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Abstract 

Approximately half of the human genome consists of mobile repetitive DNA sequences 

known as transposable elements (TEs). They are usually silenced by epigenetic 

mechanisms, but a few are known to escape silencing at embryonic stages, affecting early 

human development by regulating nearby protein-coding genes. To investigate 

transcriptional activity in human adult tissues we systematically investigate the expression 

landscape of about 4.2 million non-coding TEs in 8,051 RNA-Seq datasets from up to 49 

adult tissues and 540 individuals. We show that approximately 79,558 individual TEs (2%). 

belonging to 856 subfamilies escape epigenetic silencing in adult tissues and become 

transcriptionally active, often in a very tissue-specific manner. Supporting a role for TEs in 

the regulation of expression of nearby genes, we found the expression of TEs often 

correlated with the expression of nearby genes, and significantly stronger when the TEs 

include eQTLs for the genes. We identified thousands of tissue-elevated, sex-associated 

TEs in the breast, ethnicity-associated in the skin and age-associated in the tibial artery, 

where we found a potential implication of two TE subfamilies in atherosclerosis. Our results 

suggest a functional role of TEs in the regulation of gene expression, support their 

implication in human phenotypes,  and also serve as a comprehensive resource of 

transcriptionally active TEs in human adult tissues. 
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Introduction  

Transposable elements (TEs) are widespread self-replicating non-coding repetitive DNA 

sequences occupying more than half of the human genome sequence. They have been 

shown to be globally repressed by various epigenetics mechanisms especially DNA 

methylation (Chuong et al. 2017). However, recent transcriptomic studies have shown that 

several subfamilies of TEs are expressed in human tissues, mostly at embryonic stages 

(Göke et al. 2015; Wang et al. 2014; Grow et al. 2015). It is unclear whether the same trend 

characterizes adult human tissues.  

TEs can be categorized into two broad types – retrotransposons and DNA transposons. 

Retrotransposons spread by a copy-and-paste mechanism with the help of their RNAs, 

whereas DNA transposons spread directly without an RNA intermediate (Elbarbary et al. 

2016). Transposition of retrotransposons is highly active in early embryonic tissues and also 

in the adult brain (Erwin et al. 2014). TEs harbor transcription factors binding sites and can 

act as transcriptional enhancers, promoters, and silencers and thereby regulate neighboring 

gene expression (Chuong et al. 2017). The functional activity of TEs is not only exerted at 

the DNA level but also at the RNA level. A well-known example is the X-chromosome 

inactivation where silencing of the X-chromosome is mediated in part by RNA intermediates 

from L1 sequences (Elbarbary et al. 2016). A recent study has shown that RNA from LINE1 

sequences mediate binding of nucleolin and Kap1 to ribosomal DNA promoting ESC self-

renewal (Percharde et al. 2018).  

Previous transcriptome studies identified several transcriptionally active TEs in humans. An 

initial genome-wide retrotransposon transcriptome study using CAP Analysis Gene 

Expression Sequencing (CAGE-seq) data from 12 tissues identified  23,000 candidate 

regulatory regions derived from retrotransposons (Faulkner et al. 2009). A follow-up CAGE-

seq study using both nuclear and cytoplasmic transcriptome data from human embryonic 

stem cells, induced pluripotent stem cells, fibroblasts, and lymphocytes showed that 
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subfamilies of endogenous retroviruses (ERV1 family of LTR class) including LTR7, 

HERVH-int and LTR9 were highly expressed TEs in human stem cells (Fort et al. 2014). 

RNA-seq data in human embryonic and pluripotent stem cells revealed similar trends,  

where the HERVH subfamily is highly expressed and marked with the active promoter and 

enhancer chromatin marks (Wang et al. 2016). Furthermore, a recent single-cell RNA-seq 

study also revealed the higher expression of ERVs at various stages of preimplantation 

embryogenesis in human and showed their ability to distinguish all cell-specific stages using 

TE transcription alone (Göke et al. 2015). This study also demonstrated that TEs play a 

significant role in fine-tuning cellular functions in early human development (Grow et al. 

2015; Göke et al. 2015) by controlling neighboring gene expression. 

Different factors such as stress and heat shock have been shown to activate transcription of 

many TEs in humans (Häsler and Strub 2006). Transcriptional activation of TEs in the 

context of senescence and aging in human fibroblasts, mouse tissues, and fly brain also 

have been reported (De Cecco et al. 2013b, 2013a; Li et al. 2013). Notably, L1 subfamilies 

were shown to be upregulated in 36 month-old mouse liver compared to 5 month-old (De 

Cecco et al. 2013b). Moreover, mRNA expression has been shown to decrease with age 

(De Cecco et al. 2013b). In the fly brain, TE transcriptional activation during normal aging 

has shown to be associated with neuronal decline suggesting the functional significance of 

TEs in the aging process (Li et al. 2013).                                                                    

Analysis of the pilot GTEx (Genotype-Tissue Expression) data (Melé et al. 2015) (1,486 

RNA-seq samples from 175 individuals) provided initial support for the transcriptional 

activation of TEs in human adult tissues. Here, we analyzed a much larger GTEx dataset to 

systematically investigate the general transcriptional patterns of TEs and how they correlate 

with human phenotypes.  We used very stringent criteria to identify TEs likely to be bona fide 

independent transcriptional events and not a part of larger transcriptional units. We 

uncovered extensive, and largely tissue-specific, TE transcription, and found evidence role 

for TEs in regulating gene expression of nearby protein-coding genes. We also found 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 24, 2019. ; https://doi.org/10.1101/714212doi: bioRxiv preprint 

https://doi.org/10.1101/714212


 4 

associations between tissue-specific TE expression and a number of human phenotypes. 

Thus, we found female breast expressing a much larger number of TEs than male breast, as 

well as the skin of African Americans,  compared to the skin of individuals of European 

Ancestry.  We found a substantial increase of TE expression with age in a number of neural 

and non-neural tissues, but most notably in the tibial artery, and found a potential implication 

of a few TE subfamilies in atherosclerosis. In summary, we create the most exhaustive atlas 

to date of TE expression in human adult tissues.  

 

Results 

Overall approach 

To systematically examine the transcriptionally active TEs, we analyzed RNA-seq data 

derived from 8,051 samples from 49 tissue-sites of 540 post-mortem donors, corresponding 

to the version v6 of GTEx (GTEx Consortium et al. 2017) (Fig. 1).  
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Figure 1. Study Overview. Transposable elements (TEs) expression was quantified by 

using the individual TE genomic copies (around 4.4 million individual copies were grouped 

into 4 classes or 29 families or 901 subfamilies) from RepeatMasker database (hg19) and 

8,051 RNA-seq datasets from GTEx (Genotype-Tissue specific Expression) study. 4.2 

million copies occurred in non-coding regions of the genome. Expression of TEs was 

quantified by using only uniquely mapped reads. TEs overlapping exons and regions near 

(within 3 kb) transcription start site (TSS) or transcription termination site (TTS) of protein-

coding genes were removed. Differential enrichment of TE expression was analyzed in 

tissues and individuals with different sex, ethnicity, and age.  

 

Using this data, we examined the expression of 4.2 million individual TE sequences 

(grouped into 901 subfamilies (Smit et al. 2010)) occurring in non-coding regions (introns 

and intergenic regions). We applied a number of filters to the mapped reads in order to 

obtain robust estimates of expression of TEs (Fig. 1, Methods). In particular, to rule out that 

expression of TEs is a by-product of the pervasive transcription of nearby genes, we took a 

conservative approach, generating transcriptional peaks from RNA-seq reads and 

considered a TE expressed only when overlapping one such peak (Supplemental Fig. 1A, 

B, C). Thus we did not consider a TE expressed if embedded in a larger transcriptionally 

active region.  

