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Abstract

Motivation: The clustering of biomedical images according to their
phenotype is an important step in early drug discovery. Modern high-
content-screening devices easily produce thousands of cell images, but
the resulting data is usually unlabelled and it requires extra effort to
construct a visual representation that supports the grouping according
to the presented morphological characteristics.

Results: We introduce a novel approach to visual representation
learning that is guided by metadata. In high-context-screening, meta-
data can typically be derived from the experimental layout, which links
each cell image of a particular assay to the tested chemical compound
and corresponding compound concentration. In general, there exists
a one-to-many relationship between phenotype and compound, since
various molecules and different dosage can lead to one and the same
alterations in biological cells.
Our empirical results show that metadata-guided visual representation
learning is an effective approach for clustering biomedical images. We
have evaluated our proposed approach on both benchmark and real-
world biological data. Furthermore, we have juxtaposed implicit and
explicit learning techniques, where both loss function and batch con-
struction differ. Our experiments demonstrate that metadata-guided
visual representation learning is able to identify commonalities and
distinguish differences in visual appearance that lead to meaningful
clusters, even without image-level annotations.

Note: Please refer to the supplementary material for implementation
details on metadata-guided visual representation learning strategies.
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1 Introduction and Background

High-content screening aims at automating discovery in cell biology and drug
development using large amounts of microscopy images [20]. Most imaging
assays are designed to study the effect of environmental perturbations on cell
lines, but the resulting cellular phenotypes are typically unknown and too
subtle to identify manually, leading to unlabelled datasets [11]. In order to
infer the relationship between environmental perturbations and phenotypic
characteristics, which is of high importance for drug target validation as well
as the identification of new lead compounds [26], the unlabelled images have
to be clustered according their visual appearance.

There exists a plethora of clustering algorithms for (biomedical) images,
which employ unsupervised learning techniques to derive insights from the
data itself and to make data-driven decisions without external bias [25].
More recently, unsupervised representation learning has been employed to
identify novel cellular phenotypes [6], detect abnormal cell morphologies [23]
and analyse biomedical images in an exploratory manner [14]. However,
unsupervised machine learning generally faces the challenge that it is rather
difficult to evaluate whether the algorithm has learned anything meaningful
about the internal data structure, since there is no objective performance
measure to guide the learning [25].

Hence, we propose metadata-guided visual representation learning, which
exploits contextual information to direct unsupervised learning. In case of
high-content screening assays, our approach utilizes information about the
tested compounds and their applied concentrations in order to facilitate
learning of the intrinsic image structure. In general, our approach is able
to employ any kind of metadata that allows to determine pseudo-classes,
insofar as every pseudo-classes only belongs to one particular super-class of
our final clustering, refer to Figure 1 and Section 1.1.

We evaluate our metadata-guided visual representation learning using
two opposing strategies, namely implicit learning and explicit learning. More
precisely, implicit learning typically solves a pseudo task, such as training a
convolutional neural network for image classification using categorical cross-
entropy as loss function, to actually learn a visual representation, which is
ultimately given by an intermediate layer of the respective deep learning ar-
chitecture [10]. In contrast, explicit learning trains the visual representation
by directly imposing constraints on the embedded feature space employing
a ‘geometric’ loss function, which defines the spacial relationship between
tuplets [5, 7], triplets [9, 19, 27] or, as in our study, ‘N’-lets [22].

We assess the performance of our metadata-guided visual representation
learning approach on two different datasets. First, we test on a MNIST
[12], a benchmark dataset that is well-known inside of the computer vision
and deep learning community. Second, we evaluate on BBBC021 [3, 13],
a real-world biomedical image dataset that is widely-used in the field of
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computational biology. Since both of the selected datasets are relatively
small in comparision to the number of trainable parameters found in modern
deep learning architectures, we decided to employ transfer learning [2, 17],
where only the last couple of neural network layers are readjusted to fit the
new domain. For both implicit and explicit learning strategy, we decided
to employ the intensively-studied VGG16 model [21] that was pretrained on
the ImageNet dataset [18].

1.1 Formal Problem Definition

In supervised learning we usually have a set of m training examples of the
form x = {(x(1), y(1)), . . . , (x(m), y(m))}, with x∈R#features and y∈R#classes,
such that x(i) is the feature vector of the i-th example and y(i) is the given
class label. A machine learning algorithm seeks a function g:X→Ŷ , where
X is the input space and Ŷ is the output space. Typically we want the
probability for a predicted class label to be close to the actual class label,
i.e. ŷ(i) ≈ y(i). The cost J of a parametrized model, with weight matrix w
and bias term b, is defined as J (w, b) = 1

m

∑m
i=1 L(ŷ(i), y(i)), where the loss

function L penalizes deviations in predicted and actual class membership.
In case of metadata-guided visual representation learning, we assume

a set of m training images of the form x = {(x(1), p(1)), . . . , (x(m), p(m))},
with x∈R#pixel and p∈R#pseudo−classes, where p(i) is a ‘pseudo’-label that we
consider as a proxy to infer ŷ(i), which in turn allows us group the images
according to the estimated class membership Ŷ without ever knowing the
actual super-classes Y , a.k.a. clustering or unsupervised learning. Typically
the metadata subdivides our training set into many more ‘pseudo’-classes
than actual ‘super’-classes, i.e. #pseudo−classes >> #(super−)classes.
Our approach aims at utilizing image- as well as meta-data in order to learn
a function that is able to predict the (super-)class membership: f :X×P→Ŷ .

