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Abstract: 

 

Introduction. The dicentric chromosome (DC) assay accurately quantifies exposure 
to radiation, however manual and semi-automated assignment of DCs has limited its 
use for a potential large-scale radiation incident. The Automated Dicentric 
Chromosome Identifier and Dose Estimator Chromosome (ADCI) software 
automates unattended DC detection and determines radiation exposures, fulfilling 
IAEA criteria for triage biodosimetry. We present high performance ADCI (ADCI-HT), 
with the requisite throughput to stratify exposures of populations in large scale 
radiation events. 
 
Methods. ADCI-HT streamlines dose estimation by optimal scheduling of DC 
detection, given that the numbers of samples and metaphase cell images in each 
sample vary. A supercomputer analyzes these data in parallel, with each processor 
handling a single image at a time. Processor resources are managed hierarchically 
to maximize a constant stream of sample and image analysis. Metaphase data from 
populations of individuals with clinically relevant radiation exposures after simulated 
large nuclear incidents were analyzed. Sample counts were derived from US Census 
data. Analysis times and exposures were quantified for 15 different scenarios.   
 
Results. Processing of metaphase images from 1,744 samples (500 images each) 
used 16,384 CPUs and was completed in 1hr 11min 23sec, with radiation dose of all 
samples determined in 32 sec with 1,024 CPUs. Processing of 40,000 samples with 
varying numbers of metaphase cells, 10 different exposures from 5 different 
biodosimetry labs met IAEA accuracy criteria (dose estimate differences were < 0.5 
Gy; median = 0.07) and was completed in ~25 hours. Population-scale metaphase 
image datasets within radiation contours of nuclear incidents were defined by 
exposure levels (either >1 Gy or >2 Gy). The time needed to analyze samples of all 
individuals receiving exposures from a high yield airborne nuclear device ranged 
from 0.6-7.4 days, depending on the population density.  
 
Conclusion. ADCI-HT delivers timely and accurate dose estimates in a simulated 
population-scale radiation incident.  
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Introduction 
 
Radiation emergency management in a nuclear radiation incident over a large 
geographic region or affects many individuals will involve an extraordinary degree of 
coordination between first responders, testing laboratories and clinical personnel. 
The scope of testing in population-based scenarios has been recognized to exceed 
the capacity most biodosimetry laboratories. Not only would the volumes of samples 
overwhelm these laboratories, but the impact of large volume testing on accuracy 
has not been established.  
 
The dicentric chromosome assay (DCA, [1]) is the gold standard test within the 
clinically relevant and treatable radiation exposure range. While rapid tests are under 
development for triage purposes [2-7], the calibration curves for these assays tend to 
exhibit high variance, which impacts the confidence of the estimated dose. This can 
possibly lead to overtesting of worried well or inadequate testing of at risk, exposed 
populations. 
  
Several international exercises and proposals have envisioned cooperative 
biodosimetry testing could be distributed over multiple laboratories to overcome the 
bottleneck in generating dose estimates for exposed populations [8-12]. There are a 
number of significant challenges inherent in implementing such a strategy. The 
degree of interlaboratory coordination required - including sample transport - may not 
be adequate to handle the workloads in an actual population-scale event. 
Furthermore, reliable internet resources connecting laboratories may not be 
available to collate results across international borders and interpretation would have 
to be standardized between laboratories.  
 
Performance of the conventional DCA on all or most suspected cases of Acute 
Radiation Syndrome in a mass casualty would cause bottlenecks in sample 
processing, specifically cell culture, capture of metaphase cell images, and 
interpretation of those images. Without automation, the throughput of this test will 
probably not be adequate to triage patients for life saving cytokine therapies [8]. 
Semi-automated testing is efficient for small sample volumes, but processing and 
analysis of thousands of samples will surpass recommended therapeutic windows in 
a mass casualty [13]. Full automation of sample preparation, metaphase cell 
imaging, and interpretations of the DCA could substantially contribute to meeting 
testing capacity requirements to ensure timely administration of therapies. The 
Automated Dicentric Chromosome Identifier and Dose Estimator (ADCI) is a medical 
image processing system that leverages machine learning to analyze metaphase cell 
samples from different individuals, in the form of images, to identify dicentric 
chromosomes as an indicator of the patient’s level of radiation exposure that would 
then be used to determine the treatment needed, if any [14-16]. The current 
Windows-based implementation of the system substantially reduces the time 
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required for laboratories to estimate radiation exposures relative to the manual and 
semiautomated analysis. However, in a large-scale radiation accident or mass 
casualty, data from many different individuals would need to be processed quickly. A 
bank of personal computers running ADCI may not be able to meet the throughput 
required to triage entire populations on the scale of a moderate sized city.  
 

