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Abstract  

 

Childhood maltreatment is highly prevalent and serves as a risk factor for mental and 

physical disorders. Self-reported childhood maltreatment appears heritable, but the specific 

genetic influences on this phenotype are largely unknown. The aims of this study were to 1) 

identify genetic variation associated with reported childhood maltreatment, 2) calculate the 

relevant SNP-based heritability estimates, and 3) quantify the genetic overlap of reported 

childhood maltreatment with mental and physical health-related phenotypes. Genome-wide 

association analysis for childhood maltreatment was undertaken, using a discovery sample 

from the UK Biobank (UKBB) (n=124,000) and a replication sample from the Psychiatric 

Genomics Consortium–posttraumatic stress disorder working group (PGC-PTSD) 

(n=26,290). Heritability estimations for childhood maltreatment and genetic correlations with 

mental/physical health traits were calculated using linkage disequilibrium score regression 

(LDSR). Two genome-wide significant loci associated with childhood maltreatment, located 

on chromosomes 3p13 (rs142346759, beta=0.015, p=4.35x10-8, FOXP1) and 7q31.1 

(rs10262462, beta=-0.016, p=3.24x10-8, FOXP2), were identified in the discovery dataset 

but were not replicated in the PGC-PTSD sample. SNP-based heritability for childhood 

maltreatment was estimated to be ~6%. Childhood maltreatment was most significantly 

genetically correlated with depressive symptoms (rg=0.70, p=4.65x10-40). This is the first 

large-scale genetic study to identify specific variants associated with self-reported childhood 

maltreatment. FOXP genes could influence traits such as depression and thereby be 

relevant to childhood maltreatment. Alternatively, these variants may be associated with a 

greater likelihood of reporting maltreatment. A clearer understanding of the genetic 

relationships of childhood maltreatment, including particular abuse subtypes, with various 

psychiatric disorders, may ultimately be useful in in developing targeted treatment and 

prevention strategies.   
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Introduction  

 

The lifetime prevalence of childhood physical, sexual and emotional abuse ranges from 8-

36%1. In addition to being highly prevalent, childhood maltreatment is associated with the 

development of mental disorders, including depression2, 3, and physical ill health, including 

non-communicable diseases4, 5.  Although these associations are now well established, 

estimates of effect size vary considerably across epidemiological studies, likely reflecting 

methodological challenges, including uncertainty about how best to assess childhood 

maltreatment 6. 

 

A twin-based study found that retrospective reports of childhood maltreatment has a 

heritability of 6% 7. Although the idea that childhood maltreatment is heritable may be 

counter-intuitive, the field of behavior genetics has long documented the heritability of many 

exposures seen as environmental.  This is referred to as gene-environment correlation 

(rGE). Three potential rGE mechanisms to explain the heritability of childhood maltreatment 

may be posited.   First, a “passive” rGE: parental genes affecting parental behavior may 

influence the childhood environment (e.g. aggressive parents may be more likely to 

physically punish their children who have also inherited their parents’ genetic variants 

influencing aggressive behavior 8). Second, an “active” rGE:  individuals with genetic 

variants associated with certain behavioral phenotypes may be more at risk of selecting or 

creating adverse situations (e.g. risk-taking personality is heritable and children who are 

high in risk taking may be exposed to more trauma)9, 10. Third, an “evocative” rGE:  genetic 

variation may influence child behavior, which in turn is associated with responses to the 

child (e.g. genetic factors may influence infant “difficultness”, which in turn is associated 

with maternal hostile-reactive behavior that is correlated with child abuse11, 12). The latter 

two rGEs are sometimes collectively referred to as non-passive correlations7.  

 

While a number of key risk factors for childhood maltreatment, including child behavioral 

characteristics and parental mental health, have been investigated6, studies have seldom 

focused on associated genetic variation. The few genetic association studies of childhood 

maltreatment have only considered variants in candidate genes13 and have had insufficient 

power to detect the small polygenic effect sizes typically associated with behavioral 

phenotypes14. Also, there are no studies of the genetic overlap of childhood maltreatment 

with mental and physical health-related traits, using genome-wide single nucleotide 
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polymorphism (SNP) data. Knowledge of specific genetic variation for childhood 

maltreatment, the heritability of this phenotype, and the genetic overlap with other traits 

may be useful in informing our understanding of the identified risk factors, the etiology and 

the outcomes of childhood maltreatment. This, in turn, may have important implications for 

the design of prevention and treatment programs for adverse health outcomes. For 

example, an observed association between an adverse health outcome and genetic 

variants may be mediated by an environmental exposure, if that exposure is shown to be 

causal of the health outcome. Thus, preventative strategies would focus on decreasing the 

risk conferred by the environmental exposure without needing to specifically consider the 

genetic influences on the health outcome9.    

