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 2 

ABSTRACT  25 

Background: The inherited susceptibility of common, complex diseases may be caused by 26 

rare, ‘monogenic’ pathogenic variants or by the cumulative effect of numerous common, 27 

‘polygenic’ variants. As such, comprehensive genome interpretation could involve two distinct 28 

genetic testing technologies -- high coverage next generation sequencing for known genes to 29 

detect pathogenic variants and a genome-wide genotyping array followed by imputation to 30 

calculate genome-wide polygenic scores (GPSs). Here we assessed the feasibility and 31 

accuracy of using low coverage whole genome sequencing (lcWGS) as an alternative to 32 

genotyping arrays to calculate GPSs. 33 

 34 

Methods: First, we performed downsampling and imputation of WGS data from ten individuals 35 

to assess concordance with known genotypes. Second, we assessed the correlation between 36 

GPSs for three common diseases -- coronary artery disease (CAD), breast cancer (BC), and 37 

atrial fibrillation (AF) -- calculated using lcWGS and genotyping array in 184 samples. Third, we 38 

assessed concordance of lcWGS-based genotype calls and GPS calculation in 120 individuals 39 

with known genotypes, selected to reflect diverse ancestral backgrounds. Fourth, we assessed 40 

the relationship between GPSs calculated using lcWGS and disease phenotypes in 11,502 41 

European individuals seeking genetic testing. 42 

 43 

Results: We found imputation accuracy r2 values of greater than 0.90 for all ten samples -- 44 

including those of African and Ashkenazi Jewish ancestry -- with lcWGS data at 0.5X. GPSs 45 

calculated using both lcWGS and genotyping array followed by imputation in 184 individuals 46 

were highly correlated for each of the three common diseases (r2 = 0.93 - 0.97) with similar 47 

score distributions. Using lcWGS data from 120 individuals of diverse ancestral backgrounds, 48 

including South Asian, East Asian, and Hispanic individuals, we found similar results with 49 

respect to imputation accuracy and GPS correlations. Finally, we calculated GPSs for CAD, BC, 50 
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 3 

and AF using lcWGS in 11,502 European individuals, confirming odds ratios per standard 51 

deviation increment in GPSs ranging 1.28 to 1.59, consistent with previous studies. 52 

 53 

Conclusions: Here we show that lcWGS is an alternative approach to genotyping arrays for 54 

common genetic variant assessment and GPS calculation. lcWGS provides comparable 55 

imputation accuracy while also overcoming the ascertainment bias inherent to variant selection 56 

in genotyping array design. 57 

  58 

KEYWORDS 59 

Genome-wide polygenic score; low coverage whole genome sequencing; coronary artery 60 

disease; breast cancer; atrial fibrillation   61 
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 4 

BACKGROUND 62 

Cardiovascular disease and cancer are common, complex diseases that remain leading causes 63 

of global mortality [1]. Long recognized to be heritable, recent advances in human genetics have 64 

led to consideration of DNA-based risk stratification to guide prevention or screening strategies. 65 

In some cases, such conditions can be caused by rare, ‘monogenic’ pathogenic variants that 66 

lead to a several-fold increased risk -- important examples are pathogenic variants in LDLR that 67 

cause familial hypercholesterolemia and pathogenic variants in BRCA1 and BRCA2 that 68 

underlie hereditary breast and ovarian cancer syndrome. However, the majority of individuals 69 

afflicted with these diseases do not harbor any such pathogenic variants. Rather, the inherited 70 

susceptibility of many complex traits and diseases is often ‘polygenic,’ driven by the cumulative 71 

effect of numerous common variants scattered across the genome [2]. 72 

 73 

Genome-wide polygenic scores (GPSs) provide a way to integrate information from numerous 74 

sites of common variation into a single metric of inherited susceptibility and are now able to 75 

identify individuals with a several-fold increased risk of common, complex diseases, including 76 

coronary artery disease (CAD), breast cancer (BC), and atrial fibrillation (AF) [3]. For example, 77 

for CAD, we noted that 8% of the population inherits more than triple the normal risk on the 78 

basis of polygenic variation, a prevalence more than 20-fold higher than monogenic familial 79 

hypercholesterolemia variants in LDLR  that confer similar risk [3]. 80 

 81 

Comprehensive genome interpretation for common, complex disease therefore could involve 82 

both high-fidelity sequencing of important driver genes to identify potential monogenic risk 83 

pathogenic variants and a survey of all common variants across the genome to enable GPS 84 

calculation. High coverage whole genome sequencing (hcWGS; for example, 30X coverage) will 85 

likely emerge as a single genetic testing strategy, but current prices remain a barrier to large-86 

scale adoption. Instead, the traditional approach has mandated use of two distinct genetic 87 
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testing technologies -- high coverage next generation sequencing (NGS) of important genes to 88 

detect pathogenic variants and a genome-wide genotyping array followed by imputation to 89 

calculate GPSs.  90 

 91 

Low coverage whole genome sequencing (lcWGS; for example, 0.5X coverage) followed by 92 

imputation is a potential alternative approach to genotyping arrays for assessing the common 93 

genetic variants needed for GPS calculations. Several recent studies have demonstrated the 94 

efficiency and accuracy of lcWGS for other applications of statistical genetics, including local 95 

ancestry deconvolution, complex trait association studies, and detection of rare genetic variants 96 