data point

outlier

pseudo-class

super-class

Figure 1: Embedded feature space, illustrating an exemplary clustering of
data points into super-classes, which have been derived from pseudo-classes
by means of our proposed metadata-guided visual representation learning.
Please note that each ‘pseudo’-class only belongs to one particular super-
class, although a super-class typically consists of multiple ‘pseudo’-classes.
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2 Model Architecture and Learning Strategy

Figure 2 illustrates the deep learning architecture that we have employed
for visual representation learning and subsequent image clustering. Our
architecture builds on top off the well-known VGG16 model [21], which has
been pre-trained on the ImageNet dataset [18], consisting of 1M pictures
from 1K categories, like cats and dogs. Although we aim at investigating
images from a rather different domain, the first couple of VGG16’s building
blocks (layer 0-14) have been pre-trained to extract low-level image features,
such as edges and textures, which represent a quintessential prerequisite
for solving almost any image analysis task. Since we are not interested in
classifying cats and dogs, we remove VGG16’s top layers and add another
building block, which is used to learn visual representations or embeddings
that potentially help us to group biomedical images.

Figure 2: Our proposed visual representation learning architecture, which
reuses multiple pre-trained VGG16 blocks and appends additional layers for
averaging, embedding, normalization and classification. We merely re-train
layer 15-22 (about 9M parameters) in the transfer learning step.

In the so-called transfer learning step, we adjust our assembled model to
the biomedical domain, re-training the parameters of VGG16’s last building
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block and our newly added building block, e.g. on cell images captured by a
high-content-screening device. By only re-training the last part of our deep
learning model (layer 15-22), we decrease the number of parameters (from
roughly 138M to about 9M), leading to reduced computational demand and
less training time. In other words, we get some powerful low-level feature
extractors for free and just need to take care about the high-level visual
representations or embeddings.

The building block that we have added to the VGG16 model, as shown
in Figure 2, consists of multiple layers that: (i) aggregate the features ex-
tracted by the previous building block, (ii) embed the aggregated features
in a lower-dimensional space, (iii) normalize the embedding to facilitate
distance measures, and ultimately (iv) classify the input images. In our
above illustrated example, the output layer aims at classifying the input
images into 100 categories, however the number of classes depend on the
problem/dataset at hand.

Given the described architecture, we have investigated two different ways
of visual representation learning, namely implicit and explicit. The following
subsections explain the main differences.

2.1 Implicit Representation Learning

We can learn a visual representation implicitly by actually training a deep
neural network to classify images, as performed by our architecture shown
in Figure 2. Although we mainly optimize the classification accuracy, we
implicitly adjust the parameters of the intermediate embedding layer, which
gives us a low-dimensional feature representation of our input images.

Assuming a dataset with n classes, our output layer consists of n softmax
units, one for each category. Given m samples, the model parameters (weight
matrix w and bias b) are optimized according to the summed loss of the
categorical cross-entropy:

J(w, b) = L({(x(i), y(i))}mi=1; ŷ)

=
1

m

m∑
i=1

−
[
y(i)log ŷ(i) + (1−y(i))log(1−ŷ(i))

]
(1)

where (x(i), y(i)) is the i-th tuple of (input image, actual class label) and
ŷ(i) is the predicted class label that our model has inferred from the processed
input image x(i). The cost function J accounts for the loss of all m samples,
whereas the loss L for each individual sample is computed by comparing the
actual class label y(i) with the predicted class label ŷ(i).

Typically we train a deep neural network iteratively by computing the
cost of a mini-batch and, subsequently, updating the model parameters, e.g.,
by means of stochastic gradient descent. The back-propagation algorithm,
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as the name suggests, is used to propagate the error back through all layers,
including our embedding layer. We hypothesize that the implicitly trained
embedding layer provides us with meaningful visual representations as the
classification error is minimized. Evidence is presented in Section 4.

2.2 Explicit Representation Learning

We can learn a visual representation explicitly by removing the classification
layer and using the normalized embedding layer as model output, please
refer to Figure 2. Since the normalized embedding layer does not allow us
to predict class label, we need to use an alternative cost function that guides
parameter learning in the right direction.

In this study we investigate the mutli-class n-pair loss function, for short
‘n-let’ loss, that was originally proposed by K. Sohn [22]. Same as with
contrastive loss [5, 7] and triplet loss [9, 19, 27], the main idea is that we
project our input images into a lower-dimensional space that clusters same-
class images and separates different-class images.

Given a mini-batch of m pairs, the ‘n-let’ loss aims at pulling together
same-class instances from one pair, while simultaneously pushing away all
different-class instances from other pairs:

J(w, b) = L({(x(i)a , x
(i)
b )}mi=1; f)

=
1

m

m∑
i=1

log

(
1 +

∑
j 6=i

exp
(
||f (i)

a −f
(i)
b ||

2
2 − ||f (i)

a −f
(j)
b ||

2
2

))

=
1

m

m∑
i=1

log

(
1 +

∑
j 6=i

exp
(
d(i) − d(i,j)

))
(2)

where (x
(i)
a , x

(i)
b ) is a tuple of same-class instances and d(i) = ||f (i)

a −f (i)
b ||

2
2

is the distance between their normalized embeddings that our models has
computed by processing the respective input images. Conversely, the dis-

similarity between different-class images is expressed as d(i,j) = ||f (i)
a −f (j)

b ||
2
2.