TE expression is associated with tissue type  

In total, we found 79,558 TE elements in non-coding regions (about 2% of all non-coding 

TEs) expressed in at least one tissue sample (Supplemental Table 1), and these belonged 

to 856 subfamilies (95% of all subfamilies) (Methods). Unsupervised clustering of 8,551 

samples using expression data with 79,558 TEs reflected tissue groups. Despite the 

exclusion of TEs that were either in exonic regions or proximal to protein-coding genes, 

tissues-types originating from the same tissue often aggregated by the tissue-specific 
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expression, supporting, a possible biological role for TE expression in defining tissue type 

(Fig. 2A, Methods).  

 

Figure 2. Expression of transposable elements. (A) Unsupervised clustering of TE 

subfamilies on the basis of their expression recapitulates tissue types. 856 tissue-specific 
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subfamilies were shown in rows and 8,051 RNA-seq samples in columns. Clustering bar on 

the top of the heatmap with different colors labels the  different tissues (B) Boxplots show 

the distribution of the percentage of reads that mapped to TEs across different tissues 

(Percentage was calculated by dividing the number of uniquely mapped reads overlapping 

TEs with the total number of mapped reads in each sample and further multiplied by a 

million). (C) Number of TEs expressed in multiple adult human tissues (To estimate the 

number of individual genomic TE copies expressed in each tissue, we counted the ones that 

have greater than or equal to 0.1 RPKM expression in at least one sample in each tissue 

separately).  

 

While we did not find large differences in the number of expressed TEs across tissues, the 

overall TE expression, measured as the proportion of reads mapping to TEs, varied several-

fold, with cerebellum and testis showing  the highest percentage of TE transcription, and 

transformed fibroblasts and skeletal muscle the lowest (Fig. 2B, C).  

TEs may contribute to regulating expression of nearby protein-

coding genes 

We examined whether TEs could play any role in regulating the expression of nearby 

protein-coding genes. To address this, we overlapped eQTLs from a recent GTEx study 

(GTEx Consortium et al. 2017) pooled from all tissues with our non-coding TEs. We found a 

significant enrichment (Fisher's exact test, P-value < 0.05) of expressed TEs (25%) 

overlapping eQTLs compared to non-expressed (16.6%) (Fig. 3A, Supplemental Table 2) 

indicating a potential regulatory role of TEs.  
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Figure 3. Potential regulatory role of transposable elements and variance 

decomposition of TE expression across tissues and individuals. (A) Percentage of TEs 

overlapping eQTLs across 49 tissues. 25% of expressed TEs overlap eQTLs compared 17% 

of non-expressed TEs (Fisher-exact test, *** = p-value < 0.05). (B) Percentage of TE 

subfamilies overlapping eQTLS across 49 tissues. The x-axis represents non-expressed 

subfamilies and Y-axis represent expressed. Enriched subfamilies were highlighted in red 
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and depleted in blue. (C) Correlation between TEs and their nearest protein-coding genes in 

tissues and individuals. Each circle represents the median correlation within TE subfamilies. 

Correlations were mostly at the tissue level and in a positive direction. Top right and middle 

right quadrants represent a few examples of the top TE subfamilies that were positively 

correlated at the tissue level. (D) Differential enrichment of TEs across tissues. Right: 

Stacked bar plot shows 222 tissue enriched subfamilies in blue (at least 1.5 fold higher 

expression levels in a particular tissue as compared to all other tissues), 171 group-enriched 

subfamilies in gold (at least 1.5 fold higher expression levels in a group of 2-7 tissues) and 

64 tissue enhanced subfamilies in grey (at least 1.5 fold higher expression levels in a 

particular tissue as compared to average levels in all tissues) colors. Left: Tissue-enriched, 

group-enriched and tissue-enhanced subfamilies separated by tissues. (E) The contribution 

of tissue and individual to the variance of TE expression. Bottom right: TEs with high tissue 

variation and low individual variation. Top Left: TEs with high individual variation and low 

tissue variation. Inset: Boxplot showing the contribution of variance across individuals and 

across tissues to the total variance in TE expression 

 

We explored whether the enrichment varies across different TE subfamilies. Among the 

subfamilies most highly enriched for eQTLs, we found L2, L2b, L2c of LINE class and MIR of 

SINEs (Fig. 3B). Our results are in agreement with a previous study of lymphoblastoid cells 

(Lappalainen et al. 2013), and suggests that TEs can harbor regulatory elements of nearby 

genes in human, the regulatory effect of which may be mediated by TE expression. 

To further investigate the potential role of TEs regulating the expression of nearby protein-

coding genes, we computed the correlation between the expression of TEs and that of the 

closest gene. To account for the fact that this correlation has two components, which are not 

necessarily in the same direction: correlation across tissues, and across individuals, we 

applied a multivariate multilevel model (MVML) to decompose the correlation between TE 

and gene expression pairs at the tissue and individual level (Methods). Using this model, we 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 24, 2019. ; https://doi.org/10.1101/714212doi: bioRxiv preprint 

https://doi.org/10.1101/714212


 10 

found the correlation dominated by correlation across tissues rather than across individuals, 

and more often positive than negative, in particular across individuals (Fig. 3C, 

Supplemental Fig. 2A). Supporting a role for TEs in regulating gene expression, we found a 

correlation between a TE, and its closest protein-coding gene to be overall more positive 

stronger when the TE included an eQTL for the gene (0.50 vs 0.57, Wilcoxon test, P-value  < 

0.001, Supplemental Fig. 2B, Methods), and stronger both for positive (0.61 vs 0.58) and 

negative correlation (-0.20 vs -0.17). 

Extensive tissue-elevated TE expression 

Based on the pattern of TE expression across all tissues, all 856 expressed TE subfamilies 

were classified into two major groups, 398 housekeeping (expressed in a similar manner 

across all tissues) and 457 tissue-elevated (expressed in a differential manner) 

(Supplemental Table 4, Methods).  

Tissue-elevated subfamilies were further classified into three subgroups, 222 tissue-

enriched (at least 1.5 fold higher expression levels in a particular tissue as compared to all 

other tissues), 171 group-enriched (at least 1.5 fold higher expression levels in a group of 2-

7 tissues) and 64 tissue-enhanced (at least 1.5 fold higher expression levels in a particular 

tissue as compared to average levels in all tissues) (Fig. 3D, Supplemental Table 4). Testis 

showed the highest number of tissue-enriched and the cerebellar sections of the brain 

showed the highest number of group-enriched TE subfamilies (Fig. 3D, Supplemental 

Figure. 3. A,B). For example, LTR75B was a group-enriched subfamily as it was highly 

enriched in several brain tissue groups (Supplemental Figure. 3C), and, tissue-enriched 

subfamilies like LTR88c and LTR28 were enriched only in the pancreas and pituitary, 

respectively (Supplemental Figure. 3C). At the elemental level, we found 32,857 tissue-

enriched and 18,895 group-enriched TEs (Supplemental Table 4), revealing a widespread 

amount of tissue-elevated TE expression in humans. 
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Tissue-enriched TEs were associated with xenobiotic, hormone and fatty acid metabolic 

processes (Supplemental Table 4). The link between xenobiotic processes and TEs 

transcription was previously observed in an epigenetic-drugs induced TE-transcriptome 

study (Brocks et al. 2017). Group-enriched TEs were associated with several biological 

functions including chromatid organization and segregation, amino acid transport, and 

amyloid precursor protein and fatty acid metabolic processes (Supplemental Table 4). 

