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Abstract 

Autism spectrum disorder (ASD) is a phenotypically and genetically heterogeneous 

neurodevelopmental disorder. Despite this heterogeneity, previous studies have shown patterns 

of molecular convergence in post-mortem brain tissue from autistic subjects. Here, we integrate 

genome-wide measures of mRNA expression, miRNA expression, DNA methylation, and 

histone acetylation from ASD and control brains to identify a convergent molecular subtype of 

ASD with shared dysregulation across both the epigenome and transcriptome. Focusing on this 

convergent subtype, we substantially expand the repertoire of differentially expressed genes in 

ASD and identify a component of upregulated immune processes that are associated with 

hypomethylation. We utilize eQTL and chromosome conformation datasets to link differentially 

acetylated regions with their cognate genes and identify an enrichment of ASD genetic risk 

variants in hyperacetylated noncoding regulatory regions linked to neuronal genes. These 

findings help elucidate how diverse genetic risk factors converge onto specific molecular 

processes in ASD. 
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ASD is a prevalent neurodevelopmental disorder characterized by impaired social interactions 

with repetitive and restrictive behaviors1. Although ASD is highly heritable, its genetic etiology 

is complex, with approximately 1,000 risk genes implicated2. Assessment of ASD risk is 

challenging due to its genetic architecture which encompasses alleles of varying frequencies 

(common, rare, very rare) and inheritance patterns (Mendelian autosomal and X-linked, additive, 

de novo)3-5 that likely interact together within individuals and families6,7. 

 

Surprisingly, despite this genetic complexity, molecular studies have identified consistent 

patterns of changes in post-mortem brain tissue from ASD subjects8-12. At the transcriptomic 

level, ASD brains exhibit downregulation of genes involved in neuronal activity with a 

concomitant upregulation of genes involved in microglial and astrocyte-mediated 

inflammation9,13. Additionally, there is a shared pattern of microRNA (miRNA) dysregulation 

directly targeting downregulated neuronal genes as well as upregulated astrocyte genes12. At the 

epigenomic level, ASD brains exhibit DNA methylation differences in genomic regions related 

to immunity and neuronal regulation11,14. Additionally, there are differences in histone 

acetylation (H3K27ac) associated with genes involved in synaptic transmission and 

morphogenesis10. To date, these molecular datasets have not been comprehensively integrated 

and analyzed together, which could provide a better understanding of how epigenetic changes 

directly regulate expression of their cognate genes and how these processes are related. 

Additionally, despite evidence for shared patterns of molecular dysregulation, only 

approximately two-thirds of ASD brain samples exhibit this major shared molecular pattern, 

indicating the potential for distinct molecular subtypes. Such heterogeneity among ASD cases 
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would also be expected to reduce power to identify disease-related signals, providing another 

rationale for identification of subtypes. 

 

Systems level integration of multi-omic datasets has been a successful strategy to identify 

molecular subtypes and elucidate causal mechanisms in cancer15,16. However, it has not yet been 

applied to neurodevelopmental disorders, including ASD. In this study, we utilize Similarity 

Network Fusion (SNF), a powerful integrative method that has identified molecular subtypes 

when integrating transcriptomic with epigenomic datasets in cancer17, to integrate mRNA 

expression, miRNA expression, DNA methylation, and histone acetylation datasets from ASD 

brain (Figure 1a). This unbiased data driven analysis identifies two distinct molecular subtypes 

of ASD, one, which represents the majority of cases, showing a cohesive molecular pattern, and 

the other without consistent changes in molecular measures. By analyzing ASD brains according 

to subtype, which significantly reduces heterogeneity, we are able to identify three-fold more 

differentially expressed mRNA genes as compared to previous analyses. We identify 

differentially expressed miRNAs, differentially methylated promoters and gene bodies, as well 

as differentially acetylated genomic regions and assess the extent to which these regulatory 

mechanisms influence gene expression in ASD. Finally, we find an enrichment of ASD genetic 

risk in regulatory regions linked to neuronal genes that are hyperacetylated in ASD brains, 

suggesting a casual role for these elements. 

 

Results 

Integration of transcriptomic and epigenomic datasets from ASD and control brains 
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We integrated previously published datasets on mRNA expression9, miRNA expression12, DNA 

methylation11, and histone acetylation10 from a cohort of 48 ASD and 45 control brains 

(Supplementary Table 1 and Figure 1a). We only analyzed the samples originating from the 

frontal and temporal cortex, because previous studies found ASD dysregulated features were 

predominantly localized to the cerebral cortex and substantially attenuated in the cerebellum. For 

mRNA and miRNA expression, we used normalized gene quantifications and differential 

expression summary statistics from the previous studies9,12 (Methods).  

 

For DNA methylation, we used the normalized probe quantifications from the previous study11 

and collapsed probe level measurements onto 21880 gene promoters and 24458 gene bodies to 

facilitate comparisons between methylation and expression (Methods).  An initial differential 

methylation analysis identified 2578 and 1262 differentially methylated promoters and gene 

bodies, respectively, at an FDR < 10% (Methods, Supplementary Figure 1a-b, and 

Supplementary Table 4). The genes with differential promoter methylation were largely distinct 

from genes with differential gene body methylation (Supplementary Figure 1e-f). However, the 

loadings for each sample along the first principal component of differential promoter and gene 

body methylation were almost identical (Supplementary Figure 1d) and not correlated with any 

potential confounders (Supplementary Figure 1c), suggesting a coherent regulatory 

mechanism.  

 

For histone acetylation, we reprocessed the dataset10 entirely (Methods) by mirroring established 

ChIP-seq processing pipelines from the ENCODE18 and Roadmap Epigenomics projects19. We 

quantified 50773 consensus H3K27ac peaks across the genome, which largely overlapped 
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H3K27ac peaks identified in the previous study (Supplementary Figure 2a-c), identifying 274 

differentially acetylated regions at an FDR < 20% (Methods, Supplementary Figure 2d, and 

Supplementary Table 5). Although this was thirty-fold fewer differentially acetylated regions 

than previously identified (Supplementary Figure 2e), we show that this depletion is an artifact 

of subtype heterogeneity in the ASD samples (see below Subtype-specific histone acetylation 

differences in ASD). 

 

Identification of two ASD molecular subtypes 

In the previous molecular studies9-12, we noticed that approximately two-thirds of ASD brain 

samples clustered together based on the differential signal for each dataset. To formally assess 

ASD molecular heterogeneity across the four different datasets, we used SNF17 to integrate 

differential mRNA expression, miRNA expression, DNA methylation, and histone acetylation 

for 30 ASD and 17 control samples that were present in all 4 molecular datasets (Methods). SNF 

creates an integrative sample-sample similarity network by quantifying sample-sample 

relationships within each individual dataset and then integrating these sample-sample 

relationships across all of the datasets17. The clustering of sample relationships is a major 

advantage of SNF, as compared to alternative data integration methods that cluster gene 

relationships which can be sensitive to differing normalization methods between data types20. 

 

The sample loadings along the first principal component of each differential molecular level 

recapitulated known regulatory relationships, with differential acetylation (R = 0.70) and 

differential miRNA expression (R = 0.51) being highly correlated to differential mRNA 

expression, whereas differential methylation was less correlated with expression (R = 0.13)21,22 
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(Figure 1b). Using this similarity network, samples divided into two distinct clusters (Figure 

1c), one of which (SNF Group 2) consisted entirely of ASD samples that loaded strongly onto 

the differential transcriptomic and epigenomic signatures. Therefore, we grouped these samples 

together as the ASD “Convergent” Subtype. The other cluster (SNF Group 1) consisted of ASD 

samples that did not load onto the initial differential signatures and were indistinguishable from 

controls. Therefore, we grouped these samples together as the ASD “Disparate” Subtype. We 

built a logistic regression classifier to assign the 61 ASD and 61 control samples that were not 

used in at least one of the four classification datasets into either the Convergent or Disparate 

subtypes (Methods, Figure 1d, and Supplementary Figure 4). Interestingly, 11 of the 43 ASD 

individuals with samples from both frontal and temporal cortex were classified into different 

molecular subtypes in the 2 cortical regions (Supplementary Figure 4d), a significant 

difference in comparison to only 2 of the 33 control individuals (p = 0.032, Fisher’s Exact Test). 

