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Abstract

Intrinsically disordered proteins (IDPs) constitute a large fraction of the human

proteome and are critical in the regulation of cellular processes. A detailed under-

standing of the conformational dynamics of IDPs could help to elucidate their roles

in health and disease. However the inherent flexibility of IDPs makes structural stud-

ies and their interpretation challenging. Molecular dynamics (MD) simulations could

address this challenge in principle, but inaccuracies in the simulation models and the

need for long simulations have stymied progress. To overcome these limitations, we

adopt an hierarchical approach that builds on the “flexible meccano” model of Bernadó

et al. (J. Am. Chem. Soc. 2005, 127, 17968-17969). First, we exhaustively sample

small IDP fragments in all-atom simulations to capture local structure. Then, we as-

semble the fragments into full-length IDPs to explore the stereochemically possible
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global structures of IDPs. The resulting ensembles of three-dimensional structures of

full-length IDPs are highly diverse, much more so than in standard MD simulation.

For the paradigmatic IDP α-synuclein, our ensemble captures both local structure, as

probed by nuclear magnetic resonance (NMR) spectroscopy, and its overall dimension,

as obtained from small-angle X-ray scattering (SAXS) in solution. By generating rep-

resentative and meaningful starting ensembles, we can begin to exploit the massive

parallelism afforded by current and future high-performance computing resources for

atomic-resolution characterization of IDPs.

INTRODUCTION

Proteins with intrinsically disordered regions constitute a large fraction of the human pro-

teome.1 Many proteins feature disordered regions besides folded domains, while other pro-

teins are completely unstructured. Some intrinsically disordered proteins (IDPs) transiently

sample structures and some fold upon binding partners, while others remain unfolded even

in an ultrahigh-affinity complex.2 Disordered regions and IDPs play essential roles in cell-

signaling,3 where their flexibility may be vital. Assembly of IDPs in biomolecular conden-

sates formed by liquid-liquid phase separation may be a general organizing principle in cell

biology.4 Dysregulation of liquid-liquid phase separation and aggregation of IDPs may be

the pathological mechanism in many neurological diseases. The paradigm for IDPs is ar-

guably defined by α-synuclein (aS).5 aS was suggested to also adopt α-helical conformations

throughout the whole sequence in solution in its monomeric state but recent work suggests

that it is better described as a disordered random coil.6

Resolving the structural ensembles of IDPs in experiments is challenging due to their

inherent flexibility. Nuclear magnetic resonance (NMR) studies can detect residual struc-

tures or regions in IDPs having a propensity to transiently adopt well-defined structures.7

Chemical shifts can provide information on secondary structure elements,8 which can be

transiently populated, or the lack thereof as for aS.6 NMR J-couplings are a sensitive probe
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of local and in particular backbone structure.9 Small-angle X-ray scattering (SAXS) can

complement NMR experiments by reporting on the global structures of IDPs.10

Generating representative structural ensembles to interpret experiments remains diffi-

cult. Data-driven models on the basis of PDB statistics, so-called coil models, have been

successfully used to study disordered proteins.11–14 Coil models provided first insights into

the molecular structure of unfolded states of proteins and IDPs. Such models, including

the flexible-meccano 14,15 model, have been used to interpret NMR data and also solution

scattering data. NMR data can be rigorously incorporated into coil models.6,16,17 However,

modeling based on the statistics of the φ and ψ backbone dihedral angles does not capture

correlations between different degrees of freedom, e.g., between backbone and sidechain con-

formations. Coil models, while capturing the overall flexibility of IDPs, are essentially static

and typically do not give insight into the dynamics of IDPs.

Molecular dynamics (MD) simulations can capture these correlations and hold the promise

to resolve the structure and dynamics of IDPs with atomistic resolution. MD simulations

are highly complementary to experiments.18–20 However, two critical issues have stymied the

full power of MD simulations: (1) Inaccuracies in the force fields and (2) the inherent slow

dynamics of IDPs. A myriad of shallow free energy minima for an IDP mean that any imbal-

ance in force field will be amplified,21 resulting in heavily skewed conformational ensembles.

Due to the countless minima, simulations will relax slowly and only a fraction of the confor-

mational space will be visited in a typical MD simulation. Force fields for IDPs have seen a

lot of development.22–24 In particular, dispersion-corrected water models25 have led to better

solvation and more realistic simulations of IDPs. Simulations of small disordered systems

demonstrated that local structure can be captured very well in all-atom molecular dynamics

simulations with explicit solvent.26,27 In comparison to the dramatic improvements in hard-

ware and software, less progress has been made on overcoming the issue of slow relaxation

of IDPs associated with their large conformational entropy. Their inherent disorder and

the resulting difficulty in describing their structural states and relatively large size render
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applications of enhanced sampling methods28 such as umbrella sampling, metadynamics29

and replica exchange molecular dynamics challenging. These methods are tailored primarily

to overcome energetic barriers, and less to sample the vast and weakly structured energy

landscape of an IDP.

A promising avenue to overcome the sampling limitations in molecular simulations of

IDPs would be to judiciously start simulations from representative starting configurations.

By choosing relevant starting configurations, rather than a single starting structure, as is

typically done, one can (1) obtain much better overall sampling30 for a given amount of

computer time and (2) exploit the parallelism afforded by large-scale computing resources31

such as Folding@Home, cloud computing and supercomputers. Running many appropriately

initialized simulations rather than a single long simulation makes better use of available

computing resources, by overcoming limits in the scaling of MD engines to a large number of

cores. For simulations of folded proteins, automated ways to generate simulations from all

available experimental structures and homology models based on experimental structures of

related sequences have been developed.32 Alternatively, enhanced sampling simulations have

been used to generate useful starting configurations for MD simulations.33 In simulations

of disordered polymer melts34,35 and biological membranes,36 multi-scale approaches have

proved to be very successful. Coarse-grained simulations are used to explore the space of

possible arrangements. Equilibrated structures from coarse-grained simulations can then be

used as starting points for simulations with more accurate all-atom force fields.