The present study investigates automation of analysis of cytogenetic data required 
for the DCA and radiation exposure assessment. ADCI was parallelized on a 
multiprocessor supercomputer to determine if performance is sufficient to handle the 
demands of population-scale exposures. This has the effect of simultaneously 
processing metaphase images from multiple samples, with the goal of expediting the 
analysis of the full set of samples. The advantage of parallelization is that it would 
provide dose of exposure information for clinical decision making for many exposed 
individuals at the same time. It is assumed that testing laboratories have the capacity 
to automate culturing of multiple blood samples, harvest and prepare slides of 
metaphase cells, and possess microscope systems for capture of metaphase cell 
images. We previously demonstrated a proof of concept implementation with a 
subset of the components of the ADCI system [17], indicating that the software could 
be adapted for large scale processing of many samples by master-slave rank-based 
scheduling of available computing resources across all samples and images. This 
was the starting point for the current implementation of the fully functional ADCI 
application on the IBM BG/Q supercomputer. This high-throughput ADCI (ADCI-HT) 
software was designed to rapidly analyze thousands of images in parallel, obtaining 
near identical dose predictions quickly compared to the time required via a 
commercial Windows desktop. Nuclear incident results were simulated for 15 US 
cities by calibrating radiation plumes predicted from physical dosimetry with 
population data. ADCI-HT was then used to analyze individuals exposed to >1Gy 
and >2Gy of radiation. Finally, analysis of actual international exercise data was 
analyzed, confirming ADCI-HT software predictions meets IAEA triage analysis 
requirements. 
 
 
Methods. 
 
Underlying principles for accelerating ADCI by High-Throughput supercomputing. 
 
Porting ADCI for high throughput biodosimetry.  The design of ADCI-HT emphasized 
the throughput of the software to handle many samples in a single run. The high-
throughput (HT) version leverages previous analyses using the Windows version of 
the program that would be used to generate a calibration curve and derive optimal 
parameters for image model selection. The accelerate the software, the HT version 
lacks a graphical user interface, eliminating direct user interaction. The elements of 
ADCI C++ software were either replicated, modified or replaced in order to manage 
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parallel analyses of samples with thousands of computer processors. Some 
compilation differences between Intel and PowerPC architectures used in the IBM-
BG/Q supercomputer had to be addressed during implementation. The emphasis on 
large scale processing capability on BG/Q limits available input/output (I/O) 
resources and the system is not interactive. BG/Q reads and decodes compressed 
archives of multiple samples (typically 50-400), each consisting of at least 500 
microscope cell images (TIF or PNG format) into memory. The elements of the 
system used by both versions are described in Figure 1, which is updated from our 
previously described Desktop Version of ADCI software [18]. The HT implementation 
replicates the 3 layers below the “Application” level of the ADCI-Desktop version (IV). 
Additionally, new function named “Sample::calculateDose()” was added to ADCI-HT.  
This function uses the previously ported classes to read the calibration curves 
previously generated with Desktop ADCI and the image selection models, filters the 
images in each sample according to these models, and estimates the radiation 
exposure doses.  
 
Scheduling system 
Efficient automated cytogenetic analysis of thousands of biodosimetry samples 
requires many computational tasks to be performed simultaneously. These tasks 
need to be scheduled to maximize concurrent use of all available processor 
resources to analyze all metaphase images in each sample [15]. The algorithm 
implemented was non-preemptive, since we assumed equivalent priority for 
processing all samples, and was dynamic, since the resources required depends on 
the number of samples and size of each sample to be processed (which cannot be 
known in advance). 
 