 

The PGC-PTSD consortium has collaborated to obtain access to well-powered genetic 

studies of trauma and PTSD that have allowed a number of key genetic questions in this 

field to be investigated15-17, providing a unique opportunity to address knowledge gaps in 

the area of childhood maltreatment.  This study aims to: 1) identify genetic variants 

associated with childhood maltreatment using a genome-wide association study (GWAS) 

design, 2) quantify the heritability of childhood maltreatment using SNP-based methods, 

and 3) assess the degree of genetic overlap of childhood maltreatment with mental and 

physical health-related phenotypes. 

  

Methods 

Participating studies  

Nineteen studies, comprising subjects of European ancestry only, were used in this 

analysis. The discovery dataset consisted of 124,711 individuals from the UK Biobank 

(UKBB)18 and the replication sample comprised 26,290 individuals, a subset of the PGC-

PTSD Freeze 1.5 dataset (PGC1.5)17. The details of these studies, including the 

demographics and instruments used to assess maltreatment can be found in 

Supplementary Table 1.  

Phenotype Harmonization  

For the childhood maltreatment phenotype, Childhood Trauma Questionnaire (CTQ) scores 

on physical, sexual, and emotional abuse 19 were obtained from the participating studies. 

From this, an overall childhood maltreatment count score of 0-3 was constructed, based on 
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a count of the three abuse categories listed above. An individual was considered to have 

endorsed a childhood abuse category if they scored in the moderate to extreme range for 

that particular category, per established cut-offs 20 (Supplementary Table 2). If CTQ data 

were not available, the event assessment during childhood (occurring before 18 years of 

age) that was most validated for that particular study was obtained, providing a count of the 

total number of different categories of reported childhood events (e.g. physical, sexual or 

severe emotional abuse) along with the range of possible scores for the measure. The 

reported maltreatment exposure from the UKBB dataset comprised a score of three items 

where participants were asked whether they were i) “physically abused by family as a 

child”, ii) “sexually molested as a child”, and whether they iii) “felt hated by family member 

as a child”. The childhood maltreatment count score, whether it was generated from the 

CTQ or another instrument, was used as the main outcome measure in the association 

analysis. The range of this maltreatment count score for each study can be seen in 

Supplementary Table 1. 

Global Ancestry Determination, Genotyping quality control and Imputation  

Study participants from the PGC-PTSD were genotyped with a number of different arrays 

(Supplementary Table 1). Genotype data were quality controlled and processed using the 

standard PGC pipeline, Ricopili-MANC (https://sites.google.com/a/broadinstitute.org/ricopili/ 

and https://github.com/orgs/Nealelab/teams/ricopili) as part of the PGC-PTSD Freeze 2 

data analysis17, 21. This work was carried out on the Dutch national e-infrastructure with the 

support of SURF Cooperative. A detailed outline of these methods can be found in17. 

Briefly, ancestry was determined with pre-QC genotypes using a SNPweights panel of 

10,000 ancestry informative markers from a reference panel comprising 2911 subjects from 

71 diverse populations and six continental groups 

(https://github.com/nievergeltlab/global_ancestry). Samples were excluded if they had call 

rates <98%, deviated from the expected inbreeding coefficient (fhet < -0.2 or > 0.2), or had 

a sex discrepancy between reported and genotypic sex (based on inbreeding coefficients 

calculated from SNPs on the X chromosome). Markers were excluded if they had call rates 

<98%, >2% difference in missing genotypes between PTSD cases and controls, or were 

monomorphic. Markers with a Hardy-Weinberg equilibrium (HWE) p<1x10-6 in controls were 

excluded from all subjects. Principal components (PCs) were calculated using the 

smartPCA algorithm in EIGENSTRAT22. Pre-phasing and phasing was performed using 
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SHAPEIT2 v2.r83723. Imputation was performed with IMPUTE2 v2.2.224 using the 1000 

Genomes (1000G) phase 3 data25 as the reference.  