An efficient way of sampling possible three-dimensional arrangements of polymer chains

is provided by chain-growth Monte Carlo algorithms.37 In chain-growth algorithms, the poly-

mer chain is assembled from structures of fragments of the full-length chain. The fragments,

which are small by construction, can be sampled with accurate but computationally expen-

sive methods. Many different full-length arrangements38 can then be sampled by using, e.g.,

a coarse potential energy function. In a pioneering application of fragment assembly, Stultz

et al. created ensembles of tau39 and aS40 biased towards NMR and SAXS data.
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Figure 1: Overview of the hierarchical chain-growth approach to construct models of disor-
dered proteins with atomic resolution in MD simulations. The sequence of the full-length
protein is split into overlapping fragments, which can be sampled extensively. Fragment
structures are assembled in an hierarchical manner by chain-growth Monte Carlo, sampling
the space of possible global structures. The resulting full-length structures have atomic
resolution and serve as starting points for highly parallel all-atom MD simulations.
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Here, we adopt an hierarchical algorithm to create large ensembles of full-length IDP

structures. These structures can be used as starting points for MD simulations and for

ensemble refinement against experimental data.17,27 We first perform all-atom MD to create

extensive ensembles of fragment structures. We then merge the structures of fragments

overlapping along the sequence to assemble full-length structures. The number of assembly

steps grows only as the logarithm of the IDP length. This logarithmic dependence and the

imposition of steric exclusion at every step of the assembly ensures a high computational

efficiency of the hierarchical assembly. We show that the resulting ensembles are much more

diverse than ensembles sampled in MD runs at comparable computational cost. Moreover,

each structure entering the ensemble provides an excellent starting point for large scale

parallel all-atom simulations on high performance computing (HPC) resources. Interestingly

our ensembles agree well with high-resolution information from experiment without further

refinement, emphasizing that our ensembles are useful for a direct structural analysis and as

starting points for MD.

THEORY

Self-Avoiding Random Walk. Chain-growth Monte Carlo affords to connect accurate

descriptions of local structure with exhaustive sampling of global structure37,38 (Figure 1).

Consider recursive growth of a heteropolymer chain with steric exclusion from a set of frag-

ments. Note that interactions other than excluded volume could be considered,38 but for

simplicity we focus on steric exclusion. Let ik be the index of the fragment structure at

segment k of the polymer and ck the number of such fragments. Then the structure of the

polymer up to step n is uniquely described by the sequence (i1i2 . . . in) with ik ∈ {1, . . . , ck}.

Note that for a heteropolymer the fragments will be different.
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The partition function of the polymer composed of N fragments is

Z =

c1∑

i1=1

c2∑

i2=1

. . .

cN∑

iN=1

θ(i1i2 . . . iN) (1)

where θ(i1i2 . . . iN) = 1 if the chain is sterically permitted and θ(i1i2 . . . iN) = 0 otherwise.

The probability of a particular configuration i1i2 . . . iN is then

p(i1i2 . . . iN) =
θ(i1i2 . . . iN)

Z
(2)

Merging Chains from a Non-Overlapping Sub-Ensemble Using an Hierarchical

Approach. For long chains we take advantage of the fact that the problem is hierarchical.

We first define a segment partition function,

Zm:n =
cm∑

im=1

cm+1∑

im+1=1

. . .

cn∑

in=1

θ(im . . . in) (3)

for 1 ≤ m < n ≤ N such that Z1:N ≡ ZN . The probabilities of two sub-chains of length k

and N − k with 1 < k < N with fragment sequences (i1i2...ik) and (ik+1ik+2...iN) can be

written as

pk1(i1i2 . . . ik) =
θ(i1i2 . . . ik)

Z1:k

(4)

and

pNk+1(ik+1ik+2 . . . iN) =
θ(ik+1ik+2 . . . iN)

Zk+1:N

(5)

where pN1 (. . .) ≡ p(. . .) as defined above.

In the merge step, one conformation each from the ensembles of clash-free sub-chains is

drawn with probabilities pk1(i1i2 . . . ik) and pNk+1(ik+1ik+2 . . . iN), respectively. The two sub-

chains are merged if this does not lead to a clash, i.e., if θ(i1i2 . . . ik, ik+1ik+2 . . . iN) = 1. The
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normalized probability of the merged chain then satisfies

q(i1 . . . ik : ik+1 . . . iN)

=
pk1(i1 . . . ik)p

N(ik+1 . . . iN)θ(i1 . . . ikik+1 . . . iN)∑c1
i′1=1 . . .

∑cN
i′N=1 p

k
1(i′1 . . . i

′
k)p

k
1(i′k+1 . . . i

′
N)θ(i′1 . . . i

′
ki
′
k+1 . . . i

′
N)

∝ θ(i1i2 . . . ik)θ(ik+1ik+2 . . . iN)θ(i1i2 . . . ikik+1ik+2 . . . iN)

∝ θ(i1i2 . . . ik, ik+1ik+2 . . . iN)

(6)

In deriving the final probability we exploited the fact that if θ(i1i2...ik, ik+1...iN) = 1 then

θ(i1i2...ik) = θ(ik + 1ik+2...iN) = 1. I.e., if there is no clash in the full-length chain, there

cannot be a clash in any of its sub-chains. From eq 6 it follows that, properly normalized,

q(i1 . . . ik : ik+1 . . . iN) =
θ(i1 . . . iN)∑c1

i′1=1 . . .
∑cN

i′N=1 θ(i
′
1 . . . . . . i

′
N)

=
θ(i1 . . . iN)

ZN
≡ p(i1 . . . iN)

(7)

I.e., if two chains are picked at random from the 1 : k and k+ 1 : N ensembles, respectively,

and then merged without a clash, they enter the 1 : N ensemble with uniform weight. In

essence, merging two sub-chains without re-weighting is possible because θ ∈ {0, 1}. If we

instead had weight factors defined by a Boltzmann factor for a potential energy that varied

continuously, instead of assuming only values U ∈ {0,∞}, then we would need to reweight

the merged chains.38

Hierarchical Algorithm to Generate Self-Avoiding Random Walks. The ability to

merge sub-chains makes it possible to grow chains hierarchically. This procedure is partic-

ularly efficient if the number of fragments N is a power of 2, i.e., N = 2M with M integer.