A quantitative analysis of image processing performed by ADCI-HT used test 
samples from Health Canada (n=6; 540-1,136 images each) and Canadian Nuclear 
Laboratories (n=7; 500-1,527 images each). Performance of the scheduler was 
correlated with sample size (numbers of images analyzed). The time consumption to 
load and read a sample was correlated with the size of the compressed archive file 
(r=0.95) and to a lesser extent, with the number of images in the sample (r=0.65).  

A data flow diagram apportions the time required to perform the tasks that ADCI 
performs to process metaphase images (Supplementary Figure 1). The 
segmentation task first takes an input image and identifies the regions containing 
connected objects based on pixel intensities. The chromosome analysis (CA) task 
identifies valid chromosomes through machine learning (ML)-based recognition of 
the centromere candidates and other features in each object. The identified 
chromosomes are then analyzed by another ML task to distinguish the dicentric 
chromosomes (DCs) from monocentric chromosomes (MCs). Results are then 
processed by the filtering task to remove false positive DCs. Finally, overall statistics 
are calculated for each image before the results are saved. The chromosome 
analysis task was found to be a primary bottleneck among all of the tasks, with the 
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highest standard deviation for the time to process images, meaning that the 
requirements for this task were the most variable among all tasks. This results in 
CPU load imbalance, whereby some images require substantially more computing 
resources than others to analyze. In fact, the number of objects in each image was 
only weakly correlated with chromosome analysis time (r=0.07). One caveat, 
however, was that certain datasets created using replicate images with nearly 
identical sample sizes, could impact the independence, and thereby the accuracy of 
the statistics drawn from those samples.  

Within the chromosome analysis task, individual chromosomes are segmented by 
local thresholding and Gradient Vector Flow (GVF; [19]) active contours. Upon 
extraction based on the GVF boundaries, the contour of the chromosome is 
partitioned using a polygonal shape simplification algorithm known as Discrete Curve 
Evolution (DCE) which iteratively deletes vertices based on their importance to the 
overall shape of the object. A Support Vector Machine (SVM) classifier selects the 
best set of points to isolate the telomeric regions i.e. at the ends of each 
chromosome. The segmented telomere regions are then tested for evidence of sister 
chromatid separation using a second trained SVM classifier designed to capture 
shape characteristics of the telomere regions and then corrected for that artifact. 
Afterwards, the chromosome is split into two partitions along the axis of symmetry 
and a modified Laplacian-based thickness measurement algorithm (called Intensity 
Integrated Laplacian or IIL [20]) is used to calculate the width profile of the 
chromosome. This profile is then used to identify a possible set of candidates for 
centromere location(s) and features are calculated for each of those locations. Next, 
another classifier is trained on expert-classified chromosomes to detect centromere 
locations in chromosomes. In most instances, each chromosome will contain at least 
one centromere. The correct centromere is generally present among the candidates. 
The distance from the separating hyperplane is used as an indicator for the 
goodness of fit of a given candidate and thereafter used to select the best candidate 
from the pool of candidates. Finally, we apply a machine learning method that uses 
image features to distinguish mono- from dicentric chromosomes. The most time-
consuming sub-tasks (GVF and IIL) depend on the length of the chromosomes 
(correlation is 0.89), which is indicated by the area of the region of interest for each 
chromosome. The maximum value for GVF was high, but the average time was low, 
suggesting that the high value is an outlier and was not representative of all images. 
IIL was the actual processing bottleneck, since it required a minimum of 3 sec each 
to perform this step for each of the images analyzed. Dose accuracy relies on 
metaphase image selection criteria, which depends on thresholding and in some 
instances sorting images by quality and are optimized according to data generated 
by each biodosimetry laboratory [15]. 