[4–7].  97 

 98 

We developed a pipeline for common genetic variant imputation using lcWGS data on samples 99 

from the 1000 Genomes Project (1KGP) and Genome in a Bottle (GIAB) Consortium and herein 100 

demonstrate imputation accuracy for lcWGS similar to genotyping arrays. Using three recently 101 

published GPSs for CAD [3], BC [8], and AF [3], we show high technical concordance in GPSs 102 

calculated from lcWGS and genotyping arrays. Finally, using our pipeline in a large European 103 

population seeking genetic testing, we observe similar GPS risk stratification performance as 104 

previously published array-based results [3,8]. 105 

 106 

METHODS 107 

Study design 108 

The study design is summarized in Figure 1 and described in detail below. The pipeline 109 

validation data set (n = 10) was used to assess imputation accuracy for common genetic 110 

variants (Figure 1A). The technical concordance cohort (n = 184) was used to assess the 111 

correlation between three previously published GPSs for CAD [3], BC [8], and AF [3] from 112 

lcWGS and genotyping arrays (Figure 1B). The diverse ancestry data set (n = 120) was used to 113 
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assess imputation accuracy for common genetic variants and performance of GPSCAD, GPSBC, 114 

and GPSAF (Figure 1B). The clinical cohort (n = 11,502) was used to assess performance of 115 

GPSCAD, GPSBC, and GPSAF in a large European population seeking genetic testing (Figure 1B). 116 

  117 

Data set and cohort selection 118 

The pipeline validation data set included seven globally representative samples from 1KGP 119 

populations (HG02155, NA12878, HG00663, HG01485, NA21144, NA20510, and NA19420; 120 

see Supplementary Table 1, Additional File 1) and a trio of Ashkenazi samples (NA24385, 121 

NA24143, and NA24149) from the GIAB Consortium (Figure 1A). 122 

 123 

The technical concordance cohort included DNA samples from 184 individuals whose 124 

healthcare provider had ordered a Color multi-gene panel test (Figure 1B). All individuals 1) had 125 

85% or greater European genetic ancestry calculated using fastNGSadmix [9] using 1KPG as 126 

the reference panel, 2) self-identified as ‘Caucasian’, and 3) did not have pathogenic or likely 127 

pathogenic variants in the multi-gene NGS panel test, as previously described [10] (see 128 

Supplementary Methods, Additional File 2). Demographics are provided in Supplementary Table 129 

2, Additional File 1. All phenotypic information was self-reported by the individual through an 130 

online, interactive health history tool. Of the 184 individuals, 61 individuals reported having a 131 

personal history of CAD (defined here as a myocardial infarction or coronary artery bypass 132 

surgery), 62 individuals reported no personal history of CAD, and 61 individuals reported no 133 

personal history of CAD but were suspected to have a high GPSCAD based on preliminary 134 

analysis. This preliminary analysis included imputation from multi-gene panel and off-target 135 

sequencing data, which has been shown to have similar association statistics and effect sizes 136 

compared to genotyping arrays [4]. These individuals were included in the technical 137 

concordance cohort to artificially create a relatively uniform distribution of GPSCAD in the data 138 

set. Correlation coefficients between GPSCAD from lcWGS and genotyping array were calculated 139 
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 7 

after removing the 61 individuals who were suspected to have a high GPSCAD based on multi-140 

gene panel and off-target sequencing data to avoid artificial inflation of the correlation 141 

coefficient. Two individuals who reported no personal history of CAD but were suspected to 142 

have a high GPSCAD failed genotyping (quality control call rate of < 97%) and lcWGS (overall 143 

coverage of < 0.5X), leaving a total of 182 individuals for analyses.  144 

 145 

The diverse ancestry data set included a total of 120 samples from the following populations 146 

from 1KGP: Han Chinese in Beijing, China (CHB); Yoruba in Ibadan, Nigeria (YRI); Gujarati 147 

Indian from Houston, Texas (GIH); Americans of African Ancestry in Southwest USA (ASW); 148 

Mexican Ancestry from Los Angeles, USA (MXL); and Puerto Ricans from Puerto Rico (PUR) 149 

(see Supplementary Table 3, Additional File 1; Figure 1B). Four samples, including NA18917 150 

and NA19147 from the YRI population and NA19729 and NA19785 from the MXL population, 151 

were below the target 0.5X coverage and removed from analyses. 152 

 153 

The clinical cohort included DNA samples from 11,502 individuals whose healthcare provider 154 

had ordered a Color multi-gene panel test (Figure 1B). All individuals 1) had 90% or greater 155 