We can then obtain properly weighted chains of length 2L by merging chains of length L

and checking for clashes. Starting with monomers (L = 1) we end up with full-length chains

after M steps. We first create ensembles of sterically allowed pairs (i1i2), (i3i4), . . . (iN−1iN)
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Figure 2: Generating all-atom IDP structures using an hierarchical Monte Carlo chain-
growth algorithm. Level 0: To generate input for the chain growth, the full-length protein
is split into N fragments, which are thoroughly sampled in all-atom MD simulations. Here,
each fragment has an overlap of two residues with the subsequent fragment. Structures from
the fragment libraries are picked at random to generate pairs of fragments. N depends on
the chain length with N ≤ 2M , where M is an integer (here: N = 2M). Level 1: Create
ensembles of N/2 quadruplets. Level 2: Create ensemble of N/4 quadruplets and so on until,
at level M , one arrives at a full-length structure of the IDP. In each fragment-assembly step,
we enforce excluded-volume interactions.
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(Figure 2A). Then we create ensembles of allowed quadruplets as pairs of allowed pairs,

(i1 . . . i4) = ((i1i2), (i3i4)) etc., checked for steric clashes (Figure 2B). From these ensembles,

we create ensembles of sterically allowed octuplets (Figure 2C) as pairs of sterically allowed

quadruplets. At the M -th step, we obtain the final structures with the proper weight in

the ensemble of sterically allowed structures (Figure 2D). Chains can also be merged hi-

erarchically if N is not a power of 2. Instead of factorizing by larger prime numbers and

merging, say, triplets, here we consistently merge pairs. The merged sub-chains can then

differ in length. At every step, one merges pairs where possible and otherwise promotes the

remaining singlet, as sketched graphically in Figure S1. This procedure requires M steps

where 2M−1 < N ≤ 2M .

SIMULATION METHODS

Implementation of Hierarchical Chain-Growth Monte Carlo Algorithm. We as-

sembled the fragments form temperature replica-exchange molecular dynamics (REMD) sim-

ulations41 into full-length structures, as illustrated in Figure 1, using the hierarchical chain-

growth Monte Carlo algorithm (Figure 2) described above. Here, each fragment had an

overlap of two residues with the subsequent fragment and capped termini (Figure 3A), but

other choices are possible. Only steric interactions between fragments were considered in the

chain growth. The chain-growth algorithm was implemented by building on the MDAnalysis

Python library42,43 as described below.

0. We randomly draw two conformations from the whole set of sampled conformations in

the preceding hierarchy level.

1. We perform a rigid body superposition over the peptide bonds between residues j − 1

and j of the first fragment and between residues i and i+1 of the subsequent fragment.

Here, i designates the first and j the last residue of a fragment (excluding the end-

capping groups). Thus, we align the four backbone atoms C, O, N, and H in the
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peptide bonds between residues common to both fragments (Figure 3A, residues 4 and

5).

(a) If the root-mean-square deviation (RMSD) of the superimposed region is below a

given cut-off, here 0.6 Å, we accept the alignment.

(b) Else we discard the conformations, draw new conformations and start again with

step 1.

2. We check the aligned structures for clashes. The excluded volume is detected by

calculating a neighbor list (as implemented in MDAnalysis42,43) for the residues from

both fragments outside the alignment regions. I.e., all atoms from residues j − 1 and

j of the first and residues i and i + 1 of the subsequent fragment as well as hydrogen

atoms are excluded from the calculation of the neighbor list. Heavy atoms within a

distance of 2.0 Å count as clash.

(a) If no steric clash was detected we proceed to merging the fragments.

(b) Else we discard the conformations, draw new conformations and start again with

step 1.

3. We stitch the superimposed fragments together. We merge the fragments by taking

backbone and sidechain atoms of residues i : j− 1 from the first fragment and i+ 1 : j

from the subsequent fragment. In Figure 3B, the alignment, clash calculation and the

stitching procedure is shown exemplary for hierarchy level 0 fragments 0 and 1.

REMD Simulation of Fragments. REMD simulations were run in GROMACS/2016.444

with the AMBER99SB*-ILDN-q force field26,45–47 and the TIP3P water model.48 The 46 aS

penta-peptide fragments were capped at the N- and C-terminus by acetyl and N-methyl

groups, respectively. The fragments were solvated in water with 150 mM NaCl, ensuring

overall charge neutrality. The resulting systems contained about 1900 atoms each. For
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Figure 3: Implementation of the hierarchical Monte Carlo chain-growth algorithm. The
algorithm is illustrated for the merging of two fragments at the beginning of a peptide chain
(i.e., fragments 0 and 1 at hierarchy level 0). (A) Fragments with a sequence overlap of
two residues with the subsequent fragment (blue box) are used as input. (B.1) To merge
two randomly picked fragments at hierarchy level 0, the peptide bonds (blue shading) of
the fragments are aligned. If the RMSD of the superimposed atoms is below a cut-off (here
0.6 Å), the aligned fragments are checked for clashes. (B.2) Steric overlap is probed with a
heavy-atom cut-off distance of 2.0 Å. Residues (backbone and sidechain) at the alignment
point (magenta shading), the endcapping groups (ACE and NME), and hydrogen atoms
are excluded from the clash calculation. (B.3) If no steric clash is detected, the structure
combining residues 1-4 from fragment 0 and residues 5-8 from fragment 1 is stored for use
in the next hierarchy level.
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each of the 46 aS penta-peptide fragments, REMD simulations were performed for 100 ns

using 24 replicas spanning a temperature range of 288 K to 431 K at constant pressure, at

temperatures set according to the algorithm by Patriksson et al.49

To maintain a pressure of 1 bar, the Parrinello-Rahman50 barostat was used. Temper-

ature coupling was achieved by velocity rescaling with a time constant of 0.1 ps using the