To handle the simultaneous analysis of many samples, we developed a three-layer 
scheduling architecture consisting of a general manager, which directs several 
managers, each of which are dynamically assigned by the program to multiple 
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worker processors (Figure 2A). The scheduler minimizes compute load imbalances 
between different processors. Each manager sends asynchronous requests for 
analysis of individual images to each worker (based on the value of a variable 
defined as “extraload”). Once the worker completes the analysis and submits its 
results, it queries managers for any outstanding requests. If a request has not been 
fulfilled, the worker receives that message, determines if the value of “extraload” is 
non-zero, then requests another image from the manager. The manager responds 
by sending an image while reducing the value of “extraload”. Without “extraload”, this 
communication would not take place at all. It is conceivable that multiple workers 
may receive the message before the value of the “extraload” variable is updated; 
however, the resources used by the resulting unnecessary processes are negligible. 

User interface and outputs  

The ADCI-HT batch queue allocates shared compute resources to ADCI once they 
are available. Tasks and CPU resource requests submitted to this queue use a 
command line interface which provides similar functionality to the Graphical User 
Interface of the MS-Windows version. This interface specifies a configuration file that 
can assign different image selection models and calibration curves to process 
particular sets of samples, for example, originating from different biodosimetry 
laboratories. Upon completion, ADCI processed sample files are written in the same 
directory where unprocessed samples are located and have the same file name as 
the sample, appended with the suffix “.adcisample.” Dose Estimate reports are 
formatted as CSV files located in the directory of the samples mentioned in it. The 
report provides the sample name, the curve file, the selection model, the sigma 
value, the DC frequency and the estimated dose. 

Estimating affected population size in nuclear incidents 
 
We estimated the size of the population exposed to different levels of radiation by 
intersecting geographic contours of minimum radiation exposure levels computed by 
HPAC v4.02 software (Hazard Prediction and Assessment Capability; developed by 
the Defense Threat Reduction Agency [DTRA]) with the census in these regions. 
KML (Keyhole Markup Language) based boundary location files for counties and 
subdivisions from the US census bureau website were downloaded in XML format. 
Census boundaries that overlap radiation contour plumes were obtained by 
transforming the polygons of each boundary to Google Maps-encoded polygons and 
creating javascript (‘plume-census.js’) that draws all the polygons in a map in HTML. 
The US Census API (api.census.gov/data/2016/pep/population; Application Program 
Interface) was interrogated with the intersecting subdivisions to estimate populations 
residing in the plume and the sum of all populations within a contour estimates the 
affected population exceeding a particular exposure level (e.g. >3, >2, >1 Gy). 
Applying this strategy to several large US cities, which are designated as 
“incorporated places”, had limited success as the populations of these regions are 
not directly accessible through the API.  
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Sample set creation  
 
The performance of ADCI-HT was evaluated by creating and processing replicate 
sample sets programmatically, comprised of fixed and variable numbers of distinct 
metaphase images and complete samples. While the scheduler is capable of 
handling samples of different sizes, sets of synthetic samples consisting of 500 
images each were randomly selected from a larger pool of images exposed to the 
same radiation dose to estimate average processing speed per sample. This fulfills 
the minimum criteria for the dicentric assay [21]. To ensure that all images were 
processed, duplicate samples were also created by splitting consecutive subsets of 
500 images into new samples. Residual subsets with fewer than 500 images were 
added to the last sample. Finally, samples of intermediate exposure levels were 
constructed by mixing sample pairs at different exposure levels from the same 
laboratory. 
 
A large multi-laboratory exercise (40,000 samples) was simulated by duplicating 10 
different exercise samples from five dosimetry laboratories in equal proportions 
(Canadian Nuclear Laboratories [CNL]: S02, S05, S09; Health Canada [HC]: S01, 
S05, S07, S08; Radiation Protection Center, Lithuania [LT]: 0.4Gy; Public Health 
England [PHE]: B; Dalat Nuclear Research Institute, Vietnam [VN]: 2.3Gy). These 
duplicates were dynamically split into sample sets based on the criterion that each 
set contains at most 25,000 metaphase images. Dose estimation for samples was 
performed using the ADCI-derived biodosimetry curve corresponding to the 
respective laboratory from which the samples were derived. For each run, the 
number of images processed in a sample set is related to the amount of available 
computer memory, as the output for processing all images is maintained in random 
access memory until the batch process is completed.  
 