Taken together, TE expression enrichment in various tissues and their association with a 

different biological process are consistent with a possible biological role of TEs in human 

adult tissues. 

Sex-associated TE transcription is most prevalent in the breast  

Using linear mixed models (Methods), we found that variation in TE expression is far 

greater among tissues (48% of the total variance in TE expression) than individuals (2% of 

the total variance, Fig. 3E, Supplemental Table 5). The pattern of variation of TE 

expression across tissues and individuals is nearly identical to that reported for protein-

coding genes (47% and 4%, respectively (Melé et al. 2015)). Gene ontology analysis of the 

protein-coding genes nearby TE the expression of which varies a lot across tissues, but little 

across individuals, indicates that these genes are involved in the regulation of neural activity 

(Supplemental Figure. 3. C), consistent with the strong transcriptional divide separating 

neural from non-neural tissues. We investigated a number of phenotypes that could explain 

the variation of TE expression across individuals. Specifically, we investigated differential TE 

expression with respect to sex, ethnicity, and age. 

We use the linear models above on tissues from 186 females and 354 males 

(Supplemental Figure. 4), and identified  first 647 subfamilies (103 increased in male, 584 

increased in female) that showed significant differential expression in at least one tissue 

(adjusted P-value < 0.05, Methods) between male and females (Fig. 4A, Supplemental 

Table 6). At element level, we identified 23,462 differentially expressed TEs (4,758 
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increased in male, 18,704 increased in female, Supplemental Table 6). The size effect, 

however, was small (in all cases, log2 fold-change < 1) (Fig. 4A). 

 

Figure 4. Differentially expressed TE subfamilies between males and females (A) 

Double-sided stacked bar plot represents the number of differentially expressed TE 

subfamilies between males and females across different tissues. TEs the expression of 

which increased in males are shown on the left side and those with increased expression in 

females on the right. The highest number of differentially expressed TE subfamilies were 

found in breast mammary tissue (569, log2 fold-change > 0 or < 0, adjusted P-value < 0.05) 
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and most of them were up-regulated in females. (B) Heatmap represents the expression of 

differentially expressed TE subfamilies in breast mammary tissue (red is higher and blue is 

lower). 569 subfamilies were shown in rows and 241 breast mammary samples in columns. 

Bar with the pink color on the left side of the heatmap represents a group of subfamilies that 

were increased in females and the one with the light blue color represents that were 

increased in males. Black and grey bars on the top of the heatmap identify the female and 

male samples. (C-F) Examples of sex-associated TEs that were correlated with stress fiber 

associated protein-coding genes in the breast mammary tissue. Scatterplots showing the TE 

expression (log2) on X-axis and gene expression (log2) on Y-axis, and the red line is the 

regression line. Each scatterplot is further separated into two (gene and TE) individual 

boxplots, where log-transformed expression was plotted in females and males. Females 

were shown in pink and males were shown in light blue colors. (C) For example, GABRP 

was positively correlated with a MIRc_dup78977 copy in breast mammary tissue where both 

GABRP expression and MIRc_dup78977 expression higher in females. (D-F) Similar plots 

were drawn using other top correlated TE and stress fiber associated gene pairs. 

 

Breast mammary tissue exhibited the largest number of differentially expressed TEs (569 

subfamilies, 16,732 elements). The vast majority were increased in females (519 

subfamilies), mirroring sex-biased protein-coding gene expression (Melé et al. 2015) (Fig 

4A, B). Other tissues also showed several differentially expressed TEs, including thyroid, 

liver, skeletal muscle and adipose-subcutaneous (Supplemental Table 6).  

To understand how sex-associated TE expression changes might affect biological function in 

breast mammary tissues, we performed gene ontology analysis of the protein-coding genes 

that were nearest the sex-associated TEs (Methods). These were significantly enriched for 

cellular components specific to stress fiber (P < 6.78 x 10-14, binomial test) and actin 

filament bundle (P < 1.54 x 10-14, binomial test). Myoepithelial cells of breast are known to 
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contain large amounts of actin stress fibers and these fibers act as major mediators of cell 

contraction and help in milk production (Pellegrin and Mellor 2007), and organization of 

these actin fibers has also been shown to be associated with breast cancer (Tavares et al. 

2017) suggesting TEs regulatory potential. 

Notably, the genes that we found the most correlated with sex-associated TEs in breast 

mammary tissue have been implicated in breast cancer. For example, ANKRD30A and 

GABRP, known to specifically expressed in individuals with triple-negative breast cancer 

(Mathe et al. 2016; Sizemore et al. 2014) are positively correlated with two different MIR 

elements, both up-regulated in females (Fig 4 C, D). ELF5, a key regulator of mammary 

gland alveologenesis, the epithelial-mesenchymal transition in mammary gland development 

and breast cancer metastasis (Chakrabarti et al. 2012), is positively correlated with an L2 

element that is upregulated in females (Fig 4 E). YBX1, a gene known to be involved in 

transfer RNA mediated breast cancer progression (Goodarzi et al. 2015) is negatively 

correlated with another L2 element (Fig 4F). These results suggest a potential association 

between TEs expression in female breast development and cancer.  

Ethnicity-associated TE transcription is most prevalent in skin 

The role of TEs in pigmentation has been recently revealed in British peppered moths, 

where the insertion of a TE increases the transcription of the gene cortex, eventually giving 

rise to industrial melanism (Van’t Hof et al. 2016). Within humans, it has been shown that 

different ethnic groups express different genes associated with disease-phenotypes (Melé et 

al. 2015; Spielman et al. 2007) and that the expression of these genes is regulated by 

neighboring non-coding regions (Cheung et al. 2005). Most of the human studies, however, 

were either performed in cell lines or focused on gene expression, and little is known about 

TE expression across tissues in different human ethnic groups.    

Here, we specifically investigated differential TE expression between 77 African American 

(AA) and 455 European American (EA) (Supplemental Figure. 5). We used a similar linear 
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regression approach as before. (Methods). We identified 614 subfamilies (468 increased in 

EA, 146 increased in AA) that showed significant differential expression (adjusted P-value < 

0.05) between EA and AA (Fig. 5A, Supplemental Table 7).  

 

Figure 5. Differentially expressed TE subfamilies between ethnicities. (A) Double-sided 

stacked bar plot represents the number of differentially expressed TE subfamilies between 

EAs (European Americans) and AAs (African Americans) across different tissues TEs the 

expression of which was comparatively increased in EAs are shown on the left side, and 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 24, 2019. ; https://doi.org/10.1101/714212doi: bioRxiv preprint 

https://doi.org/10.1101/714212


 16 

those with expression increased in AAs on the right. The highest number of differentially 

expressed TE subfamilies were found in skin-not sun exposed tissue (416, log2 fold-change 

> 0 or < 0, adjusted P-value < 0.05) and most of them were increased in EAs. (B) Heatmap 

represents the expression of differentially expressed TE subfamilies in skin-not sun exposed 

tissue (red is higher and blue is lower). 416 subfamilies were shown in rows and 241 skin-

not sun exposed samples in columns. Bar with the dark purple color on the left side of the 

heatmap represents a group of subfamilies that were up-regulated in EAs and the one with 

the gold color represents that were increased in AAs. The black/grey bar on the top of the 

heatmap identifies the  AAs and  EA samples. (E-F) Examples of ethnicity-associated TEs 

that were correlated with ribosome-biogenesis associated protein-coding genes in the skin 

(not sun-exposed). Scatterplots showing the TE expression (log2) on X-axis and gene 

expression (log2) on Y-axis, and the red line is the regression line. Each scatterplot is further 

separated into two (gene and TE) individual boxplots, where log-transformed expression 

was plotted in AAs and EAs. AAs were shown in gold and EAs were shown in purple colors. 