In general, we want the similarity between same-class images to be high
and the distance between different-class images to be large. To paraphrase,
we aim to minimize intra-class similarity and maximize inter-class distance
simultaneously. This is reflected in the above cost function (2), since the
loss converges to zero as the logarithmic function comes closer to one, which
is the case if the exponential function moves towards the negative numbers,
meaning that the distance between same-class images is significantly smaller
than the distance between different-class images, i.e. d(i) << d(i,j).
A thorough experimental comparison of implicit and explicit representation
learning is presented in Section 4. Prior to this, we are going to explain the
use of metadata in the following Section 3
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3 Image Data and Metadata

In visual representation learning, we aim at building robust machine learning
models that understand and distinguish high-level visual concepts. Even
though images live in high-dimensional spaces and, hence, are intrinsicly
very rich in information, many image datasets come without concept label,
because annotation is often time/cost-intensive [8, 24].

Missing label prevent us from applying supervised learning, which maps
images to known visual concepts, and confine ourselves to unsupervised
learning, which groups the unlabeled images on the basis of underlying
structural features, representing an inherently difficult and, furthermore,
mathematically ill-defined task [25]. To this end, we propose to employ
metadata, whenever available, to guide visual representation learning in a
‘pseudo’-supervised learning approach, where ‘pseudo’-label are derived from
the metadata itself.

In general, metadata is defined as any kind of additional information that
includes relevant details about the image itself as well as its production. For
instance in high-content-screening, biomedical images are often tagged with
their plate location (row, column, field) and, furthermore, carry information
about the compound-concentration that was applied to the biological cells
in the corresponding well [3, 13].

Although metadata does not correspond to the actual class label of an
image, it can be considered as a ‘pseudo’-label that describes a subgroup. For
example, multiple compounds in different concentrations can lead to one and
the same morphological characteristics, where each compound-concentration
just describes a sub-population of the actual phenotype. Nonetheless, this
contextual information can be extremely valuable, as we will demonstrated
by our empirical results in Section 4.

In our experiments we consider two image datasets, one for the purpose
of benchmarking and the other for providing real-world evidence.

3.1 Benchmark Data

MNIST [12] is one of the most popular and widely used datasets for bench-
marking image analysis and processing tools. It consists of 60K plus 10K
handwritten digits, which are used for training and validation respectively.
The digits range from zero to nine and are grouped into ten categories. All
images are gray-scale, centered and scaled to 28x28 pixel. Some random
samples of the original MNIST dataset are shown in Figure 3.

For our experiments we need to prepare/modify the MNIST dataset in
a certain way. As shown in Figure 2, our model builds on top of the VGG16
architecture[21], which only accepts input images with a certain dimension.
Hence, we rescale and triplicate the gray-scale channel of all MNIST digits,
converting 28x28x1 into 224x224x3 dimensional images.
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Figure 3: MNIST digits, each row shows one of 10 different classes and each
column presents a random sample, illustrating the variance within each class.

Furthermore, we divide the original categories into multiple subclasses,
which can be considered as metadata or pseudo-label that we subsequently
exploit for representation learning. For example, we can generate 100 pseudo-
label by splitting each of the 10 original categories into 10 random sub-
populations. In general, the following assumptions should hold true:

Y ⊆
|cat|⋃
c=0

Y c ⊆
|cat|⋃
c=0

|sub|⋃
s=0

Y c
s

∣∣∣∣∣Y c ⊆
|sub|⋃
s=0

Y c
s

where Y is the set of all labelled instances, Y c is the set of all instances
labelled as category c, and Y c

s is the set of all category c instances that have
been randomly assigned to subclass s.

To draw an analogy to our previous biomedical imaging example, we
can consider individual subclasses as different compounds and categories as
cell phenotypes. Typically there exists a many-to-one relationship between
compound and phenotype. In our setting, we are trying to group images
with same phenotype by utilizing compound information, which is in fact
just a pseudo-label or rather metadata.

By dividing the MNIST categories into an arbitrary number of sub-
classes, we can measure the performance of our previously proposed visual
representation learning techniques. Usually the number of subclasses should
be bigger than one and smaller than the number of samples in a category,
since one subclass per sample would set us back to unsupervised learning
and one subclass per category basically equates to supervised learning, which
assumes labelled data that we are missing. The critical role of the subclass
size is emphasized in our empirical study in Section 4

8

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 6, 2019. ; https://doi.org/10.1101/725754doi: bioRxiv preprint 

https://doi.org/10.1101/725754
http://creativecommons.org/licenses/by-nc/4.0/


3.2 Real-World Data

In order to demonstrate that our proposed visual representation learning
techniques are also applicable to real-world datasets, we furthermore provide
experimental results on the image set BBBC021 [3], available from the Broad
Bioimage Benchmark Collection [13].

BBBC021 images are of MCF-7 breast cancer cells treated for 24 h with
a collection of 103 compound-concentrations (38 compounds at 1-7 concen-
trations each). The tested compound-concentrations have been identified to
cause one of 12 primary mechanisms of action, where only 6 mechanisms
have been confirmed visually (due to subtle phenotypical differences) and
the remaining 6 mechanisms have been defined based on the literature. The
cells were fixed, labeled for DNA, Actin, and Tubulin, and imaged by fluores-
cent microscopy. There are 39,600 image files (13,200 fields of view imaged
in three channels - one for DNA, F-Actin and B-Tubulin) in TIFF format.
This image set provides a basis for testing image-based profiling methods
wrt. to their ability to predict the mechanisms of action of a compendium
of drugs [3, 13].