Bussi-Donadio-Parrinello thermostat.51 The P-LINCS algorithm was used to constrain all

bonds.52 Using the particle mesh Ewald method, long-range electrostatics were calculated

with a cut-off of 10 Å. The van der Waals cut-off was set to 12 Å. REMD production runs

were preceded by energy minimization and 1 ns equilibration in the NPT ensemble. During

the production runs of 100 ns (per replica) structures were saved in intervals of 10 ps. In

this way, we created a library of 10 000 fragment structures for each peptide segment at the

temperature of interest, T = 288 K.

MD Simulations of Full-Length Models. All-atom MD simulations of full-length aS

were run in Gromacs/2016.444 with the AMBER99SB*-ILDN-q force field26,45–47 using the

TIP4P-D water model.25 Twenty models were chosen at random from the ensemble of models

generated by hierarchical assembly. The aS chains with charged termini were each solvated

in water with 150 mM NaCl, ensuring overall charge neutrality. Each system contained

about 350 000 atoms. Simulations were performed at a constant temperature of 300 K

using the Bussi-Donadio-Parrinello velocity-rescaling thermostat with a time constant of 0.1

ps.51 The pressure was maintained at 1 bar using the Parrinello-Rahman barostat.50 The

P-LINCS algorithm52 was used to constrain all bonds. To calculate long-range electrostatics

the particle mesh Ewald method was used with a cut-off of 12 Å. A cut-off of 12 Å was

used for van-der-Waals interactions. Energy minimization and 200 ps equilibration were

performed before running production runs of 100 ns.

Calculation of Experimental Observables. We calculated NMR chemical shifts with

SPARTA+.53 Reference random coil chemical shifts were predicted using the POTENCI web
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server developed by Nielsen and Mulder54 to arrive at secondary chemical shift predictions

by subtraction of the reference value. J-couplings were calculated as previously described55

using the original Karplus parameters described by Wirmer and Schwalbe.56 The radius of

gyration RG,i for a saved aS structure i was calculated using FoXS,57 taking the solvent

shell into account. In addition, a geometric radius of gyration RG,i was computed from the

protein coordinates with the MDAnalysis Python library.42,43 The model ensemble average

was calculated as the root-mean-square average, RG = (
∑N

i RG,i
2/N)1/2, where RG,i is the

radius of gyration of the i-th member of the ensemble of size N .

RESULTS AND DISCUSSION

Testing and Validation of the Hierarchical Chain-Growth Approach. We first ver-

ified that the Monte Carlo hierarchical chain-growth algorithm works as expected and tested

different practical implementations. In the hierarchical chain-growth algorithm, we assemble

the full-length chain by generating possible structures of dimers of fragments (Figure 2A)

and then the structures of possible quadruplets (Figure 2B) and so on until the full chain is

grown (Figure 2D). As expected from its derivation, the chain-growth algorithm generates

ensembles in which each structure appears with a Boltzmann weight, which we confirmed

by comparing chains with up to 26 residues to chains grown by brute-force generation of

self-avoiding random walks (Figure S2). We also evaluated the effect of using fragments

of different length to grow 50-amino-acid long aS sub-chains. Comparing 3mer, 4mer and

5mer fragments, we found that using larger fragments resulted in somewhat more compact

models (Figure S4A), with a 5mer having a radius of gyration RG about 1 Å less than a

4mer. Larger fragments can adopt more compact conformations, with more interactions

within the fragments. In terms of the end-to-end distance χ (Figure S4B) and the diversity

of structures, as measured by the pairwise RMSD between structures in the ensemble (Fig-

ure S4C), the differences between 3mer, 4mer and 5mer fragments are small. We decided

14

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 9, 2019. ; https://doi.org/10.1101/731133doi: bioRxiv preprint 

https://doi.org/10.1101/731133


to use 5mer fragments in the following to capture also less-extended structures in our initial

pool of fragment structures.

Secondly, we compared the effects o aligning the fragments at the peptide bond (Figure 3)

or the backbone of the residue at the merge point (Figure S3). The peptide bond is relatively

rigid due its partial double-bond character compared to the backbone of the residue at the

merge point with its rotatable φ and ψ dihedral angles. Indeed, using the backbone rather

than the peptide bond for alignment results in larger differences between the assembly of

5mer, 4mer and 3mer fragments, as judged by the distributions of RG, χ and pairwise

RMSDs between structures (Figure S4). Importantly, assembling the chain via alignment

of the peptide bond preserves the conformational distributions from MD simulations of the

fragments. Figure 4A and B illustrate this point for the ψ angle of A11 and Y39. By contrast,

assembly via the backbone introduces a bias towards extended structures with ψ > 100◦.

Thirdly, we considered different overlap between the fragments. Using an overlap of

one or two residues between the fragment makes no significant difference (Figure S5). For

subsequent chain growth, we used the central three residues of 5mer fragments. The central

residues of a fragment should be more representative of the local structure in the context of

an IDP chain.

We conclude that the different choices one could make in implementing our chain-growth

algorithm, overall, do not have drastic effects on the global structures of the generated

ensembles. Local structure may be preserved better by aligning on the rigid peptide bond

rather than on the more flexible backbone.