This finding is consistent with potential molecular heterogeneity across different cortical regions 

in ASD.  

 

SNF subtype assignments were robust to clustering methodology and comprehensive leave one 

out cross validation (Supplementary Figure 3c-d). We further tested clustering robustness by 

leaving out each dataset and performing SNF clustering and logistic regression classification 

using the remaining three datasets. We found the resultant sample subtype assignments were 

highly concordant (range = 0.89-0.92) with the subtype assignments identified using the entire 

four dataset collection (Figure 1e and Supplementary Figure 5). Additionally, the ASD 

subtype assignments were not correlated with, or driven by, biological or technical covariates, 

including age, sex, RNA quality, cell fraction, and post mortem interval (Supplementary Figure 
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6). Finally, to compare with the sample classifications above, which were generated using only 

differential features in each dataset, we attempted to cluster the samples with SNF using all 

features in the transcriptomic and epigenomic datasets. We find no clear separation between 

ASD and control samples (Supplementary Figure 3a-b), demonstrating that molecular 

differences between ASD and control brains are restricted to specific differentiating features and 

are not a general genome-wide phenomenon. 

 

Subtype-specific mRNA expression differences in ASD 

To leverage the increased power of analyzing a more homogenous set of cases, we performed 

differential mRNA expression analyses separately for ASD Convergent and Disparate subtypes 

against control samples for each gene (Methods and Supplementary Figure 7a-b). For the 

ASD Convergent subtype, we observed 4599 differentially expressed genes at an FDR < 5%, 

1999 of which were upregulated and 2600 downregulated in ASD (Supplementary Table 2). 

We reproduce 94% of the differentially expressed genes from the previous study9 and identify an 

additional 3525 genes (Figure 2a-b), demonstrating the utility of this subtype-specific approach. 

The top gene ontology enrichments are very similar to those previously identified, showing an 

upregulation of genes involved in immune response and a downregulation of genes involved in 

synaptic transmission and neuronal ion transport (Supplementary Figure 7c-d). In contrast, for 

the ASD Disparate subtype, we found no differentially expressed genes. 

 

Next, we identified mRNA co-expression modules that were differentially associated between 

ASD and control individuals in the cortical co-expression network defined previously9. For each 

gene module, we tested whether the two ASD subtypes and control samples had differences in 
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their association with the module eigengene, a summary measure of module expression level 

(Supplementary Figure 7e). For the ASD Convergent subtype, we found 13 differentially 

associated co-expression modules at an FDR < 5%, including the 6 ASD-associated modules 

identified previously9 and 7 newly associated modules (Figure 2c). In contrast, for the ASD 

Disparate subtype, we did not find any differentially associated co-expression modules. 

 

Of the 7 newly identified ASD-associated co-expression modules in this study, 4 were 

downregulated in ASD: mRNA.M1, a module representing neurogenesis, mRNA.M3, a module 

representing mitochondrial function in neurons which has been previously implicated in ASD23, 

mRNA.M7, a module with no functional enrichments, and mRNA.M17, a module representing 

synaptic signaling and vesicle transport in neurons (Figure 2d-e). To gain insight into neuronal 

downregulation in ASD at a finer resolution, we compared ASD downregulated modules to 

neuronal cell type specific markers identified from single-nuclei RNA sequencing of post-

mortem human cortex24. ASD downregulated modules are significantly enriched with markers of 

both inhibitory and excitatory neurons (Figure 2f). The strongest enrichments are inhibitory 

neuron subtypes expressing SST or PVALB, derived from the medial ganglionic eminence as well 

as deep layer excitatory neurons expressing RORB or FEZF2 (Figure 2f), suggesting that the 

number and/or activity of these cells is heavily decreased in ASD, consistent with a recent single 

cell analysis of post mortem ASD brain25. 

 

Three of the newly identified ASD-associated modules were upregulated in ASD: mRNA.M15, a 

module representing metabolic processes and transcriptional regulation in glia, mRNA.M21, a 

module representing ribosomal translational, and mRNA.M23, a module enriched with astrocyte 
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markers. Module mRNA.M15 (Figure 2g-h) was particularly interesting, because one of its top 

hub genes is REST, a transcriptional repressor with critical roles in repressing neural genes in 

non-neural cells26. Although module mRNA.M15 is enriched with microglial markers 

(Supplementary Figure 7g), it exhibits a markedly different transcriptional profile27 than the 

previously identified ASD upregulated microglial module mRNA.M19 (Figure 2i). Module 

mRNA.M19 is specifically enriched with genes marking microglial activation28, suggesting that 

it is directly related to neural-immune response. In contrast, module mRNA.M15 is enriched 

with markers of juvenile or aging glia, suggesting it may be related to glial growth and 

maturation. In general, cellular processes underlying broad categories of immuno-glial cell types 

are upregulated in ASD. 

 

Subtype-specific miRNA expression differences in ASD 

We conducted differential miRNA expression analyses for ASD Convergent and Disparate 

subtypes against control samples for each mature miRNA transcript (Methods and 

Supplementary Figure 8a-b). For the ASD Convergent subtype, we identified 44 differentially 

expressed miRNAs at an FDR < 5%, 28 upregulated and 16 downregulated in ASD that highly 

overlapped with the previous study (52%; Supplementary Figure 8c-d and Supplementary 

Table 3)12. We analyzed differentially associated miRNA co-expression modules in the miRNA 

co-expression network defined previously12. For the ASD Convergent subtype, we found the 

same 3 miRNA co-expression modules differentially associated at an FDR < 5% as the previous 

study: miRNA.brown, which is downregulated in ASD as well as miRNA.magenta and 

miRNA.yellow, which are upregulated (Supplementary Figure 8e). We used TargetScan29 to 

predict mRNA targets for the top hubs of each differentially associated miRNA co-expression 
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module (Supplementary Table 3). We found a slight enrichment of genes in the upregulated 

mRNA.M19 module within the predicted targets of the miRNA.brown module, as well as genes 

in the downregulated mRNA.M16 module within the predicted targets of both miRNA.brown 

and miRNA.yellow (Supplementary Figure 8f), suggesting a moderate influence of differential 

miRNA expression on differential gene expression in ASD. In contrast, for the ASD Disparate 

subtype, we did not find any differentially expressed miRNAs or differentially associated 

miRNA co-expression modules. Overall, subtype-specific analyses of miRNA expression largely 

recapitulated findings from previous work12. 

 

Subtype-specific DNA methylation differences in ASD 

We conducted differential DNA methylation analyses for ASD Convergent and Disparate 

subtypes against control samples for gene promoters and gene bodies (Methods). For the ASD 

Convergent subtype, we identified 4187 differentially methylated gene promoters at an FDR < 

5%, 3221 hypermethylated and 966 hypomethylated in ASD (Supplementary Figure 9b and 

Supplementary Table 4). ASD hypermethylated gene promoters are enriched in RNA 

processing genes, while ASD hypomethylated gene promoters are enriched in chemical sensory 

receptor genes (Supplementary Figure 9d-e). We identified 2415 differentially methylated gene 

bodies at an FDR < 5%, 1146 hypermethylated and 1269 hypomethylated in ASD 

(Supplementary Figure 10b and Supplementary Table 4). ASD hypermethylated gene bodies 

are enriched in RNA processing genes, while ASD hypomethylated gene bodies are enriched in 

keratinization and bile acid transport genes (Supplementary Figure 10d-e). We assigned the 

previously identified differentially methylated probes11 to their corresponding promoter or gene 

body annotation and now identify seventy and twenty-fold more differentially methylated 
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promoters (Supplementary Figure 9h-i) and gene bodies (Supplementary Figure 10h-i), 

respectively. In contrast, for the ASD Disparate subtype, we did not find any differentially 

methylated gene promoters or gene bodies (Supplementary Figures 9c and 10c). Genes with 

differentially methylated gene promoters were largely distinct from those with differentially 

methylated gene bodies although there was a greater overlap in hypermethylated genes due to 

their shared biological enrichments (Figure 3a-b). There were 711 and 412 genes that were both 

differentially expressed as well as differentially methylated at gene promoters and gene bodies, 

respectively. As expected, there was a negative correlation between differential expression and 

differential methylation for both gene promoters and gene bodies (Figure 3c-d), although 

surprisingly gene body methylation was more strongly negatively correlated with expression 

than promoter methylation. 