For our study we have prepared the BBBC021 dataset in the following
way. First of all we have used CellProfiler [4] to identify the centroid of each
individual cell in all of the 13,200 images. Subsequently we have filtered
all images that show less than 20 cells, where cells that extend beyond the
border of an image are excluded from counting and further analysis. From
the remaining ∼12, 500 images we select only those that have been identified
to show one of 12 phenotypes or rather mechanisms of action, leaving us
with exactly 3,011 images. For each of these images we have randomly
choosen 22 cells and cropped a 224x224 region around the centroids identified
previously. Since we have considered all of the three channels, we obtain
224x224x3 dimensional tensors that fits the input size of our deep neural
network, shown in Figure 2. Consequently, the final dataset that we have
distilled has shape (3011, 22, 224, 224, 3) and is available on request.

The selected 3,011 images illustrate 11 phenotypes that were caused
by 57 compound-concentrations. We have performed a 90%/10% split for
training/validation, such that both sets contains examples of all 57 tested
compound-concentrations, producing tensor shapes (2719, 22, 224, 224, 3)
and (292, 22, 224, 224, 3). For model training we have employed all 57
tested compound-concentrations as label, whereas for validation we have
just considering the 11 phenotypes, resulting in tensor shapes (2719, 57)
and (292, 11) respectively.

This setup allows us to evaluate if our model has been able to recover
some of the morphological characteristics by merely using information about
the compound-concentrations. In that sense, compound-concentrations can
be considered as pseudo-label or metadata, which are used to guide visual
representation learning, where the embedding is trained in a way that it
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allows to group/cluster the individual phenotypes or mechanisms of actions.
We present empirical results for both implicit and explicit representation

learning on our prepared MNIST benchmark dataset as well as on the real-
world BBBC021 dataset in the following Section 4.

Figure 4: MCF-7 breast cancer cells cropped from the original BBBC021
images. Each row shows one of 11 different phenotypes, where 22 cells
were randomly sampled from one and the same image. This illustrates the
variance of morphological characteristics in cellular images. Furthermore,
the plot demonstrates that cells with similar visual appearance are found
within different phenotypes (or rather rows). High intra-class variance and
high inter-class similarity present a challenge for our representation learning.

4 Empirical Results

In our empirical study we have evaluated implicit and explicit representation
learning, as discussed in Section 2, on both benchmark and real-world data,
as described in Section 3. The validation of the learned representations
is presented in Subsection 4.1. In addition, Subsection 4.2 includes a close
inspection of the established clustering. However, the discussion of all results
is kept separately (on intention) and placed in Section 5.

There exist multiple model parameters that potentially influence learning
and, therefore, the resulting visual representations. In our study, we merely
vary the number of ‘pseudo’-classes that guide our learning algorithm and
fix all other parameters, since the explorable space is quite large. More pre-
cisely, we employ stochastic gradient descent with learning rate = 0.005 as
well as momentum = 0.9, and set embedding dimension = 4096. Results
are presented for training over 1 to 5 epochs.
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Note that the size of the output layer for the implicit model depends
on the number of ‘pseudo’-classes provided by the metadata, see Figure 2.
Moreover, we only re-train weights for layer 15 and deeper, using categorical
cross-entropy for implicit learning and ‘n-let’ loss for explicit learning, refer
to Section 2.1 and 2.2 respectively.

Before we dive into the empirical results, we want to explain how to
even assess performance for an established clustering. Since we know the
actual class label for both training and validation set, we can use those to
define an external evaluation metric. More precisely, after our model has
learned an embedding from the training set (in an unsupervised fashion),
we can measure the distance between a pair of embedded validation images
in order to decide whether the two data points belong to the same class
or not, and ultimately compare this decision with the ground truth. In
our study, we report the average distance for same-class, different-class, and
any-class pairs. Based on the pair-wise distances and a predefined threshold,
e.g. cutoff at 1.0 distance, we are able to make same-class/different-class
decisions and, given the ground truth, estimate the accuracy of our decision
making. For our experiments, we report same-class, different-class, and any-
class/overall accuracy.

4.1 Cluster Validation

4.1.1 Benchmark Validation

In order to make a fair comparison between implicit and explicit visual
representation learning, we need to train both models on the same amount
of images. For implicit learning we usually specify the number of epochs,
which reflect the number of times the model is seeing all training instances.
In contrast, for explicit learning we just define the batch size, which is
selected based on the number of ‘pseudo’-classes provided by the available
metadata. Given n2 ‘pseudo’-classes, we typically construct batches of size
2× n, containing n same-class image pairs utilized by the ‘n-let’ loss. Note
that n is typically an estimate of the number of super-classes (e.g. number
of MNIST digits or BBBC021 phenotypes) that we expect/aim to recover
from the unlabelled dataset.