Full-length Models of aS. We generated a highly diverse ensemble of full-length all-

atom aS structures with the hierarchical Monte Carlo chain-growth algorithm. For aS,

we split its primary sequence into 46 fragments to produce input structures for the chain

growth. For each fragment we ran exhaustive atomistic simulations with explicit solvent

using REMD. This initial sampling phase already lends itself to HPC resources with a large
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Figure 4: Comparison of different alignment and stitching approaches to implement the
chain-growth algorithm. (A,B) Distribution of the ψ dihedral angle for A11 (A) and Y39
(B) before and after the assembly of the MD fragments into full-length structures. Results are
shown for two different alignment approaches (orange: alignment over the backbone atoms,
alnBB; green: alignment over the peptide bond, alnPep) and for the peptide fragments
(blue). (C,D) Distribution of ∆ppm secondary chemical shifts of 13C (C) and 13Cα (D)
from experiment (red), MD fragments (blue), and full-length models grown with backbone
alignment (orange, alnBB) and peptide bond alignment (green, alnPep).

number of computing nodes as each fragment can be simulated independently from the

other fragments and no overhead is incurred due to inter-node communication. During chain

growth, structures are drawn from the simulation ensembles for the individual fragments.

Using the hierarchical chain-growth algorithm described above we grew 20 000 full-length

aS models. The calculation ran on 20 compute cores and we grew 1 000 full-length models

per core using the same pool of fragments in the 20 runs but different random number seeds.

To sample an ensemble with a large diversity in local conformations in the highest level M ,

we grew 10 000 structures in the levels 0 to M − 1. The extensive sampling of local and

global structures yielded highly-diverse full-length structures of aS, as judged by pairwise

RMSD (Figure 5D), with an average pairwise RMSD of ≈56 Å between the 20 000 models.
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A B

DC

Figure 5: Conformational diversity of aS model ensembles from MD simulation and hierar-
chical chain growth. (A) 30 aS models from hierarchical chain growth. (B) 30 structures
from 10 ns of MD. (C) 30 structures from 100 ns of MD. The structures were aligned on
the central third of their sequence in (A), (B) and (C). (D) Distribution of pairwise RMSD
between 100 different models obtained by MD, sampled uniformly in time from 100 ns and
2 µs, respectively, and by hierarchical chain growth.

In essence, no two structures are alike.

Sampling Efficiency of the Hierarchical Approach. Visualization makes it clear that

our hierarchical approach captured a much larger conformational space than would be ac-

cessed in a typical all-atom MD simulation of an IDP. In Figure 5B the persistence of a

transient hairpin conformation over the course of 10 ns of MD simulation is clearly visible.

Such local structure decorrelated over 100 ns of simulation (Figure 5C). However, it is clear

from comparing Figure 5A and Figure 5C that the ensemble from chain growth sampled a

much larger conformational space. The structures from 100 ns of MD simulations still re-
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sembled one another, unlike the structures from chain-growth, which fully explore the space

of possible structures.

We compared the distribution of RMSD values between 100 models sampled with hier-

archical chain growth to 100 different conformations sampled in a 100 ns and a 2 µs MD

simulation. The 100 structures from the 100 ns and 2 µs MD simulation trajectories were

taken at regular time intervals of 1 ns and 20 ns. For the chain growth ensemble with 100

different models we observed an average pairwise RMSD of ≈53 Å, whereas the MD ensem-

ble after 100 ns showed an average RMSD of ≈23 Å and after 2 µs an average of ≈32 Å

(Figure 5D). This demonstrates that by using the hierarchical chain-growth algorithm we

were able to obtain a diverse ensemble, much more diverse than an ensemble sampled in 2-µs

of MD.

  

BA

Figure 6: Conformational space of full-length models of aS projected onto the principal
component axes 1 and 2, as obtained from the ensemble of hierarchical models. (A) Con-
formations sampled in 20 × 100 ns MD simulations with different starting structures (black
crosses) projected onto the conformational space spanned by 10 000 full-length aS models
(aquamarine). (B) 2 µs trajectory (blue) projected onto the conformational space sampled
by the aS models (aquamarine).

Principal component analysis (PCA)58 gives us a global view of the conformational space

sampled. Figure 6 shows projections of the 20 000 models constructed with hierarchical

chain growth onto the principal components 1 and 2. On top, Figure 6A shows 200 000 MD

18
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conformations sampled in 20 × 100 ns of MD simulation started from 20 different structures

(black crosses). In essence, each of the 20 runs explores a small region within the confines

of the space sampled by the hierarchical models. Figure 6B shows the 2 µs MD simulation

projected onto the principal components 1 and 2 of the hierarchical models. Again, the MD

ensemble is contained within the hierarchical ensemble, indicating the larger conformational

diversity of structures in the hierarchical ensemble.

Overall, the MD trajectories stayed within the boundaries of the conformational space

defined by the ensemble from chain growth, which suggests that the hierarchical sampling

covered, at least at the global level of principal axes 1 and 2, the conformation space visited

in the 20 × 100 ns and µs scale MD simulations. Thus we conclude tentatively that our

hierarchical approach exhaustively samples the global structures of IDPs such as aS.