 

Details regarding the QC, imputation and ancestry determination of the UKBB dataset can 

be found in26. Briefly, study participants were genotyped with two custom genotyping arrays 

(with ∼800,000 markers). A two-stage imputation was performed using the Haplotype 

Reference Consortium (HRC)27 and the UK10K28 as the reference panels. Variants were 

filtered to include only those with a minor allele frequency (MAF) of > 1% and an INFO 

score of > 0.4. Related individuals (third degree and closer) and those with a genotyping 

call rate < 98% were excluded. Ancestry was determined by 4-means clustering on the first 

two PCs provided by the UKBB29. Additional principal component analysis was conducted 

on the European-only data subset using flashpca230.  

Main GWAS 

GWAS analysis was conducted separately for each study. Best-guess genotypes were 

tested for association to reported childhood maltreatment using an ordinal logistic 

regression model with age, sex, and the first five PCs included as covariates. Variants with 

a MAF < 0.5% and a genotyping rate < 98% were excluded. These analyses were 

implemented in PLINK 1.931 using the plug-in Rserve. To ensure computational efficiency, 

linear regression models were run for four of the larger contributing studies (NSS1; NSS2; 

PPDS; and UKBB, N=143,392 subjects)17. For the NSS1, NSS2, and PPDS studies, age, 

sex, and 5 PCs were included as covariates in the regression model. For the UKBB 

dataset, the regression analysis was implemented in BGenie v1.232 with age, sex, 6 PCs, 

batch, and site included as covariates.  

Meta-analysis 

As both linear and ordinal logistic models were implemented in the GWASs, which resulted 

in different effect statistics, fixed effects meta-analysis was conducted across studies using 

p-values and direction of effect, weighted according to the effective sample size as the 

analysis scheme, in METAL (v. March 25 2011)33. Heterogeneity across datasets was 

tested using the Cochran's Q-test for heterogeneity, also implemented in METAL. Only 

variants with an INFO score of greater than 0.8 and a MAF of greater than 5% were 

included in the meta-analysis, except where otherwise indicated in the results. Forest plots 

were generated for genome-wide significant hits using the R package meta34.  
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Functional mapping and annotation 

Genome-wide significant hits identified from the GWAS meta-analysis were annotated 

using the web-based tool FUnctional Mapping and Annotation (FUMA) v1.3.4c 

(http://fuma.ctglab.nl/)35.  Default settings were used and annotations were based on the 

human genome assembly GRCh37 (hg19). The SNP2GENE module was used to identify 

genomic risk loci and these were mapped to protein coding genes within a 10kb window.  

An r2 of ≥ 0.6 was used to identify variants in LD with lead SNPs. The 1000G European 

Phase 3 was used as the reference dataset. Variants were functionally annotated using 

ANNOVAR, Combined Dependent Depletion (CADD), RegulomeDB (RDB) and chromatin 

states (only tissues/cells from brains were included). The NHGRI-EBI GWAS catalog was 

used to determine any previous associations with the identified risk variants. The GTEx v7 

brain tissue, RNAseq data from the CommonMind Consortium and the BRAINEAC 

database were used to perform eQTL mapping for significant SNP-gene pairs (FDR q < 

0.05).  

 

A gene-based analysis was performed within FUMA using MAGMA whereby SNPs were 

mapped to 18,989 protein coding genes. Genome-wide significance was set at a 

Bonferroni-corrected threshold p<2.63x10-6. In addition, gene-based test statistics were 

used to determine whether specific biological pathways are associated with childhood 

maltreatment. This was performed for 18,989 curated gene sets and GO terms obtained 

from MsigDB, using MAGMA. The significance threshold was set at a Bonferroni-corrected 

threshold of p=2.63x10-6 (0.05/18,989).  

Heritability and Genetic Correlation Estimation  

Linkage disequilibrium score regression (LDSR) is a technique for quantifying polygenicity 

and confounding, such as population stratification, in GWAS summary statistics36. This is 

accomplished by evaluating the relationship between linkage disequilibrium scores (the 

average squared correlation of a SNP with all neighboring SNPs) and SNP test statistics. 

Using this approach, the LDSR intercept was used to estimate the proportion of inflation in 

test statistics due to polygenic signal (rather than inflation due to population stratification 

and cryptic relatedness), with the equation 1 - (LDSR intercept -1)/(mean observed chi-

square - 1)17. One of the applications of LDSR is the estimation of SNP-based heritability 

based on GWAS summary statistics. Another application of LDSR is the measurement of 

genetic correlation i.e. the degree and direction of shared genetic effects between different 
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traits36, 37. Heritability and cross-cohort genetic correlation (rg) was calculated using LDSR. 