For example, in case of our MNIST benchmark dataset, the implicit
learning model has been trained over 5 epochs on 90% of the 60K training
instances, adding up to 5×0.9×60, 000 = 270, 000 images that were utilized
to tune the parameters of our deep neural network. Assuming 100 ‘pseudo’-
classes and

√
100 = 10 super-classes (or potential digits), we can make a fair

performance comparison with our explicit learning model by constructing
270, 000/(

√
100 ∗ 2) = 13, 500 batches with 10 image pairs (∗2), please refer

to ‘n-let’ batch construction for explicit learning in Section 2.2.
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In Table 1 we compare the performance difference between implicit and
explicit representation learning for a varying number of ‘pseudo’-classes.
Note that with a growing number of ‘pseudo’-classes the number of samples
per ‘pseudo’-class is decreasing. In our evaluation we measure the average
accuracy of predicting correctly that two test images are of same or different
class, where the overall classification performance is given by their mean with
respect to the number of same and different pairs in the validation set.

implicit explicit

#pseudo-classes 100 300 1000 3000 10000 100 300 1000 3000 10000
#pseudo-samples 600 200 60 20 6 600 200 60 20 6

same-class 0.9891 0.9844 0.9836 0.9721 0.9643 0.9902 0.9828 0.9855 0.9819 0.9860
acc diff-class 0.9978 0.9811 0.9107 0.7987 0.3917 0.9775 0.9973 0.9970 0.9977 0.9940

overall 0.9969 0.9814 0.9183 0.8161 0.4495 0.9788 0.9958 0.9959 0.9961 0.9932

same-class 0.1538 0.1677 0.2550 0.3826 0.4050 0.0521 0.0449 0.0545 0.0538 0.0751
dist diff-class 1.3744 1.3524 1.2951 1.1905 0.8146 1.3904 1.4112 1.4077 1.4048 1.4067

overall 1.2512 1.2308 1.1872 1.1094 0.7733 1.2539 1.2680 1.2767 1.2708 1.2740

Table 1: Average accuracy (acc) and average distance (dist) for implicit and
explicit learning on prepared/subdivided MNIST dataset (see Section 3.1),
with varying number of pseudo-classes or rather pseudo-samples per class.
The numbers correspond to model performance after 5 epochs of training.

In Table 1 we furthermore juxtapose the average intra-class, inter-class
and overall distance between test images in the embedded space that has
been learned either implicitly or explicitly. In general, we aim to learn an
embedding that produces small intra-class and high inter-class distances,
such that individual super-classes (MNIST digits or BBBC021 phenotypes)
are separated according their visual characteristics.

Figure 5: Visual comparison of implicit (green) and explicit (blue) learning
approach, showing overall accuracy (left) and overall distance (right) on
MNIST benchmark for varying number of ‘pseudo’-classes, refer to Table 1.
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Figure 5 provides a visual comparison of implicit and explicit learning,
which clearly shows the performance discrepancy in our MNIST benchmark.
We plot overall accuracy and overall distance results. Please note that we
have added an additional data point for 30 pseudo-classes only.

In addition, we have performed another series of benchmark experiments,
where we measure model performance after a varying number of training
epochs. These experiments are insightful, since the results show how the
intra-class and inter-class distances evolve with more batches seen/processed
by the deep neural network. We compare model training of implicit and
explicit learning for 102 and 104 ‘pseudo’-classes in Table 2.

102 pseudo-classes implicit explicit

#epoch 1 2 3 4 5 1 2 3 4 5
#batch 2700 5400 8100 10800 13500 2700 5400 8100 10800 13500

loss training 4.3547 3.6515 3.1376 2.8424 2.6747 1.6118 1.52347 1.48259 1.45858 1.4440

same-class 0.9648 0.9759 0.9893 0.9910 0.9921 0.9845 0.9742 0.9728 0.9839 0.9794
acc diff-class 0.9297 0.9878 0.9938 0.9958 0.9966 0.9713 0.9959 0.9879 0.9959 0.9970

overall 0.9333 0.9866 0.9933 0.9953 0.9961 0.9727 0.9937 0.9865 0.9947 0.9952

same-class 0.3451 0.2194 0.1802 0.1564 0.1406 0.1276 0.1007 0.1188 0.0551 0.0500
dist diff-class 1.2848 1.3432 1.3577 1.3660 1.3705 1.3802 1.4082 1.3974 1.4097 1.4111

overall 1.1887 1.2312 1.2369 1.2447 1.2458 1.2508 1.2763 1.2752 1.2751 1.2724

104 pseudo-classes implicit explicit

#epoch 1 2 3 4 5 1 2 3 4 5
#batch 2700 5400 8100 10800 13500 2700 5400 8100 10800 13500

loss training 9.2129 9.2120 9.2111 9.2096 9.2063 1.6167 1.5272 1.4878 1.4619 1.4447

same-class 1.0000 1.0000 1.0000 0.9991 0.9724 0.9511 0.9728 0.9852 0.9884 0.9800
acc diff-class 0.0000 0.0000 0.0000 0.0973 0.3464 0.9532 0.9720 0.9948 0.9979 0.9960

overall 0.0959 0.1027 0.0999 0.1925 0.4121 0.9530 0.9721 0.9938 0.9969 0.9944

same-class 0.0808 0.0990 0.1671 0.2984 0.4259 0.1530 0.1036 0.0764 0.0481 0.0596
dist diff-class 0.1036 0.1376 0.2645 0.5284 0.7971 1.3674 1.3861 1.4038 1.4114 1.4095

overall 0.1014 0.1336 0.2548 0.5041 0.7581 1.2433 1.2586 1.2697 1.2705 1.2744

Table 2: Average accuracy (acc) and average distance (dist) for implicit and
explicit learning on prepared/subdivided MNIST dataset (see Section 3.1),
for varying number of epochs/batches. The training loss shows how fast our
model learns from the processed data and, furthermore, indicates how well
the learned embedding is going to group same-class images and separate
different-class images for our validation set, as presented in the rows below.