(D) For example, NQO2 was negatively correlated with a LIMB2_dup2696 copy in skin (not 

sun-exposed) tissue where NQO2 gene expression is higher in EAs and L1MB2_dup2696 is 

higher in AAs. (E, F) Similar plots were drawn using other top correlated TE and ribosome-

biogenesis gene pairs. 

 

At element level, we identified 17,119 differentially expressed TEs (Supplemental Table 7). 

Similar to sex-associated TEs, the effect size effect was small (log2 fold-change < 1) (Fig. 

5A). 

Skin (not sun-exposed) exhibited the largest number of differentially expressed TEs (416 

subfamilies, 5,699 elements); the 409 subfamilies were increased in EAs, whereas brain 

regions showed the lowest number of differentially expressed TEs (Fig 5A, B, 

Supplemental Table 7). While there were also ethnic differences in TE expression in sun-

exposed skin, the number of TEs differentially expressed here were about half of those in 
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unexposed skin, suggesting that exposition to sunlight may somehow reduce differences in 

skin physiology between EA and AA.  

Protein-coding genes near ethnicity-associated TEs in unexposed skin were significantly 

enriched in the various biological process, notably ribosome biogenesis (P < 1.89 x 10-15, 

binomial test). It has been shown that mutations in ribosomal proteins lead to dark skin 

(McGowan et al. 2008). Gene ontology analyses also revealed significantly enriched mouse 

phenotypes associated with the morphology of epidermis and keratinocytes, suggesting a 

possible role for TEs in skin morphology. 

Notably, the topmost correlated genes were known to be involved in the maintenance of 

keratinocytes or in melanosome degradation. For example, NQO2, a gene known to limit 

skin carcinogenesis by protecting cells against oxidative stress (The Cancer Genome Atlas 

Network et al. 2012) is negatively correlated with an L1 element, which is up-regulated in AA 

(Fig. 5D) and ATG13, a known autophagic modulator in melanosome degradation (Murase 

et al. 2013), is also negatively correlated with an Alu element, upregulated in AA. It has been 

shown that EA skin-derived keratinocytes have more autophagic activity than those derived 

from AAs skin, suggesting a possible role for TEs in autophagic activity (Fig. 5E). Among the 

top positive correlated cases, we found a few genes involved in skin cell maintenance. 

These include DLL1 known to regulate differentiation and adhesion cultured human 

keratinocytes (Estrach et al. 2008), which is positively correlated with a MER5B element 

upregulated in AA (Fig. 5F). These results suggest that TEs expression could underlay 

phenotypic differences between ethnicities, especially in the skin.  

Age-associated TE transcription is most prevalent in tibial artery 

Unlike sex and ethnicity, several studies have investigated the association between aging 

and TEs in various species. For example, it has been shown that L1 elements were up-

regulated in aging mouse liver (De Cecco et al. 2013b) and LINEs were up-regulated in the 

aging fly brain (Li et al. 2013). In addition, the fly study reported that the misregulation of TEs 
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expression leads to age-dependent memory impairment and shortened lifespan. It also has 

been shown that Alu elements are up-regulated in patients with geographic atrophy (Kaneko 

et al. 2011) (age-related retinal pigment degeneration) and L1 elements in patients with Rett 

syndrome (Marchetto et al. 2010) (a rare genetic disease linked to developmental and 

nervous system problems). However, to our knowledge, the association of TE expression 

with age across many human adult tissues has not been investigated.  

To detect age-associated changes in TE expression, we used a similar linear regression as 

before except age was treated as a continuous variable (Methods). We used individuals 

with 19 years to 70 years of age (Supplemental Figure. 6 A, B). Overall, we identified  

742 subfamilies that showed a significant change in expression with age (adjusted P-value < 

0.05), the vast majority of the increasing expression (679 increased, 63 decreased, Fig. 6A, 

Supplemental Table 8). At the element level, we identified 27,189 TEs that change TE 

expression with age (Supplemental Table 8).  
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Figure 6. Aging-associated TE expression. (A) Double-sided stacked bar plot represents 

the number of age-associated TE subfamilies across different tissues. TEs the expression of 

which increased with the age are shown on the left side and those in which the expression 

decreased on the right. The highest number of TE subfamilies associated with aging were 

found in artery tibial tissue (631, log2 fold change > 0 or < 0, adjusted P-value < 0.05) and 

most of them were increased with the age. (B) Heatmap represents the expression of age-

associated TE subfamilies in artery tibial tissue (red is higher and blue is lower). 631 

subfamilies were shown in rows and 294 artery-tibial samples in columns. Artery-tibial 

samples were ordered from lower age-groups to higher. Red/green bar the left side of the 

heatmap represents identifies TE subfamilies increasing/decreasing expression with age. 

The green color bar on the top of the heatmap represents the age of the individuals. (C-F) 

Examples of Age-associated TEs that were negatively correlated with mitochondrial 

transport associated protein-coding genes in tibial artery tissue. Scatterplots showing the TE 

expression (log2) on X-axis and gene expression (log2) on Y-axis, and the red line is the 

regression line. Each scatterplot is further separated into two (gene and TE) individual 

scatterplots, where the log-transformed expression (on Y-axis) was plotted against age in 

years( on X-axis), and the blue line is the regression line. (C) For example, NDUFB4 was 

negatively correlated with a MIR_dup36875 copy in artery tibial tissue where NDUFB4 gene 

expression decrease with age and MIR_dup36875 increase with age. (D-F) Similar plots 

were drawn using another top negatively correlated TE and mitochondrial transport 

associated gene pairs.  

 

There were a few tissues in which there was an association between expression of TEs and 

age, notably muscle, some brain regions, and a few others. However, the tissue that 

showest the largest number of age-associated TEs (621 subfamilies, 16,678 elements), 

nearly all increasing expression with age), was the tibial artery (Fig. 6B, Supplemental 

Table 8). The other artery-related tissues in GTEx including artery aorta and artery coronary 
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did not show a similar trend. Atherosclerosis is a condition affecting arteries the incidence of 

which increases with age. A substantial number of histological images of the tibial artery in 

GTEx (145 out of 294) have been annotated by pathologists as being affected by this 

condition. Therefore, we have performed differential TE expression between affected and 

non-affected tibial artery samples, after controlling for age and other factors (Methods). We 

have detected two subfamilies (L1PA4 and LTR57) with increased expression in 

atherosclerotic arteries (Supplemental Figure. 6C). Genes in the vicinity of some of the 

members of these families have been implicated in atherosclerosis: ACSL1 (Kanter et al. 

2012), long-chain acyl-CoA synthetase 1, an enzyme known to be associated with 

accelerated atherosclerosis in diabetes  and HPSE (Vlodavsky et al. 2013) is a mammalian 

enzyme that degrades heparan sulfate, a compound useful for arterial structures, and known 

to be associated with atherosclerosis. The other LTR57 member maps to a locus 

orthologous to a mouse locus in chromosome 8 associated to atherosclerosis (Burkhardt et 

al. 2011).  