The web-based interface for LDSR, LD Hub (http://ldsc.broadinstitute.org/ldhub/), was used 

to further calculate pairwise genetic correlations between childhood maltreatment and 247 

non-UKBB traits of interest including psychiatric, anthropomorphic, smoking behavior, 

reproductive, aging, education, autoimmune, and cardio-metabolic categories.  

Results  

GWAS and meta-analysis 

We report GWAS results from our discovery dataset (UKBB) (n=124,711) and meta-

analysis (n=151,001). In our UKBB discovery dataset, we identified two genome-wide 

significant loci (p<5x10-8) associated with childhood maltreatment (Table 1, Figure 1), 

rs142346759 (chr3, beta=0.015, p=4.35x10-8) and rs10262462 (chr7, beta=-0.016, 

p=3.24x10-8). These variants remained significant in the meta-analysis (Table 1, 

Supplementary Figures 1 and 2). Additional variants on chromosome 7 (rs1859100, 

beta=0.015, p=3.91x10-8) and chromosome 12 (rs917577, beta=0.017, p=2.64x10-8) 

(Figure 2), also achieved genome-wide significance in the meta-analysis. None of these 

hits were replicated in PGC1.5 (Table 1, Supplementary Figure 3).  

 

Quantile-quantile (qq) plots indicate minimal inflation of p-values across studies 

(Supplementary Figures 4-6). Using the LDSR intercept method, polygenic effects 

account for 93% and 94% of the observed inflation in test statistics for the UKBB dataset 

(intercept=1.0096, SE=0.0064) and meta-analysis (intercept=1.0095, SE=0.0077), 

respectively (Supplementary Figures 4 and 6), consistent with minimal population 

stratification and cryptic relatedness. Heterogeneity estimates in the meta-analyses were 

not significant (Table 1).  

Integration with Functional Genomic Data 

Using the web-based tool FUMA, the two UKBB GWAS hits were each annotated to two 

genes, FOXP1 and FOXP2 (Table 2). Gene-based analysis of the UKBB GWAS summary 

statistics further identified three gene-wide significant genes, KIF26B (p=1.67x10-7), 

CNTNAP5 (p=8.89x10-7), and EXOC2 (p=2.04x10-6) from a total of 18,989 protein coding 

genes. Gene-set analysis did not reveal any significant pathways associated with childhood 

maltreatment. Limited functionality of the two risk variants (rs142346759 and rs10262462) 

was observed (Table 2). One of the SNPs in LD for the risk variant on chromosome 3, 
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rs142346759, obtained a CADD score of greater than 12.37, indicating that this SNP may 

be deleterious. Six of the SNPs in LD with the risk variant on chromosome 7, rs10262462, 

had a CADD score of greater than 12.37.  No significant eQTLs were identified for either 

risk locus. 

 

The chromosome 7 variant identified in the meta-analysis, rs1859100, also mapped to the 

gene FOXP2 and is located in the same genomic risk locus (chr7:114015707-114287116) 

as rs10262462. The other hit observed in the meta-analysis, rs917577, was mapped to an 

intergenic region on chromosome 12. This variant obtained an RDB categorical score of 2B, 

indicating that it is likely to affect transcription factor binding. No eQTLs exist in the selected 

tissue types for this region (Table 2).  

Heritability of Reported Childhood Maltreatment  

GWAS summary statistics were used to estimate the SNP-based heritability (h2
snp) of 

childhood maltreatment with the tool LDSR (Table 3). The h2
snp was estimated at 0.057 

(p=1.60x10-32) for the UKBB discovery dataset and 0.123 (p=0.002) for PGC1.5. The h2
snp 

for the meta-analysis was 0.057 (p= 4.48x10-46). 