ADCI-HT Resource allocation  
 
In general, the CPU resources allocated were limited to 4 nodes by the default job 
queuing system. Priority scheduling was approved by system administrators to 
determine performance in a machine-optimized environment. Higher priority runs 
maximized the number of processors that could be simultaneously allocated in the 
supercomputer (though processes could still be delayed due to the BG/Q queuing 
system). These included 1 and 4 node runs of sample sets (100 runs with 400 
samples each), with each node containing 1,084 cores (4 threads per core).  
 
Comparison with other systems 
 
The performance of the high performance, ADCI-HT interpretation of sets of 
metaphase images was compared to fully automated (ADCI-Windows) and semi-
automated analyses (DCScore [Metasystems]) on single computer systems. The 
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DCScore estimates were based on Romm et al. 2013 [22], with a modification to 
include a missing processing step of performing thumbnail gallery review and 
selection of 500 optimal images. The time to perform this step was determined for 3 
samples, averaged, and added to the time reported for the other review and 
processing steps.  
 
Results 
 
This study attempts to determine the volume and capacity required to interpret 
biodosimetry tests by simulating provision of biodosimetry results for affected 
populations in high yield nuclear incidents. We used ADCI to carry out this task, 
which has been demonstrated to provide accurate dose estimates for samples of 
unknown exposure, based on IAEA compliant triage criteria. ADCI estimates 
radiation exposures using a fully automated process based on a calibration curve 
derived from the same biodosimetry laboratory [14-16]. The Windows-based 
Desktop version of ADCI was migrated to the PowerPC operating system of IBM 
BlueGene/Q (BGQ) as ADCI-HT, which significantly improved the throughput of 
these analyses. 
 
Initially, the actual clock time (ACT) to perform large scale analyses of datasets 
consisting of samples, each consisting of 500 randomly selected metaphase images. 
To gain perspective, we processed 50 samples of 500 images each from CNL on 
both the Desktop and BGQ versions of ADCI. The processing time on Windows was 
11h 10m, while on BGQ they required 30m 52s, which is equivalent to ADCI-HT 
being 21.7-fold faster than the Desktop version. 
 
We also created and processed parallel sets of 120 samples, comprised of 15,970 
images with ADCI-HT, by randomizing and splitting original calibration and exercise 
samples from 4 different laboratories. This involved submission of 54 computer runs 
of sample sets containing 120 samples, with each requesting 1 processing block (or 
1,024 CPUs). With dedicated or high priority access to ADCI-HT and all runs ending 
successfully, the ACT would be equal to the maximum processing time of each run 
in parallel. In fact, ACT for all of these jobs ranged from 38m 37s to 1h 18m 2s, with 
an average of 1h 18s. As these jobs were submitted to the general queue (which is 
shared between all users of the system), the latency or wait for available CPU 
resources was variable, with the slowest set of samples to finish requiring 6h 6m 
46s. The largest test involved 164 sets of samples, each set consisting of 100 
samples (16,400 samples total), with each sample set submitted as a separate run. 
The maximum ACT to process one of these jobs was 1h 09m 58s, while the 
minimum was 30m 24s, averaging 45m 45s per run. The cumulative processing time 
without parallelization was 125h 2m 20s. We also compared these results with those 
from larger sized sample sets allocated with proportionally increased CPU 
resources. When requesting an allocation of 4 processing blocks (or 4,096 total 
CPUs; use of added resources required special permission), no discernable 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 30, 2019. ; https://doi.org/10.1101/718973doi: bioRxiv preprint 

https://doi.org/10.1101/718973
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

difference in ACTs was observed (maximum and minimum ACT per run were 
respectively 1h 5m 52s and 34m 9s, with an average time of 48m 48s). This was 
primarily due added queuing times when requesting more resources. Constraints on 
hardware architecture meant that allocation of proportionately increased CPU 
resources did not confer any advantage for processing larger sample sets. 
 