Protein-coding genes near age-associated TEs were significantly enriched for biological 

processes specific to cytokine production (P < 1.09 x 10-59, binomial test), response to type-

1 interferon  (P < 7.59 x 10-31, binomial test) and mitochondrial protein import activity (P < 

4.7 x 10-27, binomial test). Notably, the topmost correlated genes were also known to be 

involved in either aging- or mitochondrial-related processes. For example, NDUFB4, a 

mitochondrial complex I subunit previously known to associate with the longevity of 

C.elegans (Yee et al. 2014) is negatively correlated with a MIR copy that increases in 

expression with age (Fig. 6C). ATP5G1, an inner mitochondrial membrane protein 

containing a mitochondrial targeting signal (Itakura et al. 2016) and also linked to aging 

(Houtkooper et al. 2011), is also negatively correlated with a MIRb copy that increases in 

expression with age (Fig. 6D). Genome-wide association studies in individuals with coronary 

artery disease found genetic risk loci in ATP5G1 and DYNLRB1 genes (Schunkert et al. 
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2011; Howson et al. 2017). DYNLRB1 is also negatively correlated with an Alu copy that 

increases in expression with age in the tibial artery (Fig. 6E). Among the top negatively 

correlated genes, many were associated with mitochondrial functions. For example, HAX1 is 

an anti-apoptotic protein that promotes mitochondrial fission and has been previously linked 

to the aging (Gatta et al. 2014); the expression of this gene is negatively correlated with an 

Alu copy (AluJr_dup3879), which increases in expression with age (Fig. 6F). Mitochondrial 

dysfunction and inflammation were some of the essential hallmarks of aging in mammals 

(López-Otín et al. 2013). Together, these results suggest that TEs might affect aging by 

regulating the protein-coding genes involved in mitochondrial or inflammation-related 

functions.  

 

Discussion 

In this study, we have used the GTEx transcriptomic data across multiple tissue and 

individuals to provide a systematic and unbiased evaluation of transcriptionally active TEs in 

human adult tissues. Our results challenge the assumption that TEs are globally inactive in 

human adult tissues and support recent reports where a number of subfamilies were shown 

to be active (Faulkner et al. 2009; Fort et al. 2014). By greatly extending these reports, our 

study delineated a comprehensive atlas of transcriptionally active TEs across human adult 

tissues. We found that many TEs are tissue-elevated, often correlating, in a  specific 

manner, with human phenotypes (breast regarding sex, skin regarding ethnicity,  and tibial 

artery regarding age).  Many TEs are positively correlated with nearby protein-coding genes. 

This could suggest a role of TEs in the regulation of gene expression, a role that is further 

supported by the finding that approximately 25% of non-coding expressed TEs contain 

eQTLs for nearby protein-coding genes. 

Several recent studies have shown that using both uniquely mapped reads and multi-

mapped reads to quantify TEs might introduce biases in expression (Lerat et al. 2017; Jin et 
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al. 2015; Criscione et al. 2014). Another single-cell RNA-seq based study showed that 

integrating multi-mapped reads increases read coverage but not the overall results (Göke et 

al. 2015). To avoid this multi-mapping problem, we only used uniquely mapped reads to 

quantify TEs. Another technical issue is that often the entire TE containing regions are 

expressed and the TE expression in that region is not increased relative to the surrounding 

regions, usually hosting genes. Therefore, TE expression could just be a by-product off 

transcription of nearby genes. To address this issue, we built signal peaks from the RNA-seq 

reads and considered TEs expressed only if they correspond to one such RNA-seq peak 

(Supplemental Figure 1A, Methods). Thus, the TEs considered in our study is likely to be, 

at least partially, independent transcriptional events, and not the direct consequence of the 

transcription of nearby genes. Since these account for more than 100,000 of expressed TEs 

they dramatically affect downstream analyses.     

Our study can be extended in several ways. First, GTEx is a collection of postmortem 

samples, and therefore transcription levels from these samples may be different from that of 

living individuals (Melé et al. 2015). Monitoring changes in TE transcription in living 

individuals would reveal unbiased results (Arda et al. 2016; Enge et al. 2017). Second, 

GTEx is not a disease associated project and most of the samples were collected from 

healthy individuals. However, TEs are known to be highly active in various types of cancer. 

Therefore systematically identifying TEs in different human cancer, or other disease-based, 

transcriptomic datasets could also reveal interesting insights. Finally, while using short 

sequence reads we have identified thousands of TEs, long-read sequencing technologies 

will enormously facilitate the mapping of repeat elements, leading to a much better 

characterization of the landscape of TE expression.   

It has been shown that in mouse tissues several retrotransposable element subfamilies 

become transcriptionally active during normal aging, and further, that the expression 

culminates into active transposition in advanced age (De Cecco et al. 2013b). Our results 

show that expression of TEs increases with age in most tissues, supporting previous 
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findings in the fly, mouse, and human (Li et al. 2013; De Cecco et al. 2013a, 2013b). Aging 

is a stochastic process where each cell in a tissue is affected in different ways, and analysis 

of adult tissues might be difficult to interpret (Enge et al. 2017). Most of the previous age-

related transcriptome studies used different individuals with a different lifespan, and these 

studies could be prone to a bias that comes from individual genetic variation (Enge et al. 

2017; Arda et al. 2016; Yang et al. 2015). Measuring samples from the same individual at 

different ages would reveal unbiased results that can help to understand potential markers of 

aging. Whether TE transcription is a cause or a consequence of aging-associated genomic 

alterations rather than the cause, requires additional data and experiments.   

In summary, by resolving a longstanding problem whether TEs are globally silenced in 

humans or not, our study provides a comprehensive catalog of transcriptionally active TEs in 

human adult tissues, as well as their associations with a number of phenotypes. This catalog 

represents a valuable resource to the genomic, aging and other fields. 
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Methods 

Data acquisition. Reads mapped to hg19 / GRCh37 for available mRNA sequencing data 

(n=8,555) together with matching phenotype covariates like sex, ethnicity, and age were 

downloaded on 20th December 2016 from the dbGAP data portal (data release V6, dbGaP 

accession phs000424.v6.p1). Briefly, reads were mapped by using TopHat (version 1.4.1) 

(Kim et al. 2013), parameters: --mate-inner-dist 300 --mate-std-dev 500 --no-sort-bam --no-

convert-bam --GTF Homo_sapiens_assembly19.gtf --transcriptome-index. We used only the 

reads that mapped to unique locations in the genome (NH:i:1) to quantify TE expression. 

Individuals with genotyping issues, chromosomal or sex abnormalities were removed from 

the analysis, and this gave 8,051 RNA-seq samples in total. We downloaded repeats from 

RepeatMasker (UCSC Table Browser, hg19) and selected the ones that belong to 

transposable elements classes (LINE, SINE, LTR, and DNA), and Gencode genes (GV19, 

comprehensive annotation) from Gencode https://www.gencodegenes.org/. 

Expression quantification. We used featureCounts (version 1.4.3 from the subread 

package (Liao et al. 2014)) to count the number of uniquely mapped reads overlapping the 

transposable elements. Uniquely mapped reads were further normalized by the total number 

of reads in each tissue sample as RPKM. We considered a TE to be expressed if it satisfies 

the following steps. 

1.   TE with a normalized expression value greater than 0.1 RPKM in at least one 

sample. This step removes the noisy TEs with either lower number of uniquely mapped 

reads or expressed in a few samples. 

2.   TE that overlaps RNA-seq peak by at least one base pair in at least one sample 

(RNA-seq peak dataset was built by running MACS (Feng et al. 2012) default 

parameters) across every GTEx sample and pooling all the results or significant peaks 

into one) (Supplemental Figure 1A). This step removes noisy TEs that have an equal 

number of overlapping RNA-seq reads compared to their neighboring genomic regions. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 24, 2019. ; https://doi.org/10.1101/714212doi: bioRxiv preprint 

https://doi.org/10.1101/714212


 25 

  

3.  TEs that overlap either protein-coding exons or proximal to the protein-coding 

promoter within 3 kb distance (Gencode v19 protein-coding gene annotation). 