 

We generated co-methylation networks for both promoters and gene bodies (Supplementary 

Figures 9a and 10a) which recapitulated many aspects of the probe-level co-methylation 

network that was previously built11 (Supplementary Figure 11a-b). We identified 8 ASD-

associated promoter co-methylation modules, 4 hypermethylated and 4 hypomethylated in ASD 

(FDR < 0.05; Supplementary Figure 9f). The hypermethylated promotor modules were: 

Prom.midnightblue, representing coenzyme A biosynthesis, Prom.pink, a module with no 

functional enrichments, Prom.tan, enriched with oligodendrocyte cell markers, and 

Prom.turquoise, enriched with astrocyte cell markers and representing RNA processing. The 

hypomethylated modules were: Prom.brown and Prom.greenyellow, two modules representing 

sensory perception, as well as Prom.lightcyan and Prom.lightgreen, two modules representing 

immune processes.  
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At the gene body level, we identified 10 ASD-associated co-methylation modules, 4 

hypermethylated and 6 hypomethylated in ASD (FDR < 0.05; Supplementary Figure 10f). The 

hypermethylated modules were: GB.blue, representing RNA processing, GB.cyan, enriched in 

neuron cell markers and representing the unfolded protein response, GB.darkred, enriched in 

neuron cell markers and representing mitochondrial activity, and GB.royalblue, a module with 

no functional enrichments. The hypomethylated modules were: GB.black, GB.darkgreen, 

GB.lightcyan, and GB.salmon, 4 modules representing immune processes, as well as GB.green, a 

module representing glucuronidation, and GB.yellow, representing bile acid ion transport. In 

contrast, for the ASD Disparate subtype, we did not find any ASD-associated promoter or gene 

body co-methylation modules.  

 

Overall, the ASD-associated co-methylation modules did not show significant global overlap 

with the ASD-associated co-expression modules at the gene level (Supplementary Figure 11c-

d), suggesting that differential methylation is not a prominent driver of differential gene 

expression. The largest overlaps are between hypomethylated co-methylation modules and 

upregulated co-expression modules involved in immune processes. In particular, Prom.lightgreen 

overlaps significantly with mRNA.M19 and GB.darkgreen overlaps significantly with 

mRNA.M15, suggesting that the ASD-associated upregulation in immune activation is, in part, 

regulated by a decrease in DNA methylation at promoters and gene bodies (Figure 3e-j). 

 

Subtype-specific histone acetylation differences in ASD 
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We next performed differential histone acetylation analyses for ASD Convergent and Disparate 

subtypes against control samples for H3K27ac peaks in the genome (Methods). For the ASD 

Convergent subtype, we identified 6894 differentially acetylated peaks at an FDR < 10%, 3577 

hyperacetylated and 3317 hypoacetylated in ASD (Supplementary Figure 12a and 

Supplementary Table 5). There was a strong overlap with differentially acetylated peaks 

identified in a previous study (Supplementary Figure 12c-d)10. In contrast, for the ASD 

Disparate subtype, we did not find any differentially acetylated peaks (Supplementary Figure 

12b). Using GREAT to assess ontology enrichments for genes closest to each differentially 

acetylated peak30, we find that genes proximal to ASD hyperacetylated peaks are enriched in 

GABA receptor activity while genes proximal to ASD hypoacetylated peaks are enriched in 

neurogenesis and brain development (Figure 4a-b). H3K27ac is known to mark active 

promoters31, and as expected, differentially acetylated peaks in gene promoters were strongly 

positively correlated (R = 0.43) with differential expression (Figure 4d). Surprisingly, we found 

that the relationship between differential promoter acetylation and differential expression was 

cell type specific, with hyperacetylated promoters associated with upregulated microglial genes 

and downregulated neuronal genes, whereas hypoacetylated promoters were associated with 

upregulated astrocyte genes and downregulated oligodendrocyte genes (Figure 4e).  

 

In addition to marking promoters, H3K27ac also marks distal enhancers up to 1 MB away from 

gene transcription start sites (TSS)32. We utilized expression quantitative trait loci (eQTL) and 

chromatin conformation capture (Hi-C) datasets from bulk adult brain tissue33, as well as Hi-C 

data using sorted neuronal and glial cells from adult brain tissue (Methods) to link distal 

differential H3K27ac peaks with their cognate genes (Figure 4c; Methods). As a baseline, we 
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analyzed all differentially acetylated peaks within 1 MB of a differentially expressed gene TSS 

and found that the overall correlation between differential acetylation and differential expression 

was minute (R = 0.012, p = 0.023) (Supplementary Figure 12e). The correlations improved 

when linking differentially acetylated regions to differentially expressed genes using eQTL (R = 

0.061, p = 0.0012) (Supplementary Figure 12f) and bulk Hi-C (R = 0.067, p = 0.015) 

(Supplementary Figure 12g), but remained small genome wide. However, using cell type 

specific Hi-C data we were able to see that the correlation was driven largely by glial specific 

interactions (neuronal Hi-C: R = 0.046, p = 0.054; glial Hi-C: R = 0.12, p = 5e-5) 

(Supplementary Figures 12h-i), reflecting the greater number of glia as compared with neurons 

in the cerebral cortex34. The correlations were further improved when H3K27ac peaks were 

linked to genes using a combination of eQTL and cell type specific Hi-C datasets (neuronal: R = 

0.14, p = 0.038; glial: R = 0.2, p = 0.0031) (Figure 4f-g). However, the combination of eQTL 

and bulk Hi-C was substantially less correlated (R = 0.037, p = 0.27) (Supplementary Figure 

12j), suggesting that chromatin contacts display remarkable cell-type specificity and this 

distinction is attenuated when looking at bulk tissue. 

 

We provide a listing of potential cognate genes linked to differentially acetylated peaks using the 

eQTL, neuronal Hi-C, and glial Hi-C linkages, emphasizing the highest confidence interactions 

based on those identified in both a Hi-C dataset and the eQTL data (Supplementary Table 5). 

Using this list of cognate genes, we identified gene co-expression modules potentially regulated 

by ASD-associated acetylation changes (Figure 4h). We find an enrichment of ASD 

hypoacetylation at promoters in mRNA.M9, an astrocyte module that is upregulated in ASD. 

Additionally, we find an enrichment of ASD hyperacetylation at distal enhancers in mRNA.M16, 
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a neuron module that is downregulated in ASD. Surprisingly, in both of these cases, acetylation 

changes are negatively correlated with expression changes. This suggests, for genes in these 

modules, that ASD-associated acetylation changes are not causal, but compensatory to gene 

expression changes, with components of hypoacetylation linked to upregulated astrocyte 

processes and hyperacetylation linked to downregulated neuronal processes (Figure 4i).  

 

Enrichments of ASD heritability in dysregulated genomic regions 

Differential gene expression or epigenetic changes may either be contributory to, or a 

consequence of disease. To provide a causal anchor, we used stratified LD score regression35 to 

partition heritability of ASD risk variants from genome wide association studies4,36 into regions 

of the genome that are differentially expressed, methylated, or acetylated. We found a significant 

enrichment of heritability in genomic regions that are hyperacetylated in ASD brains (Figure 

5a). Specifically, this enrichment is found at distal enhancer regions and not at gene promoters 

(Figure 5b), highlighting the importance of noncoding regulatory elements. Cognate genes 

linked to hyperacetylated enhancers are enriched within module mRNA.M16 (Figure 4h), an 

ASD-downregulated neuronal module representing genes involved in learning, memory, and 

behavior (Figure 5c-d). This finding supports previous observations that common genetic risk 

variants for ASD are enriched in regulatory regions of neuronal genes4,13. Among the genes 

within module mRNA.M16, three of its top hub genes are linked to elements hyperacetylated in 

ASD: NSF, PRKCE, and SCN8A (Figure 5e-g), suggesting that an increase in acetylation is 

attempting to compensate downregulation of key driver genes of this module. Next, we looked 

for ASD heritability enrichments in the co-expression and co-methylation network modules 

(Supplementary Figure 13a-c). We found a significant enrichment of heritability within the 
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promoter co-methylation module Prom.green, which represents genes involved in neurogenesis 

(Supplementary Figure 13d-e), further strengthening the observation that ASD risk variants 

reside within regulatory regions of genes involved in neuronal function and neurogenesis.  