European genetic ancestry calculated using fastNGSadmix [9] using 1KPG as the reference 156 

panel, 2) self-identified as ‘Caucasian’, 3) provided history of whether they had a clinical 157 

diagnosis of CAD, BC, or AF, and 4) did not have pathogenic or likely pathogenic variants 158 

detected in the multi-gene NGS panel test, as previously described [10] (see Supplementary 159 

Methods, Additional File 2). Demographics are provided in Supplementary Table 2, Additional 160 

File 1. All phenotypic information was self-reported by the individual through an online, 161 

interactive health history tool.   162 

 163 

Whole genome sequencing 164 
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DNA was extracted from blood or saliva samples and purified using the Perkin Elmer Chemagic 165 

DNA Extraction Kit (Perkin Elmer, Waltham, MA) automated on the Hamilton STAR (Hamilton, 166 

Reno, NV) and the Chemagic Liquid Handler (Perkin Elmer, Waltham, MA). The quality and 167 

quantity of the extracted DNA were assessed by UV spectroscopy (BioTek, Winooski, VT). High 168 

molecular weight genomic DNA was enzymatically fragmented and prepared using the Kapa 169 

HyperPlus Library Preparation Kit (Roche Sequencing, Pleasanton, CA) automated on the 170 

Hamilton Star liquid handler and uniquely tagged with 10 bp dual-unique barcodes (IDT, 171 

Coralville, IA). Libraries were pooled together and loaded onto the NovaSeq 6000 (Illumina, San 172 

Diego, CA) for 2 x 150 bp sequencing.  173 

 174 

For the pipeline validation data set, all samples underwent WGS with mean coverage of 13.22X 175 

(range 7.82X to 17.30X); downsampling was then performed using SAMtools to simulate 176 

lcWGS. For the technical concordance cohort, all samples underwent lcWGS with mean 177 

coverage of 1.24X (range 0.54X to 1.76X). Imputed genotypes were compared with published, 178 

high-confidence known genotypes from 1KGP and the GIAB Consortium. For the diverse 179 

ancestry data set, all samples underwent lcWGS with mean coverage of 0.89X (range 0.68X to 180 

1.24X). For the clinical cohort, all samples underwent lcWGS with mean coverage of 0.95X 181 

(range 0.51X to 2.57X). 182 

 183 

Downsampling 184 

For the pipeline validation data set, aligned reads were downsampled using SAMtools [11] to 185 

2.0X, 1.0X, 0.75X, 0.5X, 0.4X, 0.25X, and 0.1X coverage. For the technical concordance cohort, 186 

aligned reads were downsampled to 1.0X, 0.75X, 0.5X, 0.4X, 0.25X, and 0.1X coverage. In a 187 

few cases in the technical concordance cohort, the primary samples had fewer reads than the 188 

target downsample. In those situations, all of the reads were retained. For example, if the 189 

primary sample only had 0.8X coverage, when downsampled to 1.0X, all reads were retained.  190 
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Downsampling was repeated using two independent seeds in SAMtools. Once the 191 

downsampled data was generated, the imputation was repeated to generate imputed genotypes 192 

using only the downsampled reads.  193 

 194 

Imputation site selection 195 

All data sets and cohorts were imputed to a set of autosomal SNP and insertion-deletion (indel) 196 

sites from 1KGP with greater than 1% allele frequency in any of the five 1KGP super 197 

populations (African, American, East Asian, European, and South Asian), for a total of 198 

21,770,397 sites. This is hereafter referred to as the ‘imputation SNP loci.’ Multi-allelic SNPs 199 

and indels were represented as two biallelic markers for imputation. 200 

 201 

Genotype likelihood calculations and imputation 202 

Genotype likelihood calculations and imputation were performed independently for each 203 

sample. Sequence reads were aligned with the human genome reference GRCh37.p12 using 204 

the Burrows-Wheeler Aligner (BWA) [12], and duplicate and low quality reads were removed. 205 

Genotype likelihoods were then calculated at each of the biallelic SNP loci in the imputation 206 

SNP loci that were covered by one or more sequencing reads called using the mpileup 207 

command implemented in bcftools version 1.8 [13]. Indels or multi-allelic sites were not included 208 

in this first genotype likelihood calculation. Reads with a minimum mapping alignment quality of 209 

10 or greater and bases with a minimum base quality of 10 or greater were included. Genotype 210 

likelihoods at each observed site were then calculated using the bcftools call command with 211 

allele information corresponding to the imputation SNP loci. This procedure discarded calls with 212 

indels or calls where the observed base did not match either the reference or expected alternate 213 

allele for the SNP locus.  214 

 215 
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Imputation was performed using the genotype likelihood imputation option implemented in 216 

BEAGLE 4.1 [14]. This imputation used default parameters except with a model scale 217 

parameter of 2 and the number of phasing iterations to 0. A custom reference panel was 218 

constructed for each sample being imputed by selecting the 250 most similar samples to that 219 

sample from 1KGP Phase 3 release using Identity-by-State (IBS) comparison. A reference 220 

panel size of 250 was selected to best balance imputation run time and accuracy (see 221 