In Table 2, we furthermore included the progression of the training loss,
since it is an early indicator for model performance on our validation set.
Please note that the loss for implicit and explicit learning are based on two
different loss functions, refer to Section 2, which explains the difference in
magnitude. Moreover, it is also worthwhile looking at the temporal evolution
of the same-class and different-class distances, since the structure of the
embedded space ultimately influences clustering performance.
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Figure 6 visualizes model performance over the time span of 5 epochs for
a fixed number of 104 ‘pseudo’-classes, each containing 6 samples only. The
plot shows the learning improvement as an increasing amount of images are
processed by our proposed deep neural network, introduced in Section 2. We
compare the discussed implicit and explicit learning approach by juxtaposing
their average overall accuracy as well as average overall distance. In general,
we expect both measures to increase over time as more images were seen by
the model and utilized to fine-tune parameters.

Figure 6: Visual comparison of implicit (green) and explicit (blue) learn-
ing approach, showing overall accuracy (left) and overall distance (right)
on MNIST benchmark for varying number of epochs/batches, with fixed
number of 104 ‘pseudo’-classes, each containing 6 samples only, see Table 2.

4.1.2 Real-World Validation

In case of our real-world biomedical dataset, as described in Section 3.2,
the metadata provides information about 57 compound-concentrations or
rather ‘pseudo’-classes, which we are utilizing to recover groups of different
phenotypes. Since the number of ‘pseudo’-classes is fixed, we just evaluate
model performance for a varying number of training epochs/batches. In our
real-world experiments, we set the batch size to 11 ∗ 2 = 22 samples, since
we assume 11 super-classes and the ‘n-let’ batch construction samples one
pair (∗2) for each potential super-class, see explanation in Section 2.2.

Our preprocessed BBBC021 training set consists of 2719× 22 = 59, 818
images of cropped cells, refer to Section 3.2. Our implicit learning model is
trained over 5 epochs on 82% of the 59,818 instances, adding up to roughly
5 × 0.82 × 59, 818 ≈ 245, 300 images that were utilized to tune the param-
eters of our deep neural network. Given 57 ‘pseudo’-classes and assuming
about

√
57 ≈ 11 super-classes (or potential phenotypes), we can make a fair

performance comparison with our explicit learning model by constructing
245, 300/(11 ∗ 2) = 11, 150 batches with 11 image pairs (∗2).
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It is worth mentioning that we train on cell-level, but validate on image-
level. More precisely, for each image we calculate the median of all cell-level
embeddings and, subsequently, take the aggregated image-level embeddings
to calculate distances, which are in turn used to decide weather two images
belong to the same (super-)class or not.

In Table 3 we compare the performance difference between implicit and
explicit representation learning for a varying number of training epochs.
The following results show that our real-world biomedical dataset is more
challenging than the benchmark dataset examined above.

57 pseudo-classes implicit explicit

#epoch 1 2 3 4 5 1 2 3 4 5
#batch 2230 4460 6690 8920 11150 2230 4460 6690 8920 11150

loss training 1.6870 1.4151 1.3355 1.2794 1.2336 2.0858 2.0047 1.9809 1.9652 1.9433

same-class 0.9848 0.9969 0.9865 0.9979 0.9881 0.8091 0.7331 0.7422 0.7204 0.6634
acc diff-class 0.6618 0.5820 0.7463 0.7612 0.7601 0.5695 0.7698 0.7610 0.7912 0.8066

overall 0.7709 0.7205 0.8319 0.8380 0.8390 0.6534 0.7575 0.7544 0.7664 0.7565

same-class 0.2398 0.2769 0.3021 0.3104 0.3700 0.5357 0.6033 0.5694 0.6066 0.6718
dist diff-class 1.0206 0.9464 1.0948 1.1230 1.1110 0.9411 1.1069 1.1060 1.1353 1.1443

overall 0.7569 0.7228 0.8125 0.8591 0.8545 0.7992 0.9376 0.9171 0.9500 0.9789

Table 3: Average accuracy (acc) and average distance (dist) for implicit and
explicit learning on prepared real-life BBBC021 dataset (see Section 3.2),
for varying number of epochs/batches. The training loss shows how fast our
model learns from the processed data and, furthermore, indicates how well
the learned embedding is going to group same-class images and separate
different-class images for our validation set, as presented in the rows below.

Figure 7: Visual comparison of average same-class (cyan) and different-class
(magenta) distances for implicit (left) and explicit (right) learning over time
span of 5 epochs, refer to Table 3. We plot linear trend in dashed lines and
exact data points as dots. Moreover, we plot the cutoff as a red dotted line.
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Figure 7 visualizes the temporal evolution of average same-class and
different-class distance over the time span of 5 epochs. In general, we want
the same-class distance to shrink and different-class distance to grow over
time. Furthermore, we want the gap between same-class and different-class
distance to be as large as possible. Moreover, the different-class distances
should be bigger than one, since this is the default cutoff for deciding if
two images belong to same or different classes. These constraints are either
implicitly or explicitly formulated in the cost-function used for optimization,
refer to Section 2.1 - 2.2.