 

Taken together (Figure 6), our findings imply a model whereby ASD risk variants perturb 

regulatory elements controlling genes in co-expression module M16, leading to the overall 

downregulation of synaptic signaling and neuronal ion transport observed. This in turn, leads to 

the transcriptional upregulation of astrocyte and microglial mediated immune processes through 

a concomitant decrease in DNA methylation and decrease in expression of associated miRNAs. 

Finally, as a response to compensate these transcriptional changes, there is a decrease of histone 

acetylation at the promoters of upregulated astrocyte genes as well as an increase of histone 

acetylation linked to downregulated neuronal genes at the same regulatory elements that were 

initially impacted by the casual genetic variants. 

 

Discussion 

We integrate mRNA expression, miRNA expression, DNA methylation, and histone acetylation 

datasets to identify a subtype of ASD brain samples with convergent dysregulation across the 

epigenome and transcriptome. By focusing on this convergent ASD subtype, we identify a three-

fold expansion in differentially expressed mRNAs and co-expression modules encompassing the 

major processes of neuronal downregulation and immune upregulation. We identify thousands of 

differentially methylated gene promoters and gene bodies, but only a small proportion of the 

methylation changes, specifically hypomethylation of immune genes, seem to influence gene 

expression regulation. In contrast, histone acetylation is a strong positive regulator of mRNA 
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expression21 and we identify thousands of differentially acetylated regions across the genome 

and furthermore assign them to cognate genes using eQTL and chromosome conformation 

datasets. We find differentially acetylated regions enriched within dysregulated astrocyte and 

neuronal co-expression modules. Surprisingly the acetylation changes in these regions are 

negatively correlated with expression changes, implying that these changes are compensatory, as 

previously suggested10. 

 

Over 50% of ASD genetic liability is carried by small effect size common variants which are 

mostly noncoding3. One of the major challenges in characterizing these common variants is the 

ability to link noncoding regulatory regions with their cognate genes, which are often 

dynamically regulated across different cell types and developmental stages. In this study, we find 

an enrichment of ASD genetic risk within hyperacetylated regions of the genome, specifically 

those linked to downregulated neuronal genes. While enrichment of ASD risk variants in brain 

regulatory elements, including those marked by H3K27ac, has been observed before4,37, this is 

the first study reporting that ASD risk variants are enriched in differentially regulated enhancers 

in ASD brains, providing a potential mechanistic understanding of how non-coding ASD risk 

variants impact gene regulation. We find that neuron-specific and glial-specific Hi-C datasets 

perform better than a bulk tissue Hi-C dataset in linking distal regulatory elements with genes 

(Figures 4f-g and Supplementary Figure 12j), demonstrating the critical need for cell-type 

specific regulatory maps of the noncoding genome. 

 

A major unanswered question is what molecular processes are involved in the ASD Disparate 

subtype samples. We were unable to find any consensus molecular dysregulation in these 
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samples across all the datasets (Supplementary Figures 7b, 8b, 9c, 10c, 12b). We also checked 

whether they were misdiagnosed, but the available clinical records for these individuals are 

sparse and we found no samples exhibiting differential expression signatures for four other 

neuropsychiatric disorders (Supplementary Figure 14). We noticed that 11 of the ASD subjects 

were classified into different molecular subtypes when comparing frontal and temporal cortex 

(Supplementary Figure 4d), suggesting that the extent of molecular dysregulation may vary 

across regions of the cortex in these individuals. As an initial assessment of regional 

heterogeneity, we analyzed RNA-seq data derived from four additional cortical areas in a subset 

of individuals in this study23, including portions of the parietal and occipital lobes, and find 

considerable heterogeneity in gene expression dysregulation across the cortex (Supplementary 

Figure 15). Future studies of ASD post-mortem brain samples with larger sample sizes, 

assessing more brain regions, and availability of comprehensive phenotypic data will be needed 

to further characterize the regional specificity of molecular changes in ASD. 

 

Online Methods 

Initial processing of datasets  

All molecular datasets came from a cohort of 48 ASD and 45 control brains from the Harvard 

Autism Tissue Program (https://hbtrc.mclean.harvard.edu/) and NIH Neuro Brain Bank 

(http://www.medschool.umaryland.edu/btbank/). Initial analyses from the transcriptomic and 

epigenomic datasets have been previously published9-12. We restricted this study to only those 

samples originating from the frontal or temporal cortex. In the epigenomic studies10,11, samples 

from the Oxford and MRC London Brain Banks were also present, however we removed these 

samples because we did not have transcriptomic data for them. 
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For mRNA expression, we used the quantification of log2 RPKM values for 16310 genes in 82 

ASD samples and 74 control samples from 47 ASD and 44 control brains from Parikshak et al9 

(https://github.com/dhglab/Genome-wide-changes-in-lncRNA-alternative-splicing-and-cortical-

patterning-in-autism). These RPKM values were normalized for gene length and GC content 

using CQN38, but not adjusted for technical or biological covariates. We downloaded the 

differential mRNA gene expression summary statistics and mRNA co-expression network 

module definitions. We calculated principal components (SeqStatPCs) to summarize the 

following sequencing statistics: log10(TotalReads.picard), log10(Aligned.Reads.picard), 

log10(HQ.Aligned.Reads.picard), log10(PF.All.Bases.picard), log10(Coding.Bases.picard), 

log10(UTR.Bases.picard), log10(Intronic.Bases.picard), log10(Intergenic.bases.picard), 

Median.CV.Coverage.picard, Median.5prime.Bias.picard, Median.3prime.Bias.picard, 

Median.5to3prime.Bias.picard, AT.Dropout.picard, GC.Dropout.picard, and 

PropExonicReads.HTSC. 

 

For miRNA expression, we used the quantification of log2 read counts mapping to 699 mature 

miRNAs in 60 ASD samples and 42 control samples from 39 ASD and 28 control brains from 

Wu et al12. To balance the case/control cohorts with respect to age, we removed all samples from 

younger individuals (Age <= 10) leaving us with 49 ASD samples and 42 control samples from 

31 ASD and 28 control brains. These read counts were normalized for mature miRNA GC 

content using CQN38 and batch effects using ComBat39, but not adjusted for technical or 

biological covariates. We downloaded the differential miRNA expression summary statistics and 

miRNA co-expression network module definitions. 
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For DNA methylation, we used the quantification of methylation beta values for 417460 CpG 

probes across the genome in 74 ASD samples and 42 control samples from 42 ASD and 27 

control brains from Wong et al11. To balance the case/control cohorts with respect to age, we 

removed all samples from younger individuals (Age <= 10) leaving us with 56 ASD samples and 

41 control samples from 33 ASD and 26 control brains. Probe quantifications were normalized 

using wateRmelon as previously described40. For each sample, the CET score was calculated41 

which is the proportion of neuronal vs glial cells. For samples where we had expression and/or 

acetylation data but did not have methylation data, we assigned their CET score as the average 

CET score. We collapsed the probe level measurements to gene promoters and gene bodies by 

taking the average methylation level of all probes mapping onto gene promoters (2KB upstream 

of TSS to TSS) and gene bodies (TSS to transcription end site (TES)) using gencode v19 

annotations42. We only kept gene promoters or gene bodies that contained 2 or more CpG 

probes. We downloaded the list of differentially methylated probes and co-methylation network 

identified from the cross-cortex analysis of Wong et al11. These probes were assigned to gene 

promoters and gene bodies as described above. 