Supplementary Figure 1, Additional File 2). To ensure that IBS values were comparable across 222 

samples, a set of regions consistently sequenced at high depth (> 20X) across all samples was 223 

utilized. When imputation was performed on samples included in 1KGP Phase 3 release, that 224 

sample and any related samples were excluded from the custom reference panel.  225 

 226 

To generate genotypes at all of the remaining untyped sites, a second round of imputation was 227 

performed using BEAGLE 5.0 [15]. This imputation used default settings and included the full 228 

1KGP as the imputation reference panel. To note, when performing analysis using 1KGP 229 

samples, any related individuals were removed. Each sample then had imputed genotype calls 230 

at each of the imputation SNP loci. Indels and multiallelic sites were included in this second 231 

genotype likelihood calculation.  232 

 233 

Genotyping array 234 

DNA was extracted from blood or saliva samples and purified using the Perkin Elmer Chemagic 235 

DNA Extraction Kit (Perkin Elmer, Waltham, MA) automated on the Hamilton STAR (Hamilton, 236 

Reno, NV) and the Chemagic Liquid Handler (Perkin Elmer, Waltham, MA). The quality and 237 

quantity of the extracted DNA were assessed by UV spectroscopy (BioTek, Winooski, VT).  238 

 239 

DNA was genotyped on the Axiom UK Biobank Array by Affymetrix (Santa Clara, CA). 240 

Genotypes were filtered according to the manufacturer’s recommendations, removing loci with 241 
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greater than 5% global missingness and those that significantly deviated from Hardy-Weinberg 242 

equilibrium. In addition, all A/T and G/C SNPs were removed due to potential strand 243 

inconsistencies. Each of the remaining SNPs were aligned with the hg19 reference sequence to 244 

correctly code the reference alleles as allele 1, matching the sequencing data.  245 

 246 

To generate genotypes at all of the remaining untyped sites, imputation was performed using 247 

BEAGLE 5.0 [15]. This imputation used default settings and included the full 1KGP as the 248 

imputation reference panel. To note, when performing analysis using 1KGP samples, any 249 

related individuals were removed. Each sample then had imputed genotype calls at each of the 250 

imputation SNP loci.  251 

 252 

Imputation accuracy and quality assessment 253 

Imputation accuracy for 1KGP and GIAB samples was calculated by comparing imputation 254 

results with previously released genotypes, excluding regions marked as low confidence by 255 

GIAB.  256 

 257 

Imputation accuracy on the genotyped samples was assessed on 470,363 sites that were 258 

included on the genotyping array at different allele frequency buckets: 257,362 sites with greater 259 

than 5% allele frequency, 119,978 sites between 1-5% allele frequency, and 93,022 sites with 260 

less than 1% allele frequency. Imputation quality was assessed through site-specific dosage r2 261 

comparing with genotype values from the genotyping array. 262 

 263 

GPS selection 264 

The GPSs for CAD [3], BC [8], and AF [3] were previously published and selected based on 265 

their demonstrated ability to accurately predict and stratify disease risk as well as identify 266 

individuals at risk comparable to monogenic disease. GPSCAD contained 6,630,150 267 
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polymorphisms, GPSBC contained 3,820 polymorphisms, and GPSAF contained 6,730,541 268 

polymorphisms. All loci included in these scores were included in the imputation SNP loci.  269 

 270 

GPS normalization 271 

In the clinical cohort, raw GPSs were normalized by taking the standardized residual of the 272 

predicted score after correction for the first 10 principal components (PC) of ancestry [16]. PCs 273 

were calculated by projecting lcWGS samples into 10 dimensional PC analysis (PCA) space 274 

using the LASER program [17]. A combination of samples from 1KGP and the Human Origins 275 

[18] project were used as a reference for the projection.  276 

 277 

RESULTS 278 

Development and validation of imputation pipeline for lcWGS 279 

Previous studies have evaluated the potential use of lcWGS in local ancestry deconvolution, 280 

complex trait association studies, and detection of rare genetic variants [4–6]. To assess the 281 

feasibility and accuracy of this approach for GPSs, we first developed an imputation pipeline 282 

that reads raw fastq sequence data and generates a vcf with imputed site information at 21.7 283 

million sites (imputation SNP loci) (Figure 1A, B). Briefly, reads are aligned to the reference 284 

genome and filtered for duplicates and low quality. Using this BAM file, we then calculate 285 

genotype likelihoods and impute expected genotypes using 1KGP as the imputation reference 286 

panel.   287 

 288 

To validate this imputation pipeline, we performed hcWGS and downsampling on seven 289 

samples from different 1KGP populations and a trio of Ashkenazi Jewish GIAB samples 290 

(pipeline validation data set) to varying depths of coverage from 2.0X to 0.1X (See 291 

Supplementary Table 1, Additional File 2). We used the published genotype calls for each of 292 

these samples as truth data and found that imputation accuracy was above 0.90 r2 for all 293 
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samples at 0.5X and higher (Figure 2). As expected, this was correlated with sequencing depth, 294 

with diminishing gains observed at coverages above 1.0X. While imputation accuracy was 295 

similar across diverse populations, it was slightly reduced in the Colombian sample (HG01485), 296 

likely due to complex local ancestry related to admixture, and in the Yoruban sample 297 

