

� � 100, and were simulated using the Watts and Strogatz algorithm for creating small-world 524 

networks. The inputs to the model are the rewiring probability �, and mean node degree k. B) 525 

Global complexity as function of the rewiring probability p.  526 
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 533 

Figure 3. Global complexity of the entire brain network. A) A matrix consisting of the absolute 534 

value of all connections (denoted as abs), a matrix consisting of only the positive connections 535 

(denoted as pos), and a matrix comprising the absolute value of only the negative connections 536 

(denoted as neg). B) node degree averaged across subjects C) entropy averaged across subjects. 537 

D) global complexity averaged across subjects. 538 
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 548 

Figure 4. Link between Global complexity (A) and local complexities (B) and the sum of 549 

functional connectivity strengths. The abs, pos and neg networks appear in that order from left 550 

to right. 551 
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 557 

Figure 5. Link between global complexity and integration (blue) and segregation (red).  558 
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 569 

Figure 6. Link between the three network types (abs, pos, and neg) at the global (A) and local 570 

(B) scales.  571 
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 575 

Figure 7. Local complexity of the 116 brain areas for the pos and neg cases. Seven resting-state 576 

networks (see Supplementary Table 1) are represented through different colors: default mode 577 

network (DMN), frontoparietal (FP), salience (SAL), sensorimotor (SM), visual (V), cerebellar 578 

(CER), and temporo-basal-ganglial (TBG) networks. The gray color represents areas not 579 

assigned (NA) to any of these networks.  580 
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 582 

Figure 8. Local complexity of the 116 brain areas for the abs and pos+neg cases. Seven resting-583 

state networks (see Supplementary Table 1) are represented through different colors: default584 

mode network (DMN), frontoparietal (FP), salience (SAL), sensorimotor (SM), visual (V),585 

cerebellar (CER), and temporo-basal-ganglial (TBG) networks. The gray color represents areas586 

not assigned (NA) to any of these networks.  587 
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 589 

 590 

 591 

Figure 9. Network complexity. A) Global complexity of seven resting-state networks. B) Global 592 

complexity divided by the number of areas in each network. Seven resting-state networks (see 593 

Supplementary Table 1) are represented through different colors: default mode network (DMN), 594 

frontoparietal (FP), salience (SAL), sensorimotor (SM), visual (V), cerebellar (CER), and 595 

temporo-basal-ganglial (TBG) networks. The gray color represents areas not assigned (NA) to 596 

any of these networks.  597 
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 608 

 609 

610 

Figure 10. Interhemispheric asymmetry of global complexity. L- left hemisphere, R- right611 

hemisphere.  Seven resting-state networks (see Supplementary Table 1) are represented through612 

different colors: default mode network (DMN), frontoparietal (FP), salience (SAL), sensorimotor613 

(SM), visual (V), cerebellar (CER), and temporo-basal-ganglial (TBG) networks. The gray color614 

represents areas not assigned (NA) to any of these networks.  615 
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Supplementary Material 630 

Table S1. Resting-state networks 631 

Network Areas 
Default mode network (DMN) Frontal_Mid_Orb_L, Frontal_Mid_Orb_R      

Frontal_Sup_Medial_L, Frontal_Sup_Medial_R    
Frontal_Med_Orb_L , Frontal_Med_Orb_R       
Cingulum_Post_L, Cingulum_Post_R         
Angular_L, Angular_R               
Precuneus_L, Precuneus_R             

Frontoparietal (FP) Frontal_Sup_L, Frontal_Sup_R            
Frontal_Mid_L, Frontal_Mid_R            
Frontal_Inf_Oper_L, Frontal_Inf_Oper_R        
Frontal_Inf_Tri_L, Frontal_Inf_Tri_R         
Frontal_Inf_Orb_L, Frontal_Inf_Orb_R         
Parietal_Sup_L, Parietal_Sup_R          
Parietal_Inf_L, Parietal_Inf_R          
SupraMarginal_L, SupraMarginal_R         

Salience (SAL) Insula_L, Insula_R 
Cingulum_Ant_L, Cingulum_Ant_R      

Sensorimotor (SM) Precentral_L, Precentral_R         
Rolandic_Oper_L, Rolandic_Oper_R     
Postcentral_L, Postcentral_R       
Supp_Motor_Area_L, Supp_Motor_Area_R   

Visual (V) Calcarine_L, Calcarine_R 
Cuneus_L, Cuneus_R 
Lingual_L, Lingual_R 
Occipital_Sup_L, Occipital_Sup_R 
Occipital_Mid_L, Occipital_Mid_R 
Occipital_Inf_L, Occipital_Inf_R 
Fusiform_L, Fusiform_R 

Cerebellar (CER) Cerebelum_Crus1_L, Cerebelum_Crus1_R 
Cerebelum_Crus2_L, Cerebelum_Crus2_R 
Cerebelum_3_L, Cerebelum_3_R 
Cerebelum_4_5_L, Cerebelum_4_5_R 
Cerebelum_6_L, Cerebelum_6_R 
Cerebelum_7b_L, Cerebelum_7b_R 
Cerebelum_8_L, Cerebelum_8_R 
Cerebelum_9_L, Cerebelum_9_R 
Cerebelum_10_L, Cerebelum_10_R 
Vermis_1_2, Vermis_3, Vermis_4_5, Vermis_6 
Vermis_7, Vermis_8, Vermis_9, Vermis_10 

Temporo-basal-ganglial (TBG) Hippocampus_L, Hippocampus_R 
ParaHippocampal_L, ParaHippocampal R 
Amygdala_L, Amygdala_R,  
Caudate_L, Caudate_R 
Putamen_L, Putamen_R 
Pallidum_L, Pallidum_R 
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