To estimate the fraction of the transcriptome mapped to the TEs, we divided the total 

number of reads mapped to each individual genomic TE element with the total number of 

mapped reads (x 10^6). To estimate the number of individual genomic TE copies expressed 

in each tissue, we counted the ones that have greater than or equal to 0.1 RPKM expression 

in at least one sample in each tissue separately.  

Tissue specificity estimation. TissueEnrich package (https://github.com/Tuteja-

Lab/TissueEnrich) is used to calculate enrichment of tissue-elevated TEs. Tissue-elevated 

subfamilies are defined using the algorithm from the HPA (Uhlén et al. 2016), and grouped 

as follows:  

1. Tissue Enriched: subfamilies with an expression level greater than 1 (normalized 

expression) that also have at least 1.5 fold higher expression levels in a particular 

tissue compared to all other tissues. 

2. Group Enriched: Subfamilies with an expression level greater than 1 (normalized 

expression) that also have at least 1.5 fold higher expression levels in a group of 2-7 

tissues compared to all other tissues, and that is not considered tissue-enriched.  

3. Tissue Enhanced: Subfamilies with an expression level greater than 1 (normalized 

expression) that also have at least 1.5 fold higher expression levels in a particular 

tissue compared to the average levels in all other tissues, and that are not 

considered tissue-enriched or group-enriched. 

Charlie6 subfamily was ignored from the analysis as it has less than one normalized 

expression in all samples. 
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Estimation of correlation between TEs and nearest protein-coding genes in tissues 

and individuals using multivariate multilevel modeling. Gene and repeat expression 

define a bivariate vector. To decompose the raw variances and covariances of such vector 

into individual and tissue components a multivariate multilevel model was adopted (Snijders 

2011). Assuming a nesting structure; measurement nested within individuals, and individuals 

within tissues. This leads to three levels: measurements within individuals within tissues. 

The first level is that of the dependent variables indexed by h = 1,2, the second level is that 

of the individuals i = 1,…,nj, where nj denotes the number of individuals in j-th tissue, and the 

third level is that of the tissues, j = 1,...,N, where N denotes the number of tissues. The 

multivariate model is formulated as a hierarchical linear model using dummy variables used 

to indicate the dependent variables 

 

𝑑"#$% = '1, ℎ = 𝑠
0, ℎ	 ≠ 𝑠 

 

With these dummies, the random intercept models for the dependent variables can be 

integrated into one three-level hierarchical linear model (Raudenbush, S.W. and A.S. Bryk. 

2002) by the expression 

 

𝑦#$% =0𝛽23𝑑"#$% +0𝑈"%𝑑"#$% +
6

"78

0𝑅"$%𝑑"#$%

6

"78

6

"78

 

 

In particular, the notation denotes: y1ij gene expression from individual i at tissue j, y2ij repeat 

expression from individual i at tissue j, β01 intercept of gene expression, β02 intercept of repeat 

expression, U1j the random effect at tissue level of gene expression, U2j the random effect at 

tissue level of repeat expression, R1ij the random effect at the individual level of gene 

expression R2ij the random effect at the individual level of repeat expression. We assume: 

 

● Usj	and Rsij are no correlated, 
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● ?
𝑈8%
𝑈6%

@ ∼ 𝑁 CD00E , C
𝑣𝑎𝑟(𝑈8%) 𝑐𝑜𝑣(𝑈8%, 𝑈6%)

𝑐𝑜𝑣(𝑈6%, 𝑈8%) 𝑣𝑎𝑟(𝑈6%)
MM 

 
 

● ?
𝑅8$%
𝑅6$%

@ ∼ 𝑁 CD00E , C
𝑣𝑎𝑟(𝑅8$%) 𝑐𝑜𝑣(𝑅8$%, 𝑅6$%)

𝑐𝑜𝑣(𝑅6$%, 𝑅8$%) 𝑣𝑎𝑟(𝑅6$%)
MM 

 

Model parameters were estimated using lme function implemented in the nlme package from 

R. Then, correlation coefficients at the tissue and individual level were computed from 

variances and covariances estimates. Notice that GTEx data shows cross-classification 

structure. Individuals are not perfectly nested in tissues. Weighting methods to address this 

fact will be implemented in further investigations. 

eQTL analysis. We downloaded eQTLs from dbGAP data portal (data release V6, dbGaP 

accession phs000424.v6.p1). We only considered significant cis-eQTLs (1 Mb distance to 

the transcription start site) with a nominal p-value is less than nominal p-value threshold 

(nominal p-value threshold for calling a variant-gene pair significant for the gene). In total, 

there were around 26 million SNP-gene pairs (unique SNPs = 2,552,394 and unique genes 

= 28,059). Next, we overlapped 79,558 non-coding TEs and found 19,944 (25%) overlapping 

at least one SNP. To calculate correlations, we used MVML method. We found 3,284 TEs 

correlated with nearest genes (out of 19,944 expressed TEs that overlap eQTLs); 3284 

(3007 positive, 277 negative), and 36,532 TEs were correlated with nearest genes (out of 

59,614 expressed TEs that do not overlap eQTLs); 36,532 (31,911 positive, 4,621 negative). 

Variance decomposition analysis.  

To assess the contribution of tissue and individual to TE expression variation, we used a 

linear mixed model (LMM). TE expression was modeled as a function of tissue and 

individual (considered as random factors). The LMM was implemented in the R package 

lme4 (Bates et al. 2015). To obtain the variance components, we divided the restricted 

maximum likelihood (REML) estimators for the random effects of tissue, individual and 
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residual variance by their sum. TEs that were not expressed (RPKM > 0) in any one of the 

samples were excluded from the analysis. We used log2 (RPKMs) to normalize the data and 

pseudocounts to deal with zero expression values. 

Linear regression analysis. In each tissue, we modeled TEs expression using the following 

linear regression model (Ritchie et al. 2015): 

𝑦$%N = 𝛽 + 𝑆𝑒𝑥$ + 𝐸𝑡ℎ% + 𝛾 · 𝐴𝑔𝑒N + 𝑅 · 𝐼𝑠𝑐ℎ𝑒𝑚𝑖𝑐𝑇𝑖𝑚𝑒N + 𝑆 · 𝑅𝐼𝑁𝑠𝑐𝑜𝑟𝑒N + 𝜀$%N	

with	𝑖 = 1, 2; 	𝑗 = 1, 2; 	𝑘 = 1,… , 𝑛$%, 𝑛$% is the number of samples in the (i,j)-th  condition.  

𝑦$%N   denotes the expression level of a transposable element in the i-th level of sex, j-th level 

of ethnicity and k-th sample in the (i,j)-th condition. 𝛽 denotes the regression intercept, 

𝑆𝑒𝑥$	denotes the effect of i-th level of Sex, 𝐸𝑡ℎ% denotes the effect of the j-th level of 

Ethnicity, 𝛾 denotes the regression coefficient of 𝐴𝑔𝑒, 𝐴𝑔𝑒N  denotes the age of the k-th 

sample in the (i,j)-th condition, 𝑅 denotes the regression coefficient of Ischemic time, 

𝐼𝑠𝑐ℎ𝑒𝑚𝑖𝑐𝑇𝑖𝑚𝑒N denotes the ischemic time of the k-th sample in the (i,j)-th condition and	𝑆 

denotes the regression coefficient of RIN score, 𝑅𝐼𝑁𝑠𝑐𝑜𝑟𝑒N denotes the RIN score of the k-

th sample in the (i,j)-th condition, and 𝜀$%N denotes the error term of the (i,j,k)-th observation, 

that we assume is normally distributed. In addition, we selected the TEs with higher than 0.1 

RPKM expression in at least 10 samples and log-transformed the data before applying linear 

regression. 