 

For histone acetylation, we downloaded fastq files for 257 H3K27ac ChIP-seq samples as well as 

input samples from frontal cortex, temporal cortex, and cerebellum from Sun et al10 

(https://www.synapse.org/#!Synapse:syn8104916). We mapped reads from each sample onto the 

hg19 reference genome using BWA-MEM43 with default parameters. We removed duplicate 

reads using Picard tools (http://broadinstitute.github.io/picard/). For each sample, we identified 

H3K27ac gapped peaks using MACS244 callpeak with parameters --broad, -g hs, -q 0.05, and –c 
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the relevant tissue input sample. We filtered peaks to those with a fold change > 3 and qvalue < 

0.01. We looked at the size distribution of all peaks and removed large outlier peaks > 10,503 bp 

in size (third quartile + 2.5 * interquartile range). We also removed peaks from the ENCODE 

blacklist regions45 (http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/hg19-

human/wgEncodeHg19ConsensusSignalArtifactRegions.bed.gz). As a Q/C check, we used 

phantompeakqualtools18 to calculate ChIP-seq cross-correlation statistics. We removed samples 

failing Q/C: those with total reads < 10,000,000, read alignment fraction < 75%, read duplication 

fraction > 30%, called peaks < 7,500, normalized strand coefficient (NSC) < 1.03, relative strand 

correlation (RSC) < 0.5, or fraction of reads in peaks < 3%. We also removed all cerebellum 

samples and samples originating from the Oxford or MRC London Brain Banks. This left us with 

a dataset of 56 ASD samples and 48 control samples from 35 ASD and 33 control brains. We 

identified 50773 consensus H3K27ac peaks. Each consensus peak overlapped at least one peak 

called in at least 20 samples. The boundary of each consensus peak was set as the union of all 

overlapping peaks in the individual samples. We quantified the levels of each consensus peak in 

each sample by counting the number of overlapping reads and dividing by the library size (in 

millions of reads). The log2 normalized peak quantifications were used in further analyses. 

 

Similarity network fusion to identify molecular subtypes 

For 30 ASD and 17 control samples present in all four datasets, we used SNF17 to cluster 

samples together based on their relationships across the four data types. Before running SNF, we 

adjusted the datasets to remove the influence of technical and biological covariates. For mRNA 

expression, we fit a linear model for each gene: Expression ~ Diagnosis + Age + Sex + Region + 

RIN + Brain bank + Sequencing batch + seqStatPC1 + seqStatPC2 + seqStatPC3 + seqStatPC4 + 
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seqStatPC5 and regressed out the effect of all covariates except Diagnosis. For miRNA 

expression, we fit a linear model for each miRNA transcript: Expression ~ Diagnosis + Age + 

Sex + Region + RIN + Brain bank + Proportion of reads mapping to exons + log10(Sequencing 

depth) + PMI and regressed out the effect of all covariates except Diagnosis. For DNA 

methylation, we fit a linear model for each gene promoter and gene body: Methylation ~ 

Diagnosis + Age + Sex + Region + Brain bank + Batch + CET and regressed out the effect of all 

covariates except Diagnosis. For histone acetylation, we fit a linear model for each H3K27ac 

peak: Acetylation ~ Diagnosis + Age + Sex + Region + Brain bank + CET + Number of peaks in 

sample + Fraction of reads in peaks + Duplicate read fraction + Aligned read fraction and 

regressed out the effect of all covariates except Diagnosis.  

 

To identify ASD molecular subtypes, we restricted each dataset to its differential features 

between ASD and control samples. For mRNA expression, we restricted the genes to 2591 

differentially expressed genes at an FDR < 10% from the idiopathic ASD vs control analysis of 

Parikshak et al9. For miRNA expression, we restricted the miRNA transcripts to 92 differentially 

expressed miRNAs at an FDR < 10% from Wu et al12. For DNA methylation, we ran an initial 

differential methylation analysis looking at all ASD vs control samples (for details, see below 

ASD vs control differential molecular analyses) and restricted the genes to 2578 differentially 

methylated promoters at an FDR < 10%. For histone acetylation, we ran an initial differential 

acetylation analysis looking at all ASD vs control samples (for details, see below ASD vs control 

differential molecular analyses) and restricted the peaks to 274 differentially acetylated peaks at 

an FDR < 20%. 
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We ran SNF on the four adjusted and restricted datasets using the SNFtool package in R 

(https://cran.r-project.org/web/packages/SNFtool/index.html). For each dataset, we normalized 

the values of each feature using the standardNormalization() function in SNF. For each dataset, 

we calculated a sample-sample Euclidean distance using the dist2() function and used this 

distance to calculate a sample-sample affinity matrix using the affinityMatrix() function with 

parameters: K = 20 and alpha = 0.5. We generated a fused affinity matrix combining all 4 

affinity matrices using the SNF() function with parameters: K = 20 and T = 15 and then used the 

spectralClustering() function to demarcate the fused affinity matrix into 2 clusters of samples. 

Alternatively, we also used the symnmf_newton() function in Matlab from the symNMF 

package46 to cluster the fused affinity matrix. 

 

Classification of samples into the two SNF clusters 

For 61 ASD and 61 control samples that were missing from at least one of the four datasets, we 

built logistic regression models to classify them into one of the two clusters identified by SNF. 

For each of the 4 datasets, we calculated the sample loadings on the first principal component 

(PC1) of its differential features used as input to SNF. These PC1 loadings were transformed into 

Z-scores and used as predictors in the models.  

 

We built a total of twelve different logistic regression models. Three models were for samples 

present in three datasets: mRNA/miRNA/DNA methylation, mRNA/miRNA/histone acetylation, 

and mRNA/DNA methylation/histone acetylation. Six models were for samples present in two 

datasets: mRNA/miRNA, mRNA/DNA methylation, mRNA/histone acetylation, miRNA/DNA 

methylation, miRNA/histone acetylation, and DNA methylation/histone acetylation. Finally, 
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three models were for samples present in one dataset: mRNA, DNA methylation, and histone 

acetylation. There were no samples that were present in miRNA/DNA methylation/histone 

acetylation or miRNA only datasets. 

 

For each model, the training set was the 47 sample assignments identified by SNF. In training the 

model, the response variable was either 0 (for SNF group 1) or 1 (for SNF group 2) and the 

predictors were the sample differential Z-scores. We performed exhaustive leave one out 

validation on the training set by leaving each sample out, training the model with the remaining 

samples and predicting the response of the held-out sample. For each model, we chose a cutoff to 

distinguish between the two groups that maximized the cross-validation accuracy. We classified 

the test samples by running them through the model and applying the chosen cutoff. 

 

Outlier removal 

Before running differential analyses and WGCNA, we removed outlier samples from each of the 

4 datasets. For each dataset, we calculated sample-sample correlations and removed samples 

with a signed Z-score > 3, as previously described47. 

 

ASD vs control differential molecular analyses 

For mRNA expression, we ran differential expression analysis by fitting a linear mixed effect 

model for each gene: Expression ~ Diagnosis + Age + Sex + Region + RIN + Brain bank + 

Sequencing batch + seqStatPC1 + seqStatPC2 + seqStatPC3 + seqStatPC4 + seqStatPC5 as fixed 

effects, and brainID as a random effect. For miRNA expression, we ran differential expression 

analysis by fitting a linear mixed effect model for each miRNA transcript: Expression ~ 
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Diagnosis + Age + Sex + Region + RIN + Brain bank + Proportion of reads mapping to exons + 

log10(Sequencing depth) + PMI as fixed effects, and brainID as a random effect. For DNA 

methylation, we ran differential methylation analysis by fitting a linear mixed effect model for 

each promoter and each gene body: Methylation ~ Diagnosis + Age + Sex + Region + Brain 

bank + Batch + CET as fixed effects, and brainID as a random effect. For histone acetylation, we 

ran differential acetylation analysis by fitting a linear mixed effect model for each H3K27ac 

peak: Acetylation ~ Diagnosis + Age + Sex + Region + Brain bank + CET + Number of peaks in 

sample + Fraction of reads in peaks + Duplicate read fraction + Aligned read fraction as fixed 

effects, and brainID as a random effect. For all differential analyses, we ran them separately for 

ASD Convergent subtype vs control samples and ASD Disparate subtype vs control samples. For 

DNA methylation and histone acetylation, we also ran an initial analysis looking at all ASD vs 

control samples before running SNF and sample classification. 