(NA19240), likely due to the shorter blocks of linkage disequilibrium and higher genetic diversity 298 

in Africa [19]. Taken together, these data suggest that at sequencing depth at or above 0.5X, 299 

our pipeline has similar imputation accuracy to genotyping array-based imputation across 300 

individuals from multiple populations. As such, we set 0.5X as a quality control for success and 301 

removed samples with coverage below this threshold in subsequent analyses. 302 

 303 

Technical concordance between GPSs calculated from lcWGS and genotyping array  304 

To assess the technical concordance of using lcWGS to calculate GPSs, we performed low 305 

coverage sequencing and used genotyping arrays on DNA from 184 individuals (technical 306 

concordance cohort) (Figure 1B). This concordance assessment was restricted to individuals of 307 

European ancestry to most closely align with the populations used for GPS training and 308 

validation. 309 

 310 

We first compared the lcWGS genotype dosages with a subset of variants directly genotyped (n 311 

= 470,362) on the genotyping array to assess imputation performance. Assuming the typed loci 312 

called on the genotyping array as ‘true’, we observed an average imputation r2 > 0.90 at 0.5X 313 

depth for variants with global minor allele frequency (MAF) greater than 5% (see Supplementary 314 

Figure 2, Additional File 3). As expected, imputation accuracy was highest for variants with 315 

higher MAF. For lower frequency variants, we saw a reduction in imputation accuracy, as 316 

expected, with r2 > 0.85 for variants at 1% to 5% MAF and r2 > 0.80 for variants less than 1% 317 

global MAF. Taken together, this demonstrates that lcWGS has high accuracy in this test 318 

setting.  319 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 31, 2019. ; https://doi.org/10.1101/716977doi: bioRxiv preprint 

https://doi.org/10.1101/716977
http://creativecommons.org/licenses/by-nd/4.0/


 14 

 320 

We then calculated previously published GPSs for CAD [3], BC [8], and AF [3] on each sample 321 

using genotyping array data or lcWGS data. We found that GPSCAD, GPSBC, and GPSAF were 322 

highly correlated (Figure 3A-C), with the score mean (Student t-test p = 0.17) and variance (F 323 

test p = 0.91) equivalent between lcWGS and the genotyping array. The correlations of GPSCAD 324 

and GPSAF (r2 = 0.98 and r2 = 0.97, respectively) were slightly higher than that of GPSBC (r2 = 325 

0.93), which could be due to 1) the smaller number of loci in GPSBC (6.6 million compared to 326 

3820 SNPs), 2) differences in allele frequencies between SNPs with high weights, and/or 3) the 327 

fact that GPSBC was trained and validated on a different genotyping array, the OncoArray, than 328 

the Axiom UK Biobank Array used in this study [8].  329 

 330 

The technical concordance cohort ranged in coverage from 0.54X to 1.76X with a mean 331 

coverage of 1.24X, and we have shown that depth can impact imputation performance -- depth 332 

increases above 0.5X have a smaller but measurable effect on imputation performance (Figure 333 

2; see Supplementary Figure 2, Additional File 3). To determine the low coverage sequencing 334 

depth required for GPS accuracy, we used SAMtools to downsample the lcWGS data in this 335 

cohort to 1.0X, 0.75X, 0.5X, 0.4X, 0.25X, and 0.1X. We found that GPSCAD, GPSBC, and GPSAF 336 

are robust to lcWGS sequencing depth 0.5X and that coverages do not systematically bias GPS 337 

calculations in a specific direction (see Supplementary Figure 3 and Supplementary Figure 4, 338 

Additional File 3), indicating that samples above 0.5X with small changes in coverage variation 339 

can be combined for downstream analysis. In addition, the correlation increases logarithmically 340 

as coverage increases (see Supplementary Figure 5, Additional File 3). These data 341 

demonstrate high correlation between GPSs from lcWGS data and genotyping array in a 342 

randomly selected sample. Interestingly, correlation at 0.1X was still high enough that GPSs at 343 

this coverage may have research utility, suggesting that significant amounts of data regarding 344 

common genetic variation could be recovered from off-target reads in exome and multi-gene 345 
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panel sequencing studies to allow for GPS calculation. Taken together, these data demonstrate 346 

that lcWGS provides equivalent accuracy for calculation of GPSs, with sequencing coverage as 347 

low as 0.5X.  348 

 349 

Assessment of imputation performance and technical concordance across diverse 350 

populations 351 

To further assess the performance of our imputation pipeline across diverse populations, we 352 

performed lcWGS on 120 additional samples from six 1KGP populations (CHB, GIH, YRI, ASW, 353 