All-atom MD Simulations of aS in Explicit Solvent. Our models are meaningful

starting points for simulation, as shown by the overall behavior of the simulations started

from our models and the conservation of their characteristics in MD simulations. As ex-

pected, the full-length structures of aS (Figure 2F) were dynamic in all-atom MD simulations

in explicit solvent. In Figure 7B the starting structure for an all-atom simulation in explicit

solvent is presented. The structure is extended and this particular structure features a turn

close to the end of the N-terminal domain and at the beginning of the C-terminal domain of

aS. Like most of our models the structure shows little in the way of well-defined secondary

structure elements, featuring only a short helical segment. After 50 ns of simulation the turn

at the end of the N-terminal vanished and the short helix deformed (Figure 7C). Visually,

the structure expanded further. Over the next 50 ns the molecule became somewhat less

expanded (Figure 7D). Preservation of their characteristics in the MD simulations suggested

that the models provide meaningful starting points for simulations with the state-of-the

art AMBER99SB*-ILDN-q force field26,45–47 and TIP4P-D water model.25 Interestingly, the

simulations showed a slight compaction of the models, as judged by RG (Figure 7A). The
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A B

C D

Figure 7: All-atom MD simulations of full-length models of aS. (A) fluctuations of the
geometric RG in all-atom MD (noisy curves) and the respective moving average using a
window size of 10 ns (smooth curves of corresponding color). Representative snapshots are
shown for a simulation run: starting structure (B), after 50 ns (C) and 100 ns of MD (D).
In (B), (C) and (D) the N-terminal domain of aS is colored in blue (M1-K60), the central
region with a hydrophobic motif in orange (E61-V95), and the C-terminal domain in red
(K96-A140).59

mean square RG dropped from ≈40 Å (which is close to experiment, as discussed below)

to ≈ 33 Å during the 100 ns of MD. This compaction could be an indicator of a lack of

residual structure in the models or of a poor force field and solvent model, which underes-

timate the solvation of the protein. However, the simulations did not access fully collapsed

structures, with RG ≈ 15 Å similar to a folded protein of this length, suggesting that the

AMBER99SB*-ILDN-q force field and TIP4P-D water model25 describe IDPs well enough.24

20

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 9, 2019. ; https://doi.org/10.1101/731133doi: bioRxiv preprint 

https://doi.org/10.1101/731133


Figure 8: Comparison of calculated NMR J-couplings (y-axis) to experiment6 (x-axis). J-
couplings were obtained (A) from MD simulations of peptide fragments and (B) for full-length
aS chains built by hierarchical chain growth. Each point corresponds to the ensemble average
of a single residue. Standard errors of the mean were estimated by block averaging.

Comparison of aS Ensembles to NMR Experiments probing Local Structure.

The aS ensembles obtained by hierarchical chain growth compare well to NMR experiments

probing the local structure through J-couplings6 and chemical shifts.6,16,60 Without reweight-

ing, the 3JCC and 3JCHα couplings probing ψ and φ dihedral angles agree well with experiment

(Figure 8A). The magnitude of 1JNCα, 2JCαN and 3JHNHα couplings, which report on the φ

dihedral angles, were captured by our ensemble but small systematic offsets were observed.

Values for 1JNCα and 2JCαN tend to be somewhat lower in our ensemble than in experiment,

whereas 3JHNHα values tend to be slightly overestimated. The amide nuclear spin involved

in these couplings is affected by many processes such as hydrogen-bonding or geometric

distortion. These processes are not well described by current force fields, which may ex-

plain the small systematic deviations.61 The agreement with experiment is equally good for

J-couplings calculated from full-length models (Figure 8B) and from the initial fragment

library generated of short aS fragments (Figure 8A), highlighting that the chain-growth

algorithm preserves the local structure sampled in REMD.
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Figure 9: NMR chemical shift analysis for fragment simulations. (A) 13C and (B) 13Cα

secondary shift values from fragment all-atom MD simulations (blue bars), assembled full-
length models (red circles) and experiments6,16,60 (black bars).

The 13C and 13Cα secondary shifts calculated from models were around zero for all

residues, suggesting a local backbone conformation closely resembling random coil, in agree-

ment with experiment6,16,60 (Figure 9). Deviations from zero in the secondary chemical shifts

(∆ppm) report on (residual) structure, but these deviations were quite small (< 1 ppm) for

models compared to estimates of the expected errors in calculating chemical shifts. For em-

pirical chemical shift prediction of 13C and 13Cα shifts, RMSD to experiment of about 1 ppm

were found for a validation set of 11 proteins.53 Here, the RMSD to experiment is 0.32 and

0.37 ppm for 13C and 13Cα shifts, respectively, as predicted for the fragments, and 0.33 and

0.35 ppm as predicted for the full-length models. Indeed, for most residues the chemical shift

predicted after assembly agrees with these predicted for the MD fragments before assembly.

Still for few residues the experimental secondary shifts were captured better by the MD

fragments before assembly to full-length models, e.g., the carbonyl secondary shifts reported
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for A18, Figure 9A or the Cα secondary shifts reported for V16, Figure 9B. Nevertheless

for some residues the agreement with experiment was better after the assembly (carbonyl

secondary shifts reported for E20, Figure 9A or the Cα secondary shifts reported for V74,

Figure 9B).

In Figure 4C and D, we compared the distribution of the experimental ∆ppm secondary

chemical shifts for the MD fragments and for full-length chains grown with different align-

ment procedures (alignment of the flexible backbone versus alignment of the rigid peptide

bond). Growing IDP chains by aligning the backbone of the fragments at the merge point

results in a shift in the chemical shift distributions, which mirrors the shift towards β-strand

like conformations we found with this growth procedure (Figure 4A and B). By contrast,

alignment via the peptide bond results in a much smaller shift away from the distributions

from the fragment predictions (Figure S6) and experiment. Alignment via the peptide bond

largely preserves the structures of the fragments as judged by chemical shift predictions, but

not exactly. Naturally, full-length structures will be at least subtly different from fragment

structures, e.g., some fragment structures will be sterically impossible. Taken together, the

analysis of the chemical shifts demonstrates that our implementation of the chain-growth

procedure leads to good models of IDP structure and conversely, that chemical shifts are

useful indicators in the modeling of IDPs.

Comparison of aS Ensembles to SAXS Experiments probing Global Structure.