4.2 Cluster Inspection

In this section we take a closer look at the actual cluster formation, resulting
from our learned visual representation. Therefore, we fix all parameters
of our previously trained model, propagate all validation images through
the convolutional neural network, retrieve their lower-dimensional feature
representation from the final normalized embedding layer (see Figure 2) and
project the feature vectors into a 2D space for visualization, using t-SNE
[15] for dimensionality reduction.

Figure 8: MNIST digits that have been recovered from 10,000 ‘pseudo’-
classes by means of explicit representation learning after training for just
1 epoch. Small intra-class distance (0.1355) and high inter-class distance
(1.3762) result in an extremely good overall accuracy (0.9569) for grouping
same-class and separating different-class images, please refer to Table 2.
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4.2.1 Benchmark Inspection

In case of our discussed MNIST benchmark, we decided to plot the cluster
formation that results from explicit learning on 10,000 ‘pseudo’-classes after
training 1 epoch only, see Table 2. Although this is an extremely challenging
task, our explicit learning approach provides a meaningful grouping of the
image data, as shown in Figure 8.

Our benchmark cluster inspection (in Figure 8) furthermore illustrates
that some digits are easily confused, which is well-known for this dataset.
For example, cluster 3 and 5 touch each other, meaning that there are digits
that are indistinguishable to our model. However, overall the individual
clusters are compact and well separated.

4.2.2 Real-World Inspection

Figure 9 visualizes the cluster formation that was established for the real-
world biomedical BBBC021 dataset by means of implicit learning after 5
epochs of training, see accuracy results in Table 3. The plot only shows
the embedded images for phenotype ‘DMSO’ and ‘Microtubule Stabalizer’,
since these are the two predominating classes with the highest number of
tiles, with precise statistics presented at the bottom of the figure.

In addition, we zoom into various cluster regions to closely inspect the
cell images that were grouped together. The enlarged cluster regions show
that neighbouring cell images are not only similar in color and saturation,
but also share common morphological characteristics. Furthermore, we can
observe that both classes contain visually distinct images, although the intra-
class variance is quite high.

Moreover, when looking at Figure 9, we can discern outliers, which are
represented as smaller islands of data points at the cluster periphery. In our
visual inspection, we can spot images that are all black, since the identified
coordinates for cutting individual cells out of the whole microscopy image
might have been imprecise. This kind of explorative analysis is extremely
valuable, because it can help to uncover bias in measurement equipment,
preprocessing steps and modeling techniques.

Overall, our real-world cluster inspection demonstrates that the proposed
metadata-guided visual representation learning approach is able to recover
and separate individual phenotypes by merely employing information about
the applied compound, concentration and internal image structure. The
learned embedding can be employed for various down-stream applications,
including outlier/novelty detection as well as classification. For example, it
is easy to imagine how the two investigated classes could be separated by a
simple linear model, as we have indicated by a horizontal dashed line.
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Figure 9: Clustering of the two predominating BBBC021 cell phenotypes
that have been recovered from 57 ‘pseudo’-classes/compound-concentrations
by means of our implicit representation learning after training 5 epochs. The
learned embedding separates the classes well (see detailed accuracy results
in Table 3), which is indicated by the horizontal dashed line. Zooming into
various cluster regions shows that neighboring cell images exhibit similar
visual features and distant cell images display rather different morphological
characteristics. Our cluster inspection also uncovered outliers or all black
images, which are due to imprecise coordinates used for extracting cells/tiles.
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5 Discussion

Having presented our empirical results for both implicit and explicit visual
representation learning in the previous Section 4, we are now in the position
to discuss and interpret all tables and graphs.

5.1 Benchmark Discussion

As presented in Table 1 and visualized in Figure 5, the performance of
our metadata-guided visual representation learning clearly depends on the
number of ‘pseudo’-classes. Our results on the prepared MNIST benchmark
dataset show that the overall average accuracy of implicit learning drops
significantly with an increasing number of ‘pseudo’-classes, whereas explicit
learning demonstrates an extremely high and steady performance, even for
an incredibly high number of 10,000 ‘pseudo’-classes. This is due to the
small intra-class and high inter-class distance achieved by explicit learning,
see Table 1, meaning that our explicit constraints on the cost-function have
enforced an embedded space with the desired structural properties, grouping
same-class and separating different-class images.

Further experiments, summarized in Table 2 and illustrated in Figure 6,
reveal that the implicit approach does not only perform better for a high
number of ‘pseudo’-classes, but also learns much faster than the explicit
approach. For instance, in case of 104 ‘pseudo’-classes, learning explicitly
for just 1 epoch leads to higher accuracy (0.9944) than learning implicitly
for over 5 epochs (0.4132), see Table 2. This is also reflected in the average
different-class distances, which should be above our 1.0000 cutoff in order
to allow different-class separation.

Moreover, the training loss, presented in Table 2, indicates how well
our model parameters fit the training data. In case of n super-classes or
rather 10 distinct MNIST digits, the desired loss for explicit learning is give
by loss = log(1 + 9 ∗ exp(0.0 − 1.0)) ≈ 1.4611, see Section 2.2, where the
average same-class distance is 0.0 and the average different-class distance is
1.0 for all ‘n-let’ pairs in a batch. As demonstrated in Table 2, the training
loss for explicit learning strategy surpasses our expectation, even for the
challenging task of recovering structure from 104 ‘pseudo’-classes. An the
other hand, implicit learning stagnates at a cross-entropy loss of ≈ 9.2,
which is underwhelming.