MXL, and PUR; see Supplementary Table 3, Additional File 1) that represent the range of 354 

ancestry observed in admixed populations (diverse ancestry data set). We compared genotypes 355 

imputed using our lcWGS pipeline to known 1KGP WGS data and found that imputation 356 

accuracy was above 0.90 r2 for all samples (range 0.94 - 0.97) (Figure 4A). In addition, we 357 

found that GPS calculated from lcWGS data and GPS calculated from the Phase 3 1KGP WGS 358 

data release have a high correlation, with an r2 value of 0.98, 0.91, and 0.98 for CAD, BC, and 359 

AF, respectively (Figure 4B-D). These results suggest that lcWGS can enable accurate 360 

imputation and calculation of GPSs in diverse populations. 361 

 362 

Association of lcWGS-calculated GPSs with disease phenotypes in a clinical cohort 363 

Previous studies have demonstrated the association of GPSs with prevalent disease using 364 

genotyping arrays [3,8,20–22] and hcWGS [16]. To observe the performance of lcWGS-365 

calculated GPSs in a large population, we performed low coverage sequencing on 11,502 366 

European individuals (clinical cohort) (See Supplementary Table 2, Additional File 1) and 367 

calculated GPSCAD, GPSBC, and GPSAF for each individual. Raw GPSs were normalized by 368 

taking the standardized residual of the predicted score after correction for the first 10 PCAs (see 369 

Supplementary Figure 6, Additional File 3) [16,23]. First, we note that there are no major outliers 370 

(defined as a z-score greater than 5) in GPSCAD, GPSBC, and GPSAF and that the normalized 371 
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scores formed an approximately normal distribution for each (see Supplementary Figure 7, 372 

Additional File 3). Each of the GPSs were strongly associated with self-reported history of 373 

disease, with effect estimates comparable to prior reports using genotyping arrays to calculate 374 

GPS -- GPSCAD (OR per standard deviation = 1.59 (1.32 - 1.92), n = 11,010), GPSBC (OR per 375 

standard deviation = 1.56 (1.45 - 1.68); n = 8722), and GPSAF (OR per standard deviation = 376 

1.28 (1.12 - 1.46); n = 10,303) (Figure 5).  377 

 378 

Previous studies have noted significantly increased disease prevalence among individuals in the 379 

extreme tails of the GPS distribution when compared to the remainder of the population [3,8]. 380 

We replicated this observation by assessing the prevalence of disease in the highest 5% of the 381 

GPS distribution for each of the three diseases, noting odds ratios of 4.5 (2.62 - 7.74),  2.62 382 

(2.04 - 3.36), and 1.96 (1.24 - 3.11) for GPSCAD, GPSBC, and GPSAF, respectively. 383 

 384 

Area under the curve (AUC) is an additional metric used to assess the ability of a given risk 385 

factor to discriminate between affected cases and disease-free controls. When only the GPS 386 

was included in the prediction model, GPSCAD had an AUC of 0.60, GPSBC had an AUC of 0.63, 387 

and GPSAF had an AUC of 0.57. The additional inclusion of age and sex increased the AUCs to 388 

0.86 for GPSCAD, 0.78 for GPSBC, and 0.78 for GPSAF. For each of these three common, 389 

complex diseases, the magnitude of associations with clinical disease and AUC metrics were 390 

consistent with previous publications [3,8]. Taken together, these results suggest that lcWGS-391 

calculated GPSs can accurately stratify risk with comparable accuracy to previously published 392 

GPS-disease associations calculated on the basis of genotyping array data.  393 

 394 

DISCUSSION 395 

For the past two decades, genotyping array-based GWAS and imputation have been the driving 396 

force in our discovery of genetic loci predictive of disease and derivation and calculation of 397 
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GPSs. In this study, we developed and validated an imputation pipeline to calculate GPSs from 398 

variably downsampled hcWGS and lcWGS data sets. While the efficiency of lcWGS has been 399 

reported for other applications of statistical genetics [4–6], we demonstrate that lcWGS achieves 400 

similar technical concordance as the Axiom UK Biobank Array by Affymetrix for determining 401 

GPSs. Furthermore, the imputation r2  from lcWGS was greater than 90%, which is similar to the 402 

imputation accuracy reported from other commercially-available genotyping arrays [24]. Taken 403 

together, these data suggest that lcWGS has comparable accuracy to genotyping arrays for 404 

assessment of common variants and subsequent calculation of GPSs. 405 

 406 

Our finding that lcWGS can be used for accurate genotyping and imputation of common genetic 407 

variants has implications for the future of genomic research and medicine. Currently, disease 408 

GWAS are performed using a variety of genotyping arrays that are designed to target specific 409 

sets of genes or features, reducing imputation quality in regions that are not targeted [25]. 410 

lcWGS enables less biased imputation than genotyping arrays by not pre-specifying the genetic 411 

content that is included for assessment, as is necessary for genotyping arrays. Because initial 412 