Genetic Correlations of Reported Childhood Maltreatment with Other Traits and 

Disorders 

The rg for childhood maltreatment between the UKBB and PGC1.5 datasets was 0.63 

(p=3.28x10-6). To determine whether there is significant genetic overlap between childhood 

maltreatment and other traits and disorders, pairwise genetic correlations were calculated 

using the web-based tool LD Hub. A total of 27 significant correlations (Bonferroni-corrected 

p-value threshold= 0.05/247=0.0002) were found between childhood maltreatment in the 

meta-analysis and 247 non-UKBB traits. The top 10 highest genetic correlations are plotted 

in Figure 3 with depressive symptoms (rg=0.70, p=4.65x10-40) having the most significant 

correlation with childhood maltreatment. There were also positive genetic correlations with 

“Major depressive disorder” (rg=0.71, p=4.13x10-11), “PGC cross-disorder analysis” (rg=0.47, 

p=1.62x10-14) and “neuroticism” (rg=0.44, p=1.14x10-17). Significant negative genetic 

correlations between childhood maltreatment and “age of first birth” (rg=-0.47, p=2.61x10-

27), “subjective well-being” (rg=-0.46, p=1.00x10-18) and “mother’s age at death” (rg=-0.36, 

p=7.42x10-6) were also observed.    
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Discussion  

 

The main findings of this study were that 1) variants located in the genes FOXP1 and 

FOXP2 and on chromosome 12 are significantly associated with childhood maltreatment, 2) 

the SNP-based estimate of childhood maltreatment is approximately 6%, 3) childhood 

maltreatment is significantly genetically correlated with “depressive symptoms” and “major 

depressive disorder”, “neuroticism”, “age of first birth”, and “subjective well-being”.  

 

Two genome-wide loci for childhood maltreatment identified in our discovery dataset were 

also significant in the meta-analysis: rs142346759 (chr3p13), an intronic variant in FOXP1 

and rs10262462 (chr7q31.1) an intronic variant located in FOXP2. Both genes form part of 

the forkhead box superfamily of transcription factors which are widely expressed, and which 

play important roles during development and adulthood.  FOXP1 and FOXP2 fall under the 

FOXP sub-family (also comprising FOXP3 and FOXP4) which has functions in oncogenic 

and tumour suppressive pathways38. FOXP2 contains highly conserved genomic sites, 

including an intronic region within this gene, located about 107kb downstream from our risk 

variant39. FOXP1 and FOXP2 have approximately 60% homology at the amino acid level 

(https://www.ncbi.nlm.nih.gov/books/NBK7023/) and both proteins have been implicated in 

cognitive disorders, including expressive language impairment40. In the meta-analysis, we 

observed an additional genome-wide variant, located in an intergenic region on 

chromosome 12, but as this variant does not map to a particular gene, its possible 

biological mechanism is unclear.  

 

Notably, variation within FOXP1 has been found to have associations with language 

impairment, internalizing symptoms, and externalizing symptoms41. FOXP2 has mainly 

been investigated in regards to speech and language development42, but has also been 

found to be associated with depression43 and attention deficit hyperactivity disorder 

(ADHD)44. Further, an intronic variant in the FOXP2 gene, rs727644, has been associated 

with risk taking behavior45, 46. While most work on childhood maltreatment has emphasized 

subsequent risk for mental and physical disorders, it is possible that externalizing behaviors 

increase risk for childhood trauma47, consistent with a non-passive rGE mechanism. 

Alternatively, phenotypes such as depression or neuroticism may increase the likelihood of 

individuals recalling childhood maltreatment48, 49.   
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In this study we estimated SNP-based heritability for childhood maltreatment to be ~6%. A 

first possibility, in line with a link between FOXP variants and externalizing symptoms, is 

that genetic factors influence environmental factors indirectly through personality and 

behavior 9. A second possibility, consistent with a link of FOXP variants with internalizing 

symptoms and depression, is that genetic factors influence the recall of childhood 

maltreatment. In particular, retrospective assessment of childhood maltreatment may be 

limited by recall bias and the respondent’s subjective assessment of the event50, 51. Indeed, 

a recent systematic review found very low concordance between prospective and 

retrospective measures of childhood maltreatment52 and those who retrospectively report 

childhood adversity are at a greater risk for having psychopathology than those who 

prospectively reported childhood maltreatment53.  

 

A twin-based study estimated the heritability of reported childhood maltreatment 

(comprising physical, and sexual maltreatment and neglect) to be 6%7, the same as our 

SNP-based estimate. As twin-based studies capture latent heritability across the entire 

genome, these heritability estimates are generally higher than SNP-based heritability 

estimates, which are limited to common variation and by the number of markers present 

and tagged on the genotyping array used15. However, in this twin study, when considering 

each maltreatment category separately, the heritability of childhood physical maltreatment, 

sexual maltreatment, and neglect was 28%, 0%, and 24%, respectively. This suggests that 

only physical abuse and neglect are heritable and that sexual abuse is not genetically 

influenced. It is notable that these twin data, then, do not support an rGE for some abuse 

types. 