Benchmark of Population-Scale Nuclear Incident Simulations 
 
HPAC-derived plumes were generated across 15 populated regions within the 
United States. The HPAC plume is represented as a series of topological contours 
(ovals) representing various levels of radiation (ranging from 1.0 Gy [the outermost 
ring] to 7.0 Gy [the innermost ring]). Figure 3 shows the radiation plume derived for 
the Boston scenario. Using U.S. sub-division boundary files and census information, 
we computed the overall population expected to overlap the >1Gy and >2Gy 
contours of the HPAC plume (Table 1; column 2 and 3, respectively). We then used 
sample data to simulate ADCI-HT analysis of all persons expected to obtain >2Gy 
exposure (500 images per patient). With 4 nodes with 16,384 total cores, the overall 
processing time ranged from 0.6 to 7.4 days (Burlington VT and Boston MA, 
respectively; Table 1) depending on population density. 
 
Performance of ADCI-HT on Sample Sets from Multiple Laboratories  
 
The volume of samples in a large-scale nuclear incident would likely exceed the 
capacity of any individual biodosimetry laboratory to process. We simulated 
processing and dose estimation of 40,000 samples (1,892 sample sets) by 5 
laboratories, each of which has a distinct dose calibration curve. ADCI-HT took 25h 
8m 5s to finish processing the simulated samples, i.e. each duplicated from the 
same set of metaphase images. These cumulative set of samples contained 
46,196,000 metaphase cell images in total and were processed with 37,888 CPUs 
on average (Figure 4). The respective durations for processing of the sample sets 
from the different laboratories (CNL: 14h 6m 22s; HC: 6h 27m 22s; LT: 3h 16m 21s; 
PHE: 1h 28m 40s; VN: 1h 44m 2s) were proportionate to the total image counts in 
each set of samples. The dose estimates for individual samples produced by the 
ADCI-HT version were identical to those produced by the Desktop version on all 
these samples (not shown), except those from HC. The deviation are due to 
differences between the order of images selected by the ‘Group Bin Distance’ filter 
used in the HC dataset (which selected the top 250 images; [14]), where multiple 
images had the same value, resulting in the insignificant discrepancies in the dose 
estimates generated by the Desktop and HT versions of ADCI. 
 
Comparison of ADCI-HT with ADCI-Windows and DCScore performance 
 
Dose estimation was much less computationally expensive with ADCI than with a 
semi-automated software product, DCScore (Metasystems), which requires manual 
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curation of images and confirmation of predicted DCs. To determine whether ADCI-
HT could provide timely dose estimates with available cytogenetic data for a 
moderate sized population of potentially exposed individuals, we compared the 
processing requirements for samples by ADCI-Windows and HT versions with 
DCScore. Results for individual samples were extrapolated to a population 
consisting of 1,000 samples (Table 2). The differences in time to process a single 
sample were negligible between these platforms. Only the HT version was able to 
estimate exposures with sufficient speed for the population-based analysis to triage 
all patients to effectively treat them. However, multiple instances of ADCI-Windows 
running on separate laptop computers (n=2) would be required to fulfill assessment 
of this population in 1 day (Figure 5). DCScore is unsuitable for this task, as it would 
require nearly a month to analyze a population of this size, due to manual review and 
selection of metaphase cells in each sample and confirmation of candidate dicentric 
chromosomes.  

Discussion. 
 
ADCI-HT has the capacity to analyze large quantities of cytogenetic biodosimetry 
data which may be generated after a large radiation event. Laboratory capacity to 
process samples and generate metaphase image data has benefitted from 
automation. With a distributed testing model, it would be feasible to generate 
different sets of metaphase image samples in multiple laboratories, each customized 
to use their own image selection models. The samples would be uploaded and 
images processed in parallel via a cloud-based system running ADCI-HT, which 
would estimate exposures for all samples either simultaneously or possibly in large 
batches in rapid sequence. We suggest that leveraging existing laboratory 
infrastructure and supplanting limitations in any of these elements with existing 
automation at large commercial cytogenetic laboratories may be able to fulfill future 
testing demands for biodosimetry testing in a population scale nuclear event or 
accident.  
 