GWAS focused on populations with high homogeneity to reduce noise and increase fit of risk 413 

stratification, many genotyping arrays were designed to capture common genetic variants based 414 

on the linkage disequilibrium structure in European populations [26]. However, this 415 

ascertainment bias reduces the imputation performance from genotyping array data in diverse 416 

populations [27–29]. Imputation from lcWGS data reduces this bias by including all SNPs 417 

observed in 1KGP populations as potential predictors. The effects of SNP selection bias are 418 

also not equivalent across genotyping arrays, and therefore variants included in a GPS trained 419 

and validated on one genotyping array may not be as predictive on another genotyping array 420 

[30]. lcWGS systematically surveys variants independent of SNP selection bias and thus 421 

provides one approach to overcome this issue. Our findings here demonstrate that GPSs 422 

trained and validated on different genotyping arrays are transferable to lcWGS-calculated GPS. 423 
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Furthermore, as new genetic associations are discovered, lcWGS can be re-analyzed with ever 424 

more inclusive sets of known SNPs, further reducing SNP selection bias and advancing the 425 

study and understanding of the genetic contributions to disease. In contrast, genotyping arrays 426 

are static and cannot be easily updated or changed without designing a de novo platform. 427 

 428 

lcWGS also has the potential to easily integrate into current clinical sequencing pipelines. In 429 

contrast to genotyping arrays, which require investment in separate laboratory technology, 430 

lcWGS can be performed on the same platform as current hcWGS or targeted multi-gene panel 431 

clinical testing. The ease of combining these two pathways could help to drive GPS adoption 432 

into clinical practice and can likely be achieved at a cost comparable to genotyping arrays [4]. 433 

As the cost of next generation sequencing continues to decrease, the cost of lcWGS will also 434 

continue to decrease. 435 

 436 

This study should be interpreted in the context of potential limitations. First, the imputation 437 

accuracy observed in our analysis may have been limited by the reference panel size. Future 438 

efforts using an even larger reference panel may lead to further improved imputation accuracy, 439 

particularly for variants with allele frequency less than 1% [24]. Second, while lcWGS may 440 

ultimately enable derivation of GPSs with improved predictive accuracy or ethnic transferability, 441 

this was not explicitly explored here. Rather, we demonstrate the feasibility and accuracy of 442 

using lcWGS of calculating GPSs published in previous studies. Third, disease phenotypes in 443 

our clinical cohort were based on individual self-report rather than review of health records. 444 

However, several studies have shown that self-reported personal history data have high 445 

concordance with data reported by a healthcare provider or electronic health records [31–34], 446 

and any inaccuracies would be expected to bias GPS-disease associations to the null.  447 

 448 

CONCLUSIONS 449 
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In conclusion, this work establishes lcWGS as an alternative approach to genotyping arrays for 450 

common genetic variant assessment and GPS calculation -- providing comparable accuracy at 451 

similar cost while also overcoming the ascertainment bias inherent to variant selection in 452 

genotyping array design. 453 

 454 

LIST OF ABBREVIATIONS 455 

GPS, genome-wide polygenic score 456 

lcWGS, low coverage whole genome sequencing 457 

CAD, coronary artery disease 458 

BC, breast cancer 459 

AF, atrial fibrillation 460 

1KGP, 1000 Genomes Project 461 

GIAB, Genome in a Bottle 462 

Indel, insertion-deletion 463 

BWA, Burrows-Wheeler Aligner 464 

IBS, Identity-by-State 465 

PC, principal components 466 

PCA, PC analysis 467 

MAF, minor allele frequency 468 

AUC, area under the curve 469 
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FIGURE TITLES AND LEGENDS 633 

Figure 1. Study design and imputation pipelines. The study design has four groups: (A) pipeline 634 

validation data set and (B) technical concordance cohort, diverse ancestry data set, and clinical 635 

cohort. The imputation pipeline for each group is depicted. hcWGS, high coverage whole 636 

genome sequencing. lcWGS, low coverage whole genome sequencing. HWE, Hardy–Weinberg 637 

equilibrium. GPS, genome-wide polygenic score. CAD, coronary artery disease. BC, breast 638 

cancer. AF, atrial fibrillation.  639 

 640 

Figure 2. Assessment of imputation performance in the pipeline validation data set. 641 

Downsampling from 30X to 0.1X showed that lcWGS accuracy was above 0.90 r2 for all 642 

samples at 0.5X (n = 4 independent random seeds for each sample and coverage value; error 643 

bars are 95% confidence intervals). The thick brown dashed line is a smoothed trendline of the 644 

average imputation quality while the thin grey dashed line demonstrates previously reported 645 

imputation quality from a genotyping array (r2 = 0.90) [4]. AJ, Ashkenazi Jewish. CDX, Chinese 646 

Dai in Xishuangbanna, China. CEU, Utah Residents with Northern and Western European 647 

Ancestry. CHB, Han Chinese in Beijing, China. CLM, Colombians from Medellin, Colombia. 648 

GIH, Gujarati Indian from Houston, Texas. TSI, Toscani in Italia. YRI, Yoruba in Ibadan, Nigeria. 649 