Sex-association analysis. We examined the expression of TEs in the non-coding regions 

of the human genome across 42 tissue-sites using an expression threshold > 0.1 expression 

in more than ten samples in each tissue that was shared between both sexes. This threshold 

enables more robust estimates of sex-associated TEs in the examined samples, but it 

excludes TEs with lower individual-level expression (<=10 individuals) and also excludes 

sex-specific tissues from the analysis. Samples used in this analysis were originated from 

540 individuals of whom 186 were female, and 354 were male. The demographic details 

related to these samples are provided in (Supplemental Fig. 3A). While we found no 
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significant differences in age at death (Mann-Whitney P-value = 0.32) between female and 

male samples, we did detect significant differences in the ischemic time (Mann-Whitney P-

value < 0.05) and RNA integration score (RIN score) (Mann-Whitney P-value < 0.05) 

(Supplemental Fig. 3B). However, we verified that none of the findings reported in this 

study could be affected by these factors. 

Ethnicity-association analysis. We utilized GTEx data that belong to 77 EA and 455 AA 

ethnic groups. To keep at least a few samples in both groups across each tissue, we 

discarded Asian, American Indian or Alaska native or individuals with unknown groups 

(Supplemental Fig. 4A, C). We detected significant differences in the sex, age, ischemic 

time and RNA integration score (Mann-Whitney P-value < 0.05) between EA and AA ethnic 

groups (Supplemental Fig. 4B). However, we verified that none of the findings reported in 

this study could be affected by these factors. 

Aging-association analysis. We grouped individuals into five age-groups ranging from 19 

to 70 years (Supplemental Fig. 3A, B). We used tissues with at least one samples across 

all these five groups. Like before, we also corrected aging regression for sex, ethnicity, 

ischemic time and RIN-score. If γ was significantly deviated from 0, TE was considered to be 

age-associated. TEs was up-regulated with age if 𝛾> 0 and down-regulated if 𝛾< 0. For 

atherosclerosis analysis, we annotated tibial artery samples using histo-pathological images. 

We found 145 samples out of 294 tibial artery samples have atherosclerosis annotation (in 

V6). We applied linear regression to calculate differential TE expression between tibial artery 

samples with and without atherosclerosis. All this analysis was done by correcting Gender, 

RIN score, Ischemic time and Age. 

Gene-ontology analysis. We used the GREAT tool (McLean et al. 2010) using the nearest 

gene approach with the whole genome as a background. For larger datasets, we selected 

“Significant By Region-based Binomial testing”. 
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Data access 

All the raw data can be accessed from https://www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/study.cgi?study_id=phs000424.v6.p1 
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Figures  

Figure 1. Study Overview. Transposable elements (TEs) expression was quantified by 

using the individual TE genomic copies (around 4.4 million individual copies were grouped 

into 4 classes or 29 families or 901 subfamilies) from RepeatMasker database (hg19) and 

8,051 RNA-seq datasets from GTEx (Genotype-Tissue specific Expression) study. 4.2 

million copies occurred in non-coding regions of the genome. Expression of TEs was 

quantified by using only uniquely mapped reads. TEs overlapping exons and regions near 

(within 3 kb) transcription start site (TSS) or transcription termination site (TTS) of protein-

coding genes were removed. Differential enrichment of TE expression was analyzed in 

tissues and individuals with different sex, ethnicity, and age.  

Figure 2. Expression of transposable elements. (A) Unsupervised clustering of TE 

subfamilies on the basis of their expression recapitulates tissue types. 856 tissue-specific 

subfamilies were shown in rows and 8,051 RNA-seq samples in columns. Clustering bar on 

the top of the heatmap with different colors labels the  different tissues (B) Boxplots show 

the distribution of the percentage of reads that mapped to TEs across different tissues 

(Percentage was calculated by dividing the number of uniquely mapped reads overlapping 

TEs with the total number of mapped reads in each sample and further multiplied by a 

million). (C) Number of TEs expressed in multiple adult human tissues (To estimate the 

number of individual genomic TE copies expressed in each tissue, we counted the ones that 

have greater than or equal to 0.1 RPKM expression in at least one sample in each tissue 

separately).  

Figure 3. Potential regulatory role of transposable elements and variance 

decomposition of TE expression across tissues and individuals. (A) Percentage of TEs 

overlapping eQTLs across 49 tissues. 25% of expressed TEs overlap eQTLs compared 17% 

of non-expressed TEs (Fisher-exact test, *** = p-value < 0.05). (B) Percentage of TE 

subfamilies overlapping eQTLS across 49 tissues. The x-axis represents non-expressed 
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subfamilies and Y-axis represent expressed. Enriched subfamilies were highlighted in red 

and depleted in blue. (C) Correlation between TEs and their nearest protein-coding genes in 

tissues and individuals. Each circle represents the median correlation within TE subfamilies. 

Correlations were mostly at the tissue level and in a positive direction. Top right and middle 

right quadrants represent a few examples of the top TE subfamilies that were positively 

correlated at the tissue level. (D) Differential enrichment of TEs across tissues. Right: 

Stacked bar plot shows 222 tissue enriched subfamilies in blue (at least 1.5 fold higher 

expression levels in a particular tissue as compared to all other tissues), 171 group-enriched 

subfamilies in gold (at least 1.5 fold higher expression levels in a group of 2-7 tissues) and 

64 tissue enhanced subfamilies in grey (at least 1.5 fold higher expression levels in a 

particular tissue as compared to average levels in all tissues) colors. Left: Tissue-enriched, 

group-enriched and tissue-enhanced subfamilies separated by tissues. (E) The contribution 

of tissue and individual to the variance of TE expression. Bottom right: TEs with high tissue 

variation and low individual variation. Top Left: TEs with high individual variation and low 

tissue variation. Inset: Boxplot showing the contribution of variance across individuals and 

across tissues to the total variance in TE expression.  

Figure 4. Differentially expressed TE subfamilies between males and females (A) 

Double-sided stacked bar plot represents the number of differentially expressed TE 

subfamilies between males and females across different tissues. TEs the expression of 

which increased in males are shown on the left side and those with increased expression in 

females on the right. The highest number of differentially expressed TE subfamilies were 

found in breast mammary tissue (569, log2 fold-change > 0 or < 0, adjusted P-value < 0.05) 

and most of them were up-regulated in females. (B) Heatmap represents the expression of 

differentially expressed TE subfamilies in breast mammary tissue (red is higher and blue is 

lower). 569 subfamilies were shown in rows and 241 breast mammary samples in columns. 

Bar with the pink color on the left side of the heatmap represents a group of subfamilies that 

were increased in females and the one with the light blue color represents that were 
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increased in males. Black and grey bars on the top of the heatmap identify the female and 

male samples. (C-F) Examples of sex-associated TEs that were correlated with stress fiber 

associated protein-coding genes in the breast mammary tissue. Scatterplots showing the TE 

expression (log2) on X-axis and gene expression (log2) on Y-axis, and the red line is the 

regression line. Each scatterplot is further separated into two (gene and TE) individual 

boxplots, where log-transformed expression was plotted in females and males. Females 

were shown in pink and males were shown in light blue colors. (C) For example, GABRP 

was positively correlated with a MIRc_dup78977 copy in breast mammary tissue where both 

GABRP expression and MIRc_dup78977 expression higher in females. (D-F) Similar plots 

were drawn using other top correlated TE and stress fiber associated gene pairs. 