 

Our finding of positive genetic correlations between childhood maltreatment, depressive 

symptoms, and major depressive disorder further suggests that the genetic factors 

predisposing to reporting early life maltreatment overlap with the genetic variation 

underlying depression. Genetic correlations between depression, stressful life events and 

lifetime trauma have led to the hypothesis that genes increasing risk for the development of 

depression predispose individuals to entering into adverse environments54, 55. Depressed 

individuals with and without trauma exposure differ in associated genetic variation, with 

trauma-exposed individuals having greater SNP-based heritability, supporting this 

hypothesis26, 56. On the other hand, polygenic scores for major depressive disorder (MDD) 

were associated with greater reporting of stressful life events in individuals with MDD57. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 28, 2019. ; https://doi.org/10.1101/717314doi: bioRxiv preprint 

https://doi.org/10.1101/717314


Indeed, current mood can influence the recall of childhood experiences, and individuals with 

current depression are at an increased likelihood of reporting early life adversity58.   

 

In addition to depression, we found significant positive genetic correlations between 

childhood maltreatment and “neuroticism” and “PGC cross-disorder analysis” (comprised of 

GWAS summary statistics of five psychiatric disorders: autism spectrum disorder, attention 

deficit-hyperactivity disorder, bipolar disorder, MDD, and schizophrenia). We observed 

negative genetic correlations of childhood maltreatment with “age of first birth” and 

“subjective well-being”. Associations between early life maltreatment and each of these 

above traits have previously been observed56, 59-67. Further investigation is required to 

delineate the mechanisms that play a role in the relationship between childhood 

maltreatment and these outcomes.  

 

Our study had a number of limitations.  First, the genetic correlation between the UKBB and 

PGC1.5 datasets was only 0.63, indicating differences between the datasets, which 

possibly explains the non-replication of our top hit and of greater SNP heritability in 

PGC1.5. The UKBB dataset comprises healthy volunteers who are typically of a higher 

socioeconomic status and in better overall health than the general population of 

comparable age68.  Thus, the findings reported here may not be generalizable to the 

general population. However, it is also worth noting that the top hits were significant in the 

meta-analysis, where additional hits for childhood maltreatment were detected in an 

intergenic region on chromosome 12.  

 

Second, although many of the study sites included in the final meta-analysis utilized the 

well-validated CTQ, childhood maltreatment was measured in a diversity of ways for many 

of the other studies. Thus, our main phenotype was not homogenous and may reflect 

different aspects of childhood maltreatment across contributing studies. However, we 

performed GWAS for each study separately, and meta-analysis was conducted with p-value 

and direction of effect to minimize heterogeneity. In addition, based on Cochran's Q-test, 

none of our significant hits in the meta-analysis showed significant heterogeneity across 

studies.  

 

This is the first large-scale genetic study to identify specific variants associated with self-

reported childhood maltreatment. Variation in FOXP genes and other variants associated 
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with childhood maltreatment may put individuals at greater risk for maltreatment. 

Alternatively, however, these variants may be associated with a greater likelihood of 

reporting maltreatment, given their association with depression and neuroticism. With the 

data available, we are unable to indicate definitively which of these explanations is a better 

one, and it is possible that different mechanisms have more robust explanatory power in 

accounting for different abuse subtypes as well as different associated psychopathologies.  

A clearer understanding of the genetic relationships of childhood maltreatment, including 

particular abuse subtypes, with a range of different psychiatric disorders, may ultimately be 

useful in developing targeted treatment and prevention strategies.   
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Figure 1: Manhattan plot of UKBB GWAS for childhood maltreatment, showing the top variants. The horizontal line 
represents genome-wide significance at p<5x10-8. 

 

 

Figure 2: Manhattan plot of the meta-analysis results for childhood maltreatment, showing the top variants. The horizontal 
line represents genome-wide significance at p<5x10-8. 
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Figure 3: Top ten genetic correlations between several groups of traits (from psychiatric, anthropomorphic, smoking 
behavior, reproductive, aging, education, autoimmune, and cardio-metabolic categories) and childhood maltreatment 
(meta-analysis).  
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