 

Co-expression /co-methylation network analysis (WGCNA) 

For mRNA and miRNA expression, we used the co-expression networks defined in the previous 

studies9,12. To identify ASD-associated modules, we fit a linear mixed effect model for each co-

expression module. For mRNA modules: module eigengene ~ Diagnosis + Age + Sex + Region 

+ RIN + Brain bank + Sequencing batch + seqStatPC1 + seqStatPC2 + seqStatPC3 + seqStatPC4 

+ seqStatPC5 as fixed effects, and brainID as a random effect. For miRNA modules: module 

eigengene ~ Diagnosis + Age + Sex + Region + RIN + Brain bank + Proportion of reads 

mapping to exons + log10(Sequencing depth) + PMI as fixed effects, and brainID as a random 

effect. We ran these analyses separately for ASD Convergent subtype vs control samples and 

ASD Disparate subtype vs control samples. 
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For DNA methylation, we generated co-methylation networks separately for both gene 

promoters and gene bodies. First, we set a linear model for each gene promoter and gene body 

as: Methylation ~ Diagnosis + Age + Sex + Region + Brain bank + Batch + CET and regressed 

out the effect of Brain bank. We generated networks with robust consensus WGCNA 

(rWGCNA)48 using the WGCNA package in R49. We used a soft threshold power of 9 for gene 

promoters and 8 for gene bodies. We created 100 topological overlap matrices (TOMs) using 

100 independent bootstraps of the samples with parameters: type = signed and corFnc = bicor. 

The 100 TOMs were combined edge-wise by taking the median of each edge across all 

bootstraps. The consensus TOM was clustered hierarchically using average linkage hierarchical 

clustering (using 1 – TOM as a dissimilarity measure). The topological overlap dendrogram was 

used to define modules using the cutreeHybrid() function with parameters: mms = 100, ds = 4, 

merge threshold of 0.1, and negative pamStage. To identify ASD-associated modules, we fit a 

linear mixed effect model for each co-methylation module: module eigengene ~ Diagnosis + Age 

+ Sex + Region + Brain bank + Batch + CET as fixed effects, and brainID as a random effect. 

We ran these analyses separately for ASD Convergent subtype vs control samples and ASD 

Disparate subtype vs control samples. 

 

Prediction of miRNA target genes 

We predicted mRNA target genes for each miRNA using TargetScan v7.229. We downloaded 3’ 

UTR sequences of human genes and miRNA family information from the TargetScan database 

(http://www.targetscan.org/cgi-bin/targetscan/data_download.vert72.cgi). For miRNAs that were 

identified in the previous publication12 and not present in the TargetScan default predictions, we 
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manually curated their family conservation by visually inspecting the multiz 46-way vertebrate 

alignment at their genomic locus in the hg19 human assembly of the UCSC genome browser50. 

For each putative miRNA-UTR target site, TargetScan calculates a context++ score which takes 

into account both evolutionary conservation and targeting efficiency. These context++ scores 

were weighted based on affected isoform ratios. We took the top weighted context++ score for 

each unique miRNA-UTR target pair. 

 

To assess enrichment of targets within miRNA co-expression modules, we first filtered for the 

top 25% miRNAs by connectivity (module hubs) within each module (kME ³ 0.84, 0.82, and 

0.57 for the brown, magenta, and yellow modules, respectively) and identified the strongest 

targets with a context++ score £ -0.05 for these hub genes. 

 

Assignment of H3K27ac regions to cognate gene 

We assigned H3K27ac regions within promoter regions (2KB upstream of TSS to TSS) to their 

proximal gene. For H3K27ac regions that did not lie within a gene promoter, we assigned them 

to their cognate gene using adult brain eQTL data and Hi-C data from bulk adult brain tissue33 as 

well as Hi-C data from sorted NeuN+ and NeuN- cells from adult brain tissue (Synapse 

accession number: syn10248174 for NeuN-, syn10248215 for NeuN+). For eQTL data, we 

assigned a H3K27ac region to a gene if the eSNP resided within the H3K27ac peak. For Hi-C 

data, we assigned a H3K27ac region to a gene if the promoter of that gene physically interacted 

with a region containing the H3K27ac peak at an FDR < 1%. 

 

Enrichment analyses 
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We downloaded post-mortem brain single nucleus gene expression data from Hodge et al24. The 

count data were normalized using log2(CPM + 1). To identify markers of neuronal cell types, we 

ran differential expression analyses for a particular cell cluster against all other clusters when 

restricting the dataset to inhibitory neurons or excitatory neurons separately. Differential 

expression analyses were run in R using a linear model: expression ~ cluster membership. For 

each cluster, we identified markers as those genes with an FDR corrected P-value < 0.05 and a 

log2(fold change) > 0.75. 

 

We downloaded cell type markers for neurons, astrocytes, oligodendrocytes, endothelial cells, 

and microglia from Zhang et al51. We downloaded microglial cell-type specific markers (fold 

change >= 1) from Hammond et al27. We downloaded markers of microglial activation from 

Hirbec et al28. For module cell type enrichments, enrichments of co-expression vs co-methylation 

modules, and enrichment with orthogonal gene lists we used logistic regression to test whether 

gene set 1 ~ gene set 2 using a background set of genes shared between study 1 and study 2. 

 

For expression and methylation gene ontology enrichments, we used the g:Profiler52 package in 

R with parameters: correction_method = fdr, max_set_size = 1000, and hier_filtering = 

moderate. We performed ordered queries with genes ordered by fold change for differential 

expression and methylation or by connectivity to the module eigengene (kME) for co-expression 

and co-methylation modules. For acetylation gene ontology enrichments, we used GREAT30 

(http://great.stanford.edu/public/html/index.php) with the default basal plus extension association 

rule setting. 
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We defined genic regions using the gencode v19 annotations42 and downloaded epigenomically 

defined chromatin states from the Roadmap Epigenomics project for adult brain cortex19 

(https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html#core_15state). To test for 

H3K27ac peak enrichment in genic regions or chromatin states, we calculated the enrichment 

using the formula: [(number of bases in region or state AND H3K27ac peaks) / (number of bases 

in genome)] / [(number of bases in H3K27ac peaks) / (number of bases in genome) x (number of 

bases in region or state) / (number of bases in genome)] as previously described19. 

 

Partitioned heritability 

We ran stratified LD-score regression35 to test for enrichment of common variant heritability 

from GWAS studies of ASD4,36, Alzheimer’s disease53, and Inflammatory bowel disease54 in 

genomic regions of interest. We downloaded the full baseline model of 53 functional categories 

(https://github.com/bulik/ldsc/wiki/Partitioned-Heritability) and included them with each 

calculation of partitioned heritability. For differentially expressed, differentially methylated, and 

co-expression/co-methylation modules, we defined their genomic regions as each gene body +/- 

10 KB. For differentially acetylated regions, we defined the genomic region as each H3K27ac 

peak +/- 1 KB.  

 

Comparison to transcriptomic signatures of other neuropsychiatric disorders 

We corrected mRNA expression data from ASD Disparate subtype and control samples for 

technical and biological covariates by fitting a linear model for each gene: Expression ~ 

Diagnosis + Age + Sex + Region + RIN + Brain bank + Sequencing batch + seqStatPC1 + 

seqStatPC2 + seqStatPC3 + seqStatPC4 + seqStatPC5 and regressing out the effect of all 
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covariates except Diagnosis. We downloaded differentially expressed genes at an FDR < 5% for 

ASD, Schizophrenia, Bipolar disorder, Major depressive disorder, Alcoholism, and 

Inflammatory bowel disease from a cross-disorder analysis of neuropsychiatric disorders23. For 

each disorder, we calculated the first principal component on the corrected expression when 

restricting to genes differentially expressed in that disorder. We checked for differential loading 

between ASD Disparate subtype samples and control samples using a two-sided Mann-Whitney 

U test. 