In addition, Figure 8 shows that the clustering of our explicit learning
approach is meaningful. The plot depicts a clear separation of the MNIST
digits within the embedded space. This is quite extraordinary, since the
structure was recovered from 104 ‘pseudo’-classes, each containing 6 samples
only. This indicates that our metadata-guided visual representation learning
is able to actually reveal the hidden structure by pulling together visually
similar and pushing away potentially different images.
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5.2 Real-World Discussion

Our experiments on the BBBC021 dataset show that the grouping of cell
images is more intricate than clustering MNIST digits. This is mainly due
to the fact that the BBBC021 dataset exhibits high intra-class variance and
high inter-class similarity, meaning that we observe (i) heterogeneous cell
morphologies in one phenotype and (ii) common visual characteristics among
different phenotypes, see Figure 4. Furthermore, the data publishers [3, 13]
indicate that only some of the phenotypes were confirmed visually and the
remaining were defined based on literature. Since some of the phenotypes
are indistinguishable by human eye, we would NOT expect any computer
vision algorithm to be able to tell these ‘hypothetical’ classes apart.

Table 3 summarizes our empirical results on the real-world biomedical
BBBC021 dataset. We have evaluated the performance of both implicit and
explicit learning for a varying number of epochs. In contrast to our previous
benchmark, implicit learning is performing better on the cell images than
explicit learning. This is primarily due to the small number of 57 ‘pseudo’-
classes, which were derived from the individual compound-concentrations
found in our prepared dataset. We have already observed this behaviour in
our benchmark, see Figure 7, where implicit learning yielded slightly better
results for settings with very few ‘pseudo’-classes.

Training over 5 epochs, implicit learning is demonstrating a steady and
high same-class accuracy (≥0.98) as well as a continuously growing perfor-
mance for different-class accuracy (up to ≥0.83). An overall accuracy of
≥0.85 after 5 training epoch is an exceptionally good result, given the afore
mentioned variance and confusion. Furthermore, we need to keep in mind
that the phenotypes are recovered from metadata only.

Figure 9 illustrates the cluster formation that was constructed by our
proposed metadata-guided visual representation learning. The illustration
confirms that cell images in adjacent regions of our learned feature space
share similar visual appearance, whereas distant data points represent cell
images with rather different morphological characteristics.

Hence, we consider our proposed metadata-guided visual representation
learning as a valid and sound approach that allows us to process and analyse
unlabelled biomedical image datasets that have previously been untapped.
It can be applied to large image datasets, assuming no annotation other then
the information contained in the metadata, e.g. compound-concentration or
other properties like row/column/plate identifier known from an assay.

5.3 General Discussion

In addition to discussing results on our benchmark and real-world biomedical
dataset, we want to share some general findings and observations that we
have made in our empirical study.
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First of all, it is important to mention the the implementation of explicit
learning is not deterministic, because ‘n-let’ batch construction is stochatic
in nature [22]. This leads to the effect that our deep neural network sees
images in random order, which might lead to slightly different performance
results when training two identical model architectures, since the randomly
sampled batches may pose hard constrains or trivial cases, which in turn
influences the learning rate.

Furthermore, for implicit metadata-guided visual representation learning
we have observed that the training accuracy, which was not reported above,
converges toward the following quotient: #super-classes/#pseudo-classes.
For instance, in case of our MNIST benchmark with 10 ‘super’-classes or
digits and 100 ‘pseudo’-classes the training accuracy is close to 10/100 = 0.1
after 5 epochs. In other words, for each super-class the corresponding 10
‘pseudo’-classes are confused 9 out of 10 times, which means that they are
falsely assigned to one of the other 9 ‘pseudo’-classes that actually belong
to the same ‘super’-class. In that sense, the training loss can give us a first
hint on how many ‘super’-classes to expect.

Moreover, we want to emphasize that in our empirical study we have
used a cutoff of 1.0 for deciding whether an image pair belongs to same
or different class. Another threshold, e.g. around 0.6 to 0.8, might lead
to much better accuracy results than those presented above. This becomes
more obvious when we take a closer look at the same-class and different-class
distances reported in Table 1-3. In Figure 5-7 we have plotted the cutoff,
making the potential effect of another threshold visible.

6 Conclusion and Future Work

In this work we have introduced a metadata-guided visual learning approach,
which employs only context information to cluster images in an unsupervised
fashion. More precisely, we have juxtaposed implicit and explicit learning
techniques to construct an embedded feature space that arranges images
according their visual appearance, without supervision and regardless of
missing annotation. We have presented empirical results on benchmark and
real-world biomedical images, under different conditions and with various
settings. Meaningful clustering results and high classification accuracy both
demonstrate the capabilities of our proposed machine learning approach.
Hence, we believe that metadata-guided learning has great potential for
high content screening and other imaging applications.

In future work we plan to apply our proposed metadata-guided visual
representation learning to large-scale high-content-screening assays to auto-
matically identify cell phenotypes and corresponding biological mechanisms
of action, without relying on manual annotation. Furthermore, we are going
to refine the loss function for explicit learning by employing domain-specific
learning constraints that ensure more robust embeddings.
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