The global structure of the hierarchically grown aS models is also consistent with experiment,

as probed by SAXS measurements of the radius of gyration (RG). The estimated root-mean-

square radius of gyration for the ensemble of full-length aS models is RG ≈ 40 Å (Figure 10).

In calculating the RG,i values of individual structures i, we took the solvent shell into account

using FoXS,57 but we obtained essentially the same RG by calculating RG,i of individual

structures i directly from the protein coordinates. In SAXS experiments, RG values of 40 Å

(Binolfi et al.62) and 45 Å (Curtain et al.63) have been reported, bracketing our value. The
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value expected for a 140 amino acid random coil is 45 Å, using the parameters determined by

Sosnick et al. considering nearest neighbor effects.64 We find it encouraging that the chain

growth captures the overall dimensions of the disordered chain. Spurious compaction due to

force field issues would require the imposition of a bias during chain growth or simulation

to steer the ensemble away from overly compact structures that underestimate RG,39,40 or a

reweighting of the ensemble.17,27

The observed compaction during MD, with the geometric RG dropping from 40 to 33 Å

in 100 ns, suggests that the chain “as grown” before MD may be a better representation

of the extended structures seen in SAXS (Figure 10), with measured RG values between

40 and 45 Å. It is not unexpected that the long chains predicted to be extended undergo

some kind of collapse. The factors driving the collapse, e.g., the hydrophobic effect and

the potential overstabilization of protein-protein interactions, are not prominent for the very

short fragments we simulated. In turn, this may indicate that the predicted chains are

probably closer to the real ensemble than the MD refined ones, and that this type of set-

up gives us a handle to test and optimize balanced force fields for IDPs. In any case, the

simulations demonstrated that AMBER99SB*-ILDN-q force field26,45–47 and TIP4P-D water

model25 describe IDPs well enough, but we note that other IDP force fields may work equally

well or better.24

Overall our hierarchically grown IDP models captured both local conformations, as re-

ported by NMR J-couplings and chemical shifts, and the overall dimension reported by SAXS

experiments, remarkably well, without any refinement. This result encourages the use and

further development of our approach for generating starting conformations of highly-parallel

MD simulations of IDPs and the testing of MD force fields.
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Figure 10: Distribution of the radius of gyration RG,i in the ensemble of aS structures
obtained from hierarchical chain growth. Vertical lines indicate the root-mean-square RG

value of the ensemble (black; models), RG values from SAXS experiments by Binolfi et al.62

(red) and Curtain et al.63 (magenta), and an RG estimate for a random coil (RC; gray).64

CONCLUDING REMARKS

Our hierarchical IDP chain-growth approach is perfectly suited to the exascale high-performance

computing resources which are becoming available. We generated highly diverse structures,

much more diverse than what one would sample in a typical MD simulation. Our struc-

tures capture both NMR data probing local structure and and SAXS data probing global

structure, without any refinement, emphasizing again that the structures should be excellent

starting points for MD simulations. By generating starting configurations that closely follow

the Boltzmann distribution, we can launch a large number of independent simulations and

this swarm of simulations can fully explore the conformational space of an IDP. Simulations

setup in this way may help identify and rectify force field issues for IDPs.

It would be computationally feasible to create exhaustive fragment libraries for, say, the

203 = 8000 distinct amino-acid trimers with generic flanking residues. Considering the speed

of assembly, a web service for generic IDP assembly is thus feasible. It would also be possible

to include post-translational modifications such as phosphorylation.

Deviations from experiment can be taken into account in a Bayesian framework. Ensem-

ble refinement by reweighting17 can be applied very efficiently to large ensembles.27 Bayesian
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analysis of all-atom simulations of a disordered peptide27 showed that quantitative agreement

with high-resolution NMR experiments can be achieved and led to system-specific correction,

which may also be important when modeling large IDPs. Stultz et al. have already shown

how structural ensembles from fragment assembly can be refined against NMR and SAXS

data within a Bayesian framework.39,40

Our approach can be extended to simulations of other flexible biomolecules and their

assemblies. For instance, it could be used to model long non-coding RNAs and other single-

stranded nucleic acids. For single-stranded nucleic acids, sampling is a bottleneck in force

field evaluations,65 which could be addressed by an extension of our approach. We envisage

extensions of our approach to simulate dense solutions of IDPs as in biomolecular condensates

formed via liquid-liquid phase separation.4 Our chain-growth algorithm is valid whether

individual chains or assemblies of chains are modeled. For modeling dense biomolecular

condensates variants of the chain-growth Monte Carlo algorithm we employed here may prove

advantageous. For more dilute condensates the current approach should lead to reasonable

starting conformations for large-scale MD simulations.

SUPPORTING INFORMATION

Implementation of hierarchical chain-growth algorithm and comparison of chain-growth al-

gorithms, consistency checks for hierarchical chain-growth algorithm and additional analysis

of predicted chemical shifts for fragments and full-length models of aS.
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Supplementary Text

Self-Avoiding Random Walk

Implementation of Hierarchical Chain Growth for N not a Power of Two. As

described in the main text, the hierarchical chain-growth algorithm is also applicable if N ,

the number of fragments composing the chain, is not a power of two. In Figure S1, the
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1x 5 residues of fragment 0 (N-terminus) +
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Figure S1: Implementation of hierarchical chain growth for aS. Here N , the number of
fragments, is not a power of two, and the C-terminal fragment is shorter (3mer versus
5mers). At each hierarchy level, one merges fragment pairs where possible and otherwise
promotes the remaining singlet to the next hierarchy level.
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application of the hierarchical chain-growth algorithm to α-synuclein (aS) is shown, where

46 MD fragments are used to grow the full-length 140 amino-acid protein.

Comparison of Chain-Growth Algorithms. For reference, we also implemented a

“näıve algorithm” to grow chains from fragments. In this algorithm, we draw enumerations

at random and reject them if there is a clash involving any of its fragments:

1. Randomly pick a first element i1. Set n = 1.

2. If n < N , randomly pick a new element in+1; otherwise enter i1 . . . iN into the ensemble

and return to step 1 (until the ensemble has reached a certain size).