 

Assessment of transcriptome in other cortical regions 

We previously sequenced 87 samples in 4 additional cortical regions (BA4-6, BA7, BA17, 

BA38) from the individuals in this study23 (Synapse accession number syn11242290). We 

mapped sequencing reads onto the hg19 genome using STAR55 and calculated RNA-seq quality 

control metrics using PicardTools (http://broadinstitute.github.io/picard/). We quantified gene 

expression using RSEM56 with gencode v25 annotations42. We corrected the expression data for 

technical and biological covariates by fitting a linear mixed model for each gene: Expression ~ 

Region + Batch + Age + Sex + Diagnosis + Ancestry_Genotype + PMI + RIN + 

picard_rnaseq.PCT_CORRECT_STRAND_READS + picard_rnaseq.PCT_MRNA_BASES + 

picard_gcbias.AT_DROPOUT + 

star.multimapped_percent + picard_alignment.PCT_CHIMERAS + 

star.multimapped_toomany_percent + picard_insert.MEDIAN_INSERT_SIZE + 

picard_rnaseq.PCT_INTERGENIC_BASES + picard_rnaseq.MEDIAN_5PRIME_BIAS + 

picard_rnaseq.PCT_UTR_BASES + star.num_ATAC_splices + star.num_GCAG_splices + 

star.num_splices + star.avg_mapped_read_length + Age_sqd + 
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picard_alignment.PCT_PF_READS_ALIGNED_sqd + 

picard_rnaseq.PCT_CORRECT_STRAND_READS_sqd + 

star.avg_mapped_read_length + star.num_ATAC_splices_sqd + star.num_annotated_splices_sqd 

+ star.num_GCAG_splices_sqd as fixed effects and subject as a random effect. We regressed out 

the effect of all technical covariates which created an expression dataset containing the effects of 

only biological covariates (subject, diagnosis, region, age, age squared, sex, and ethnicity). 

 

For each region, we calculated the sample loadings across the first principal component (PC1) of 

gene expression for the 2591 differentially expressed genes at an FDR < 10% from the idiopathic 

ASD vs control analysis of Parikshak et al9. These PC1 loadings were then transformed into Z-

scores. 
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Figure 1. SNF to identify ASD molecular subtypes.  

A) Overview of data integration and molecular subtyping to characterize the cascade of 

molecular changes in ASD.  

B) Relationship between sample loadings on the first principal component of differential mRNA 

expression, miRNA expression, DNA methylation, and histone acetylation. 

C) Identification of two sample clusters using SNF: SNF Group 1 and SNF Group 2. ASD 

samples in SNF Group 1 constitute the Disparate Subtype, whereas ASD samples in SNF Group 

2 constitute the Convergent Subtype. 

D) Number of samples classified into the two cluster groups using SNF and logistic regression 

(LR) classifiers. 

E) Comparison of SNF clustering and logistic regression (LR) classification assignments when 

utilizing three out of four datasets (see Supplementary Figure 5). The concordance of sample 

assignments to those when using the complete dataset are plotted. 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 30, 2019. ; https://doi.org/10.1101/718932doi: bioRxiv preprint 

https://doi.org/10.1101/718932
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 40	

 

 

log10(signed Bonferroni corrected p−value)

−4 −2 0 2 4

mRNA.M1 (−)

mRNA.M3 (N)
mRNA.M4(N)

mRNA.M7 (−)

mRNA.M10 (N)

mRNA.M16 (N)
mRNA.M17 (N)

mRNA.M9 (A)

mRNA.M15 (M)

mRNA.M19 (M)
mRNA.M20 (−)

mRNA.M21 (−)

mRNA.M23 (A)

A. B. C.

D. E. G. H.

F.

I.

2069

32

531

This Study

Parikshak 2016

1456

40

543

This Study

Parikshak 2016

regulation of
vesicle−mediated

transport

calcium ion regulated
exocytosis

synapse organization

vesicle−mediated
transport in synapse

synaptic signaling

mRNA.M17

0 1 2 3 4 5
− log10(FDR corrected p−value)

regulation of lipid
metabolic process

steroid metabolic
process

hemopoiesis

cell activation

positive regulation of
sulfur metabolic

process

mRNA.M15

0.0 1.0 2.0 3.0
− log10(FDR corrected p−value)

PPP3CB

CACNG3

TMEM59LRGS7BP

MEF2D

NDFIP1

PACSIN1
RAB3A

ANKRD34A

MAST3

LPHN1

TANC2

NRSN2

SLC17A7
RAB6ASYT3RP11−58B17.2

C4orf50

KIF3C

IQSEC2

BCL11A

PITPNB

TCP11L1

WASF1
LARP1SYT7

TBC1D25
BSN

CDK5R2

PPP2R2C

CSF1

NFE2L2
TLN1NEDD1

REST

HMG20B

NECAP2

ATL3 LBR
ITGB1

HIST2H2BE

CBFB

CHST3

STAG2
NFATC1AGTRAPSP1

ANXA5

SLC39A1

FOXO1

ROM1

RNF114

MVP

HNRNPF
AFF1 HPS5TRIP6

IRAK4

STAT5A

TIPARP

0

2

4

6

8

10

Activ
ate

d

Micr
og

lia

(H
irb

ec
 et

 al
)

Clus
ter

 1

Ju
ve

nile

(A
RG1)

Clus
ter

 2a

(R
RM2)

Clus
ter

 2b

(U
BE2C

)
Clus

ter
 2c

(C
ENPA

)
Clus

ter
 4

Axo
n T

rac
t

(S
PP1)

Clus
ter

 7a

Adu
lt

Clus
ter

 7b

Adu
lt

Clus
ter

 7c

Adu
lt

Clus
ter

 8

Agin
g

(C
CL4

)
Clus

ter
 9

Inj
ury

(IF
I27

L2
A)

mRNA.M9

mRNA.M15

mRNA.M19

mRNA.M20

mRNA.M21

mRNA.M23

4.4
(0.029)

7.9
(0.033)

12
(7.6e−10)

3.5
(0.029)

25
(8.6e−16)

10
(3.4e−09)

10
(0.028)

7.7
(7.2e−07)

6.2
(0.00097)

50
(3.1e−34)

O
dds ratio

Cyc
lin

g S
−P

ha
se

Cyc
lin

g G
−P

ha
se

Cyc
lin

g M
−P

ha
se

Distinct Microglia subtypes
(Hammond et al)