Figure 5. Differentially expressed TE subfamilies between ethnicities. (A) Double-sided 

stacked bar plot represents the number of differentially expressed TE subfamilies between 

EAs (European Americans) and AAs (African Americans) across different tissues TEs the 

expression of which was comparatively increased in EAs are shown on the left side, and 

those with expression increased in AAs on the right. The highest number of differentially 

expressed TE subfamilies were found in skin-not sun exposed tissue (416, log2 fold-change 

> 0 or < 0, adjusted P-value < 0.05) and most of them were increased in EAs. (B) Heatmap 

represents the expression of differentially expressed TE subfamilies in skin-not sun exposed 

tissue (red is higher and blue is lower). 416 subfamilies were shown in rows and 241 skin-

not sun exposed samples in columns. Bar with the dark purple color on the left side of the 

heatmap represents a group of subfamilies that were up-regulated in EAs and the one with 

the gold color represents that were increased in AAs. The black/grey bar on the top of the 

heatmap identifies the  AAs and  EA samples. (E-F) Examples of ethnicity-associated TEs 

that were correlated with ribosome-biogenesis associated protein-coding genes in the skin 

(not sun-exposed). Scatterplots showing the TE expression (log2) on X-axis and gene 

expression (log2) on Y-axis, and the red line is the regression line. Each scatterplot is further 

separated into two (gene and TE) individual boxplots, where log-transformed expression 
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was plotted in AAs and EAs. AAs were shown in gold and EAs were shown in purple colors. 

(D) For example, NQO2 was negatively correlated with a LIMB2_dup2696 copy in skin (not 

sun-exposed) tissue where NQO2 gene expression is higher in EAs and L1MB2_dup2696 is 

higher in AAs. (E, F) Similar plots were drawn using other top correlated TE and ribosome-

biogenesis gene pairs. 

Figure 6. Aging-associated TE expression. (A) Double-sided stacked bar plot represents 

the number of age-associated TE subfamilies across different tissues. TEs the expression of 

which increased with the age are shown on the left side and those in which the expression 

decreased on the right. The highest number of TE subfamilies associated with aging were 

found in artery tibial tissue (631, log2 fold change > 0 or < 0, adjusted P-value < 0.05) and 

most of them were increased with the age. (B) Heatmap represents the expression of age-

associated TE subfamilies in artery tibial tissue (red is higher and blue is lower). 631 

subfamilies were shown in rows and 294 artery-tibial samples in columns. Artery-tibial 

samples were ordered from lower age-groups to higher. Red/green bar the left side of the 

heatmap represents identifies TE subfamilies increasing/decreasing expression with age. 

The green color bar on the top of the heatmap represents the age of the individuals. (C-F) 

Examples of Age-associated TEs that were negatively correlated with mitochondrial 

transport associated protein-coding genes in tibial artery tissue. Scatterplots showing the TE 

expression (log2) on X-axis and gene expression (log2) on Y-axis, and the red line is the 

regression line. Each scatterplot is further separated into two (gene and TE) individual 

scatterplots, where the log-transformed expression (on Y-axis) was plotted against age in 

years( on X-axis), and the blue line is the regression line. (C) For example, NDUFB4 was 

negatively correlated with a MIR_dup36875 copy in artery tibial tissue where NDUFB4 gene 

expression decrease with age and MIR_dup36875 increase with age. (D-F) Similar plots 

were drawn using another top negatively correlated TE and mitochondrial transport 

associated gene pairs.  
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Supplemental Figures 

Supplemental Figure 1. Filtering reliable TEs using RNA-seq peaks. (A) TEs that 

overlap RNA-seq peak by at least one base pair in at least one sample was used in this 

study (RNA-seq peak dataset was built by running MACS default parameters across every 

GTEx sample and pooling all the peaks into one). This step removes noisy TEs that have an 

equal number of overlapping RNA-seq reads compared to their neighboring genomic 

regions. (B) For example, THE1D-int_dup861 (THE1D-int subfamily / ERVL-MaLR family / 

LTR class ) on chr6 (start-129024007, end-129025585) expressed in heart tissues was on 

the many identified by using the RNA-seq peak filter (highlighted in yellow color). (C) another 

example (chr21:33054843-33054978: MIRb subfamily / MIR family / SINE class) with no 

RNA-seq peak (highlighted in blue) 

Supplemental Figure 2. Correlation between TEs and nearest protein-coding genes. 

(A) Distribution of correlation between TEs and their nearest protein-coding genes in tissues 

and individuals. (B) Significant correlation differences (Wilcoxon test, *** (P < 0.001)) 

between TEs that overlap eQTLs and nearest protein-coding genes, and the ones that do 

not overlap eQTLs and nearest genes. Median correlation scores were shown in each group 

(all – black, positive pairs – in blue, negative pairs – in red).  

Supplemental Figure 3. Group and tissue-enriched TE subfamilies. (A, B) The network 

of the group- and tissue-enriched subfamilies across different tissues. Central nodes are 

tissues and outer nodes are repeats. Central nodes in orange represent group-enriched and 

in blue represent tissue-enriched. Directed edges connect repeats (outer nodes) with tissues 

(central nodes).(C) Boxplots represent the group or tissue-enriched expression of various 

subfamilies across different tissues. log2 normalized expression was shown on the y-axis 

and tissue names of the x-axis. LTR75B is a group-enriched subfamily specific to different 

brain tissue types, and LTR88c and LTR28 are tissue-enriched subfamilies specific to 
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pancreas and pituitary tissues respectively. (D) Gene ontology analysis of TEs with highest 

tissue variance 

Supplemental Figure 4. Distribution of different sex-groups of GTEx individuals. (A) 

Summary of the demographic details of the individuals in this study separated by sex. 

Values of age (in years), ischemic time (in hours) and RIN (RNA integration) score displayed 

as a median across male and female individuals and “No” represents the number of 

individuals. (B) Boxplots showing the distribution of the age, RIN score and ischemic time 

male and female individuals. Differences between male and female samples were shown as 

N.S (Not Significant) or significant (Mann-Whitney U test, p-values, ** = 0.01, *** = 0.001).  

Supplemental Figure 5. Distribution of different ethnic-groups of GTEx individuals. (A) 

Summary of the demographic details of the individuals in this study separated by two 

different ethnic groups, EA (European American) and AA (African American). Values of age 

(in years), ischemic time (in hours) and RIN (RNA integration) score displayed as a median 

across EA and AA ethnic groups and “No” represents the number of individuals. (B) 

Significant differences between age, ischemic time and RIN score between EAs and AAs 

(Mann-Whitney U test, p-values, ** = 0.01, *** = 0.001). (C) Distribution of individuals 

separated by the ethnic group across different tissues.  

Supplemental Figure 6. Distribution of different age-groups of GTEx individuals. (A) 

Number of individuals across five different age groups from 19 years to 70 years. (B) 

Distribution of the number of individuals separated by tissue and age group.  
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Supplemental Tables 

Supplemental Table 1. Transcriptionally active TEs in human tissues. It can be downloaded 

from https://public-

docs.crg.es/rguigo/Data/gbogu/Repeat_paper_data/111222_tes_8051_samples.matrix.main

.ann.backup.rds 

Supplemental Table 2. List of TEs overlapping eQTLs. 

Supplemental Table 3. Global correlation between TEs and nearest genes in tissue and 

individuals. 

Supplemental Table 4. Variation of TE expression in tissues and individuals. 

Supplemental Table 5. Tissue-elevated transposable elements in human adult tissues. 

Supplemental Table 6. Differentially expressed TEs between males and females.  

Supplemental Table 7. Differentially expressed TEs between European American and 

African American individuals. 

Supplemental Table 8. Differentially expressed TEs between individuals of different age 

groups. 
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