Rapid triaging using fewer metaphase images or other assays (micronuclei, 
biomarkers in urine, miRNA, or gene expression) have been proposed as 
alternatives to the DCA, however these approaches may not be sufficiently accurate 
to robustly distinguish individuals eligible for treatment (>2 Gy exposures; [23]). 
Rapid bioassays have been developed for triage evaluation of potentially exposed 
populations, however specific frameworks have not been demonstrated by large 
scale implementation of these tests. Throughput estimates have largely been 
theoretical and based on the performance of the assays themselves, extrapolated to 
large populations. The details regarding equipment capacity, availability of sufficient 
quantities of critical reagents and trained personnel to perform and interpret these 
assays have not been addressed in the Concept of Operations [24].  
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HPAC provides the distribution of the physical dose in a certain region. However, the 
physical doses may not be identical to the biological doses but may, in some 
instances, be correlated [25]. Spectral clustering [26-28] and geostatistics [29] can 
be used to determine the minimum number of data points (e.g. locations in the map) 
that are needed to construct similar distribution. However, the complexity of the 
calculations needed for spectral clustering become increasingly prohibitive with large 
datasets. Our efforts have turned to geostatistical estimation of radiation exposures. 
 
ADCI-HT could be an instrumental resource in the rapid identification of patients 
requiring treatment in population-scale nuclear incidents. Depending on population-
density, ADCI-HT software can identify DCs and estimate dose of a population within 
an irradiated zone in 0.6-7.4 days (Table 1; Figure 3). ADCI-HT by itself, however, 
only accelerates image processing and DC identification. The acquisition of said 
samples, the preparation of metaphase cells and the capture of DC images makes 
the testing of entire populations logistically impossible. Sampling and testing 
requirements can be reduced via geostatistical sampling; a method of estimating the 
spatial boundaries of a region using a small subset of samples at various locations. 
Applying such methods can limit the number of patients requiring testing while 
reducing sampling time required for first responders, expediting identification of 
those requiring treatment in scenarios where time and resources are limited. 
 
Despite this significant reduction in processing time using ADCI software, there are 
still potential improvements that may increase the feasibility of implementing this 
software as a routine biodosimetry laboratory resource. Although ADCI-HT was 
benchmarked as faster than Desktop ADCI, access to supercomputers may not 
always be feasible, and therefore increasing the rate of analysis via conventional 
ADCI is still crucial. We have recently implemented GPU acceleration on the 
Desktop platform. Preliminary results showed a ~8x increase in sample processing 
speed, which may not be as fast as ADCI-HT but may be adequate in some 
population-scale scenarios. We are also implementing the contaminated Poisson 
method to calculate the mean DC frequency within the irradiated fraction of partially 
irradiated samples. 
 
We have presented a high-throughput implementation of ADCI which rapidly 
processes metaphase images and provides radiation dose estimations. The dose 
estimates results were concordant with those generated by the Desktop version 
when analyzing exercise sample data from 5 different laboratories. This level of 
dedicated computing resources available for the 40,000 sample run made a 
significant difference in obtaining timely dose estimates for the entire population, as 
a single processing block would have been insufficient (i.e. 37 days of ACT) for 
timely estimation of population-scale exposures. ADCI-HT therefore achieves 
adequate performance to deliver timely and accurate dose estimates in a mass 
casualty radiation event.  
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Table 1. Estimated exposed populations in US metropolitan and BG/Q 
processing times after high yield nuclear incident^ 
 
 

City State No. persons with 
> 1 Gy exposure 

No. persons with 
>2 Gy exposure 

Processing time* 
(>2 Gy) in days 

Burlington VT 92,008 61,231 0.58 

Portland ME 102,720 66,937 0.63 

Manchester NH 136,356 110,506 1.04 

Boston MA 865,157 783,835 7.37 

Albany NY 98,111 98,111 0.92 

Buffalo NY 256,902 256,902 2.41 

Hartford CT 309,626 216,569 2.04 

New Haven CT 138,776 129,934 1.22 

Stamford CT 191,472 191,472 1.80 

Newark NJ 476,853 281,764 2.65 

Camden NJ 230,942 110,043 1.03 

Harrisburg PA 78,870 73,817 0.69 

Pittsburgh PA 319,221 303,625 2.85 

Detroit MI 672,795 672,795 6.32 

Grand Rapids MI 350,236 196,445 1.85 

Milwaukee WI 595,047 595,047 5.59 

*based on 16,384 cores, 4 nodes (non-prioritized jobs scheduled); ^ 5 megaton 
airborne yield, plume based on historically prevalent wind speed and direction 
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Table 2. Comparison of capture and determination of DC counts in 1000 
samples. Assumes 10 microscope capture systems for capture and either 10 
DCScore or 10 ADCI–Desktop or 1 ADCI-BGQ) systems 
  