3. Check for a clash of the new element with the rest of the chain.

(a) If in+1 does not clash with i1 . . . in, then accept the addition and increase n by

one, n 7→ n+ 1, and go to step 2.

(b) Otherwise, go to step 1 and restart.

For long chains this algorithm has a very low acceptance rate, i.e., many restarts are required

to build any new allowed configuration.

We compare the results of the hierarchical and näıve algorithms in Figure S2. For chains

with different lengths of 8, 14, or 26 residues, we grew 10 000 chains each with the two

algorithms. The end-to-end distance distributions obtained in this way are indistinguishable,

supporting the theoretical arguments for the hierarchical algorithm introduced in the main

text.

Consistency Checks for Hierarchical Chain Growth

To test the hierarchical algorithm for consistency, we grew short chains of 50 amino acids

using different procedures. We explored the effects of varying (1) the fragment length, (2)

the alignment and stitching region (Figure S3), and (3) the residue overlap between the

fragments.
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Figure S2: Cumulative distributions of the end-to-end distances χ for chains of different
length grown with the näıve algorithm (blue) and the hierarchical algorithm (orange). Shown
are the distributions of χ for chains with (A) 8 residues, (B) 14 residues, and (C) 26 residues
grown with the the näıve algorithm (blue) and the hierarchical algorithm (orange).
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Figure S3: Implementation of the hierarchical Monte Carlo chain-growth algorithm with
alignment of the backbone atoms. The growth procedure is shown for hierarchy level 0. To
combine two randomly picked fragments, (1) the backbone atoms of the first overlapping
residue in the adjacent fragments are aligned (blue shading). If the RMSD of the super-
imposed atoms is below a cut-off (here 0.6 Å) the aligned fragments are checked for clashes.
(2) Steric overlap is probed with a cut-off distance of 2.0 Å. Atoms immediately before
and after the alignment point and hydrogen atoms are excluded from the clash calculation
(magenta shading). (3) If no steric clash is detected residues 1-4 from fragment 0 and residues
5-8 from fragment 1 are stored for use in the next hierarchy level.
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Fragment Length. As shown in Figure S4, the conformation of the hierarchical chain

models depends somewhat on the choice of the length of the fragments from which the models

are grown. Chains grown from shorter fragments tend to be more extended according to the

distributions of the radius of gyration RG and of the end-to-end distance χ. This dependence

is as a consequence of the simplifying assumption of considering only sterics in chain growth

from fragments. As a result, favorable inter-fragment interactions are not accounted for,

which could favor more compact structures.

Alignment and Stitching Procedure. As shown in Figure 4A-D of the main text, the

models grown by the hierarchical chain-growth approach are somewhat dependent on the

alignment procedure and the stitching region chosen to merge fragments together. Aligning

the backbone atoms around Cα atoms via rigid body superposition, as illustrated in Fig-

ure S3, does lead to a disruption of the dihedral angle distribution right at the stitching site

(compare Figure 4A and B in the main text). This in turn leads to a bias against α-helical

conformations (ψ < 0). This bias is largely removed by merging the fragments at the peptide

bond and performing the alignment and stitching as shown in Figure 3B in the main text.

As shown in Figure S4, alignment of the peptide bond also results in a slight improvement

of the fragment-length dependence of RG and χ distributions.

Fragment Overlap. Aligning the peptide bond between the residues present in adjacent

fragments as shown in Figure 3B in the main text, we tested whether the extent of the

residue overlap between merged fragments influences the overall properties of the assembled

models. Figure S5 shows only small differences between an overlap of one or two residues

in the radius of gyration (A), the end-to-end distance (B), and the pairwise RMSD (C)

calculated from ensembles consisting of 10 000 models for a chain with 50 amino acids.
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Figure S4: Comparison of different alignment procedures for models grown from fragments
of different length. Cumulative distributions of the radius of gyration (A, B), end-to-end
distances (here χ; C and D) and pairwise RMSD (E, F) of 10 000 models of a chain with
50 amino acids, each grown from pentamer (pink), tetramer (green), and trimer fragments
(orange). Panels on the left and on the right show the distributions for models grown
via alignment of the peptide bond and via alignment of the backbone atoms around Cα,
respectively. Vertical dashed lines indicated the respective mean values.

S7

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 9, 2019. ; https://doi.org/10.1101/731133doi: bioRxiv preprint 

https://doi.org/10.1101/731133


Figure S5: Effect of residue overlap between pentamer fragments on the structure of assem-
bled chains. Cumulative distributions of the radius of gyration (A), the end-to-end distance
(B), and the pairwise RMSD (C) of 10 000 models of a chain with 50 amino acids, each
grown from pentamers with either 1 or 2 overlapping residues in adjacent fragments. Verti-
cal dashed lines indicated the respective mean values.
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Chemical Shifts for Fragments and Full-Length Models

Assembling full-length chains by aligning on the rigid peptide bond rather than the more

flexible backbone at the merge point improves the NMR chemical shifts, as predicted for the

MD fragments and the full-length model after the assembly. Figure S6A-D demonstrates that

by growing the full-length models via backbone alignment (right column) a bias is introduced,

shifting the ∆ppm chemical shifts predicted for the models towards more negative values

relative to the fragment values (compare main text Figure 4C and D). By contrast, when

growing full-length chains via alignment on the rigid peptide bond, ∆ppm chemical shifts of

the assembled models agree well with those of the MD fragments (Figure S6 left column).

Figure S6: Correlation of secondary chemical shifts predicted for MD fragments and 10 000
full-length models. Left column: models grown via alignment of the peptide bond. Right
column: models grown via alignment of the backbone.
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