0

1

2

3

4

In
h 

L1
−2

 P
AX

6 
C

D
H

12

In
h 

L1
−2

 P
AX

6 
TN

FA
IP

8L
3

In
h 

L1
−4

 L
AM

P5
 L

C
P2

In
h 

L1
−2

 L
AM

P5
 D

BP

In
h 

L2
−6

 L
AM

P5
 C

A1

In
h 

L1
 S

ST
 N

M
BR

In
h 

L1
 S

ST
 C

H
R

N
A4

In
h 

L1
−2

 S
ST

 B
AG

E2

In
h 

L1
−2

 G
AD

1 
M

C
4R

In
h 

L1
−3

 P
AX

6 
SY

T6
In

h 
L1

−2
 V

IP
 T

SP
AN

12

In
h 

L1
−4

 V
IP

 C
H

R
N

A6

In
h 

L1
−3

 V
IP

 A
DA

M
TS

L1
In

h 
L1

−4
 V

IP
 P

EN
K

In
h 

L2
−6

 V
IP

 Q
PC

T

In
h 

L3
−6

 V
IP

 H
S3

ST
3A

1

In
h 

L1
−2

 V
IP

 P
C

D
H

20

In
h 

L2
−5

 V
IP

 S
ER

PI
N

F1

In
h 

L2
−5

 V
IP

 T
YR

In
h 

L1
−3

 V
IP

 C
H

R
M

2

In
h 

L2
−4

 V
IP

 C
BL

N
1

In
h 

L1
−3

 V
IP

 C
C

D
C

18
4

In
h 

L1
−3

 V
IP

 G
G

H

In
h 

L1
−2

 V
IP

 L
BH

In
h 

L2
−3

 V
IP

 C
AS

C
6

In
h 

L2
−4

 V
IP

 S
PA

G
17

In
h 

L1
−4

 V
IP

 O
PR

M
1

In
h 

L3
−6

 S
ST

 N
PY

In
h 

L3
−6

 S
ST

 H
PG

D

In
h 

L4
−6

 S
ST

 B
3G

AT
2

In
h 

L5
−6

 S
ST

 K
LH

D
C

8A

In
h 

L5
−6

 S
ST

 N
PM

1P
10

In
h 

L4
−6

 S
ST

 G
XY

LT
2

In
h 

L4
−5

 S
ST

 S
TK

32
A

In
h 

L1
−3

 S
ST

 C
AL

B1

In
h 

L3
−5

 S
ST

 A
D

G
R

G
6

In
h 

L2
−4

 S
ST

 F
R

ZB

In
h 

L5
−6

 S
ST

 T
H

In
h 

L5
−6

 S
ST

 M
IR

54
8F

2

In
h 

L5
−6

 G
AD

1 
G

LP
1R

In
h 

L5
−6

 P
VA

LB
 L

G
R

5
In

h 
L4

−5
 P

VA
LB

 M
EP

E
In

h 
L2

−4
 P

VA
LB

 W
FD

C
2

In
h 

L4
−6

 P
VA

LB
 S

U
LF

1
In

h 
L2

−5
 P

VA
LB

 S
C

U
BE

3
Ex

c 
L2

 L
AM

P5
 L

TK

Ex
c 

L2
−4

 L
IN

C
00

50
7 

G
LP

2R

Ex
c 

L2
−3

 L
IN

C
00

50
7 

FR
EM

3

Ex
c 

L3
−4

 R
O

R
B 

C
AR

M
1P

1
Ex

c 
L3

−5
 R

O
R

B 
ES

R
1

Ex
c 

L3
−5

 R
O

R
B 

C
O

L2
2A

1

Ex
c 

L3
−5

 R
O

R
B 

FI
LI

P1
L

Ex
c 

L3
−5

 R
O

R
B 

TW
IS

T2

Ex
c 

L4
−5

 R
O

R
B 

FO
LH

1B
Ex

c 
L4

−6
 R

O
R

B 
SE

M
A3

E
Ex

c 
L4

−5
 R

O
R

B 
DA

PK
2

Ex
c 

L5
−6

 R
O

R
B 

TT
C

12

Ex
c 

L4
−6

 R
O

R
B 

C
1R

Ex
c 

L5
−6

 T
H

EM
IS

 C
1Q

L3

Ex
c 

L5
−6

 T
H

EM
IS

 D
C

ST
AM

P
Ex

c 
L5

−6
 T

H
EM

IS
 C

R
AB

P1

Ex
c 

L5
−6

 T
H

EM
IS

 F
G

F1
0

Ex
c 

L4
−5

 F
EZ

F2
 S

C
N

4B

Ex
c 

L4
−6

 F
EZ

F2
 IL

26

Ex
c 

L5
−6

 F
EZ

F2
 A

BO

Ex
c 

L6
 F

EZ
F2

 S
C

U
BE

1

Ex
c 

L6
 F

EZ
F2

 O
R

2T
8

Ex
c 

L5
−6

 F
EZ

F2
 E

FT
U

D
1P

1

Ex
c 

L5
−6

 S
LC

17
A7

 IL
15

mRNA.M1
mRNA.M3
mRNA.M4
mRNA.M7

mRNA.M10
mRNA.M16
mRNA.M17

O
dds ratio

CGE−derived MGE−derived L2/L3 L4 L5 L6

LAMP5/PAX6 VIP SST PVALB RORB FEZF2

Inhibitory Neurons Excitatory Neurons

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 30, 2019. ; https://doi.org/10.1101/718932doi: bioRxiv preprint 

https://doi.org/10.1101/718932
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 41	

Figure 2. mRNA expression differences in ASD. 

A) Overlap in ASD downregulated genes identified in this study against Parikshak et al9. 

B) Overlap in ASD upregulated genes identified in this study against Parikshak et al9. 

C) Signed association of mRNA co-expression module eigengenes with diagnosis 

(Bonferroni-corrected p-value from an LME model, see Supplementary Figure 7e). Positive 

values indicate modules with an increased expression in ASD samples. Grey and black bars 

with labels signify ASD-associated modules identified in Parikshak et al. 2016, and newly 

identified in this study, respectively. Cell type enrichment for each module is shown in 

parenthesis: neuron (N), astrocyte (A), microglia (M), and no enrichment (-) (see 

Supplementary Figure 7g). 

D) Top 30 hub genes and 300 connections for co-expression module mRNA.M17. 

E) Top gene ontology enrichments for co-expression module mRNA.M17. 

F) Enrichment of ASD downregulated neuronal co-expression modules with neuronal cell-

type markers identified from single nuclei RNA sequencing24. Only enrichments with an FDR 

corrected p-value < 0.05 are shown. 

G) Top 30 hub genes and 300 connections for co-expression module mRNA.M15. 

H) Top gene ontology enrichments for co-expression module mRNA.M15. 

I) Enrichment of ASD upregulated glial co-expression modules with microglial activated 

genes28 and microglial cell-type markers27. FDR corrected p-values are shown in parentheses. 
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Figure 3. DNA methylation differences in ASD. 

A) Overlap in ASD hypermethylated gene promoters and gene bodies. 

B) Overlap in ASD hypomethylated gene promoters and gene bodies. 

C) Correlation between expression and methylation changes for genes that have differential 

promoter methylation and are differentially expressed. A linear model was used to correlate 

differential expression with differential methylation. 

D) Correlation between expression and methylation changes for genes that have differential 

gene body methylation and are differentially expressed. A linear model was used to correlate 

differential expression with differential methylation. 

E) Top 30 hub genes and 300 connections for promoter co-methylation module 

Prom.lightgreen. 

F) Top gene ontology enrichments for promoter co-methylation module Prom.lightgreen. 

G) Promoter co-methylation module Prom.lightgreen eigengene values for ASD and control 

samples. P-value is from a linear mixed effects model (see Supplementary Figure 9f). 

H) Top 30 hub genes and 300 connections for gene body co-methylation module 

GB.darkgreen. 

I) Top gene ontology enrichments for gene body co-methylation module GB.darkgreen. 

J) Gene body co-methylation module GB.darkgreen eigengene values for ASD and control 

samples. P-value is from a linear mixed effects model (see Supplementary Figure 10f). 
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Figure 4. Histone acetylation differences in ASD. 

A) Top gene ontology enrichments when linking ASD hyperacetylated regions to proximal 

genes using GREAT30. 

B) Top gene ontology enrichments when linking ASD hypoacetylated regions to proximal 

genes using GREAT30. 

C) Schema to link H3K27ac regions with their cognate genes. H3K27ac peaks within 

promoters were directly assigned to the proximal gene. Distal H3K27ac peaks were assigned 

to genes using eQTL and Hi-C datasets. 

D) Correlation between expression and acetylation changes for genes that have a differentially 

acetylated region within their promoter and are differentially expressed. A linear model was 

used to correlate differential expression with differential acetylation. The four separate 

quadrants are marked. 

E) Cell type enrichments for the four quadrants in D. FDR corrected p-values are shown in 

parentheses. 

F) Correlation between expression and acetylation changes for differentially acetylated 

regions linked to differentially expressed genes with both eQTL and neuronal Hi-C evidence. 

A linear model was used to correlate differential expression with differential acetylation. 

G) Correlation between expression and acetylation changes for differentially acetylated 

regions linked to differentially expressed genes with both eQTL and glial Hi-C evidence. A 

linear model was used to correlate differential expression with differential acetylation. 

H) Enrichment of cognate genes linked to differentially acetylated regions within mRNA co-

expression modules. Modules with a significant relationship to diagnosis are marked along the y 
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axes (red: increased expression in ASD; blue: decreased expression in ASD). FDR corrected p-

values are shown in parentheses. 

I) Correlation between expression and acetylation changes for differentially acetylated peaks 

linked to gene co-expression modules. The functional annotation for each module is 

represented in the top left corner. The association of each module to ASD diagnosis is 

represented in the top right corner as well as whether acetylation changes are contributory or 

compensatory to changes in expression. 
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Figure 5. ASD genetic risk variant enrichments. 

A) Partitioned heritability enrichments for ASD, Alzheimer’s, and IBD GWAS in 

differentially expression, methylation, or acetylated regions of the genome. 

B) Partitioned heritability enrichments for ASD, Alzheimer’s, and IBD GWAS in 

differentially acetylated regions of the genome within, or distal to, gene promoters. 

C) Top 30 hub genes and 300 connections for co-expression module mRNA.M16. 

D) Top gene ontology enrichments for co-expression module mRNA.M16. 

E-G) Genomic region around NSF (E), PRKCE (F), and SCN8A (G). ASD-associated 

hyperacetylated regions are shown along with eQTL and Hi-C linkages to the gene TSS. 
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Figure 6. Model of molecular dysregulation across genetic, transcriptomic, and epigenomic 

levels in ASD. Blue bar-headed and red arrows correspond to regulatory mechanisms 

predicted to decrease and increase gene expression, respectively. 
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