 650 

Figure 3. Correlation of GPSs between genotyping array and lcWGS in the technical 651 

concordance cohort. (A) GPSCAD calculated using lcWGS was highly correlated (r2 = 0.98) with 652 

those calculated using genotyping array (n = 182). (B) GPSBC calculated using lcWGS was 653 

highly correlated (r2 = 0.93) with those calculated using genotyping array (n = 182). (C) GPSAF 654 

was highly correlated (r2 = 0.97) with those calculated using genotyping arrays (n = 182). x-axis 655 

is the raw GPS calculated from the genotyping array, and y-axis is the raw GPS calculated from 656 

the lcWGS data; raw GPS values are unitless. lcWGS, low coverage whole genome 657 
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sequencing. GPS, genome-wide polygenic score. CAD, coronary artery disease. BC, breast 658 

cancer. AF, atrial fibrillation. 659 

 660 

Figure 4. Assessment of imputation performance and technical concordance across diverse 661 

populations. (A) GPSCAD calculated using lcWGS data was highly correlated with those 662 

calculated using known 1KGP data (n = 116), with all samples having a correlation coefficient 663 

above 0.90. The thin grey dashed line demonstrates previously reported imputation quality from 664 

a genotyping array (r2 = 0.90) [4]. (B) GPSCAD calculated using lcWGS data was highly 665 

correlated (r2 = 0.98) with those calculated using known 1KGP data (n = 116). (C) GPSBC 666 

calculated using lcWGS data was highly correlated (r2 = 0.91) with those calculated using 667 

known 1KGP data (n = 116). (D) GPSAF was highly correlated (r2 = 0.98) with those calculated 668 

using known 1KGP data (n = 116). 1KGP, 1000 Genomes Project. lcWGS, low coverage whole 669 

genome sequencing. GPS, genome-wide polygenic score. CAD, coronary artery disease. BC, 670 

breast cancer. AF, atrial fibrillation. 671 

 672 

Figure 5. Association of lcWGS-calculated GPSs with disease phenotypes in the clinical cohort. 673 

lcWGS-calculated GPSCAD was associated with personal history of CAD (OR = 1.589 (1.32 - 674 

1.92), n = 11,010, p = 1.32 x 10-6). GPSCAD was adjusted for age and sex. lcWGS-calculated 675 

GPSBC was associated with personal history of BC (OR = 1.56 (1.45 - 1.68); n = 8,722, p = 1.0 x 676 

10-16). GPSBC was calculated only for females and adjusted for age at menarche. lcWGS-677 

calculated GPSAF was associated with personal history of AF (OR = 1.277 (1.12 - 1.46); n = 678 

10,303, p = 0.000292). GPSAF was adjusted for age and sex. lcWGS, low coverage whole 679 

genome sequencing. GPS, genome-wide polygenic score. CAD, coronary artery disease. BC, 680 

breast cancer. AF, atrial fibrillation. 681 
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Figure 3

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
0.0

0.2

0.4

0.0 0.2 0.4
Genotyping Array

lc
W

G
S

a GPSCAD 

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

−1.5

−1.0

−0.5

0.0

0.5

−1.5 −1.0 −0.5 0.0 0.5
Genotyping Array

lc
W

G
S

b GPSBC 

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0

−0.2

−0.4

0.0−0.2−0.4

Genotyping Array

lc
W

G
S 

c GPSAF 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 31, 2019. ; https://doi.org/10.1101/716977doi: bioRxiv preprint 

https://doi.org/10.1101/716977
http://creativecommons.org/licenses/by-nd/4.0/


Figure 4

b c d

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

● ●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●●
●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

GPSBC

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

1KGP WGS

Population
●

●

●

●

●

●

CHB

GIH

YRI

ASW

MXL

PUR

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

GPSAF

−0.4 −0.2 0.0 0.2
−0.4

−0.2

0.0

0.2

lc
W

G
S

1KGP WGS

lc
W

G
S

lc
W

G
S

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

GPSCAD

−0.2 0.0 0.2 0.4

−0.2

0.0

0.2

0.4

1KGP WGS

Im
pu

ta
tio

n
r2

a

●●

●

●

●

●● ●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

● ●●●
●
●●●●● ●

●

●
● ●

●

●
●
●●
●
●● ●
●

●

●

●

●
●
●

●

●●

●

●
●

●
●
●

●

●● ●
●

●●

● ●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●
●

●●●●
●●●●● ●

●●●
●●●●●

0.80

0.85

0.90

0.95

1.00

CHB GIH YRI ASW MXL PUR

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 31, 2019. ; https://doi.org/10.1101/716977doi: bioRxiv preprint 

https://doi.org/10.1101/716977
http://creativecommons.org/licenses/by-nd/4.0/


Figure 5

●

●

●Atrial Fibrillation

Breast Cancer

Coronary Artery 
Disease

1 1.25 1.5 1.75 2
Odds Ratio per SD Increase in GPS

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 31, 2019. ; https://doi.org/10.1101/716977doi: bioRxiv preprint 

https://doi.org/10.1101/716977
http://creativecommons.org/licenses/by-nd/4.0/