 Romm et al. 
Mut. Res. 756 (2013) 174– 183 

ADCI 
Windows 
(GPU) 

ADCI 
BG/Q 

Task Estimated 
time: 150 
images 

Estimated time for 500 images^ 

Auto-metaphase finding 0.35 d 1.16 d 1.16 d 1.16 d 

Gallery review and 
selection* 

2.71 d 9 d 0 0 

Auto-capturing 0.83 d 2.77 d 2.77 d 2.77 d 

Automatic scoring 1.66 h 5.55 h 7.83 h 0.23 h 

DC candidate 
evaluation 

4.17 d 13.87 d 0 0 

Total 8.13 d 27.03 d 4.25 d 3.94 d 

* This step was omitted from Romm et al. 2013. J. Moquet determined: “system detected 2899 metaphase 
spreads. It then took 25 mins to look through the gallery and leave 1250 metaphases ready to capture”; ^IAEA 
criteria for DCA; Bolded text: requires expert review, assuming 8 hr/day, continuously. 
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Figures and legends 
 

 
Figure 1. ADCI Project: Inventory of modules by software layer. Illustration of 
the HT implementation of the ADCI software. I. Supporting libraries: public, open 
source (unfilled boxes) and proprietary (filled boxes) components called by functional 
modules. II. Functional modules used by the ADCI Interface. III. Interface called by 
applications. IV. Different software Applications using ADCI interface to process 
images. 
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(A) Processing of samples and images in parallel 

 
(B) Batch processing of biodosimetry sample sets 

 
Figure 2. Master scheduling software in BG/Q. A) Architecture of three 
layer scheduler which consists of a general manager which controls individual 
managers which in turn are assigned multiple worker processors, minimizing 
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compute load imbalances. B) In BG/Q, samples are grouped into sets and run 
on requested cores, running as many processes as possible while considering 
the resources available until all sets are completed. 
 
 
 
 
 
 

 
 

Figure 3. Capacity of ADCI-HT for dose estimation in a high yield mass 
casualty. HPAC-derived plume presented intersects with contours of >2 Gy 
include Boston, Suffolk County, Massachusetts (population = 673,184) and 
Cambridge, Middlesex County, Massachusetts (population = 110,651), 
leading to a total population of 783,835. Extrapolating from 6,480 sample run 
(1.3 hr for 4 nodes), the time required for ADCI-HT to analyze samples from 
the total population would be 157.25 hours or 6.5 days. 
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Figure 4. Large scale simulation based on multi-centre biodosimetry exercise 
sample sets. Test image samples acquired from 5 separate laboratories consisting 
of 46,196,000 metaphase images were processed by ADCI-HT in just over 25 hours. 
Duration of each sample set are as follows: CNL: 14:06:22; HC: 06:27:22; LT: 
03:16:21; PHE: 01:28:40; VN: 01:44:02. Times correlated to the total number of 
images in each data set. 
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Figure 5. Comparison of ADCI throughput for different hardware 
platforms. The rate in which images are processed using only a single BG/Q 
processor block is ~10x fold faster than a GPU-enabled i7 laptop (4-core i7-
7700HQ 2.8GHz processor, GTX1050 GPU and 16GB RAM). Image 
processing throughput can be increased further using multiple processor 
blocks via BG/Q scheduler. 
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Supplementary Figure 
 

A) Windows 

 
B) BG/Q 
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Supplementary Figure 1. Adapting ADCI Windows Desktop Graphical User 
Interface to ADCI-HT on BG/Q. Data flow diagram illustrating the steps required to 
perform metaphase image processing tasks using A) Windows ADCI, and B) BG/Q 
ADCI (ADCI-HT) software platforms.  
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