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Abstract
Motivation: Comparative genomics studies may be used to acquire new knowledge about chromosomal 
architecture - the rules to combine a set of genes in a genome of a living organism. Hundreds of thousands
of prokaryote genomes were sequenced and assembled. Still, there is a lack of computational tools able
to compare hundreds of genomes simultaneously, i.e. to find h o tspots o f  g enome r earrangements and 
horizontal gene transfer or to analyze which part of an operon is conservative and which is variable. 
Results: We developed Genomic Complexity Browser (GCB), a tool that allows to visualize gene contexts
in a graph form and evaluate genome variability of different parts of a prokaryotic chromosome. We 
introduce a measure called complexity, which is an indirect measure of genome variability. Intraspecies 
and interspecies comparisons reveal that regions with high complexity tend to be located in a similar 
context in different strains and species. While many of such hot spots are associated with prophages and 
pathogenicity islands, some of them lack these determinants and mechanisms that govern their dynamics
are to be elucidated.
Availability: GCB is freely available as a web server at http://gcb.rcpcm.org and as a stand-alone 
application at https://github.com/DNKonanov/GCB
Contact: paraslonic@gmail.com

1 Introduction
Although highly variable, prokaryotic genomes do not represent simply
a set of genes, they possess regularities, which are collectively
termed "genome architecture" (Rocha, 2008; Touchon and Rocha, 2016;
Hendrickson et al., 2018). Rules of genome architecture can shed light on
still unknown molecular mechanisms governing prokaryotic cell life and
may be essential in the engineering of synthetic organisms.

One of the earliest experimental observations dealing with genome
architecture of prokaryotes was made by A. Segall (Segall et al., 1988)
who experimentally introduced inversions in Salmonella enterica genome.
While many of such inversions were neutral for bacteria fitness, some
had a detrimental effect. It was suggested that the effect was due to the

importance of correct location and orientation of replication termination
sites (Sharma and Hill, 1995; Mahan and Roth, 1991).

Non-random localization of different genes may be important due to
several factors. Genes located near the replication origin have higher copy
numbers in fast-dividing cells – a so-called replication-associated gene
dosage effect (Couturier and Rocha, 2006; Slager and Veening, 2016).
Folding of the chromosome makes genes located in different parts of the
chromosome close to each other in 3D space, which can be beneficial
for the gene coding for a regulator and its targets (Dorman, 2013; Fritsche
et al., 2011). Effects of global regulators (such as H-NS) on gene expression
were observed to depend on the location of the target gene (Brambilla
and Sclavi, 2015) and transcriptional propensity also varies depending on
chromosome position (Scholz et al., 2019). Cooperative effects between
RNA polymerases (Kim et al., 2018) or supercoiling propagation effects
may play a role in the transcriptional regulation of neighboring genes.
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Fig. 1. Principal scheme of a graph representation of gene order in a set of genomes and the complexity definition. To construct a graph, each orthology group is represented as a node. Nodes
are connected by a directed edge if the corresponding genes are arranged sequentially in at least one genome in the set. A) genomes 1,2,3 represent three different hypothetical genomes.
Arrows represent genes, genes from one orthologous group have the same color and letter designation. B) circles and arrows represent nodes and edges of the constructed graph. The weight
of the edge (arrow width) is calculated as the number of genomes in which corresponding genes are located sequentially. C) Deviating paths for node X are defined as paths in the graph
which bypass node X and are connected with an area of the reference node chain limited by the window parameter. D) Complexity value is defined by the number of paths deviating from
reference node chain. There are two examples of calculating the deviating paths number, X is the considered node, deviating paths are shown with blue lines.

It was observed that horizontal gene transfer (HGT) events are
preferentially localized in hot spots - chromosomal loci in which changes
are observed much more frequently than in other regions (Touchon
et al., 2009). This might indicate that, although disruptions in genome
architecture may result in decreased fitness of an organism, there are
some places in the chromosome where changes can be introduced without
inducing negative effects.

Here we present GCB, a tool that allows to estimate local genome
variability and to visualize gene rearrangements in user-defined sets of
genomes. Local genome variability is estimated using graph representation
of gene order (neighborhood) with a here introduced measure called
complexity. Complexity profiles may be used to identify hotspots of
horizontal gene transfer and a graph-based visualization available in GCB
allows to analyze patterns of genome changes events.

2 Methods

2.1 Data acquisition

To construct a dataset for the web server, we downloaded genomes for
143 prokaryotic species that had more than 50 genomes available from the
RefSeq database. For each species, if the number of complete genomes
available was higher than 50, then only complete genomes were used. If
the number of available genomes was higher than 100, then exactly 100
genomes were randomly selected for further analysis. The only exception
was Escherichia coli extended genome set, which contained 327 complete
genomes available as of November 2017. All downloaded genomes were
reannotated with Prokka ver 1.11 (Seemann, 2014) to achieve uniformity.
Genes were assigned to orthologous groups with OrthoFinder ver. 2.2.6
(Emms and Kelly, 2015). Python scripts which are a part of the GCB
application were used to parse OrthoFinder output, calculate genome
complexity through a chromosome and generate subgraphs around genome
regions of interest.

2.2 Graph construction

The algorithm for graph construction is the following: each orthologous
group represents a node, and two nodes are connected by a directed edge
if the corresponding genes are located sequentially in at least one genome

in a set. The weight of the edge is calculated as the number of genomes in
which corresponding genes are adjacent (see Figure 1A and 1B). Graph
objects and their methods are implemented in gene-graph-lib library for
Python 3, more information can be found in the library documentation at
https://github.com/DNKonanov/gene_graph_lib.

Because GCB uses directed graph representation of gene order, all
genomes in a set should first be co-aligned in order to achieve the same
orientation throughout the set. The algorithm for this step is listed in
Supplementary Listings 1). Paralogous genes (orthologous groups which
have more than one representative in one genome) are skipped by default
but can be "orthologized" and added to the graph with an algorithm listed
in Supplementary Listings 2 and described in Supplementary Notes 1.

Algorithm 1: COMPUTE COMPLEXITY
Data: graph, reference organism, window, number of iterations
Result: complexity values for each node in the reference
ref_chain← reference nodes chain
initialize start complexity values for all nodes as 0
for each node in ref_chain do
Paths← FIND PATHS (node)
for each path in Paths do
start← first node in the path
end← last node in the path
distance← | position(start) - position(end) |
if (distance ≤ window) do

for each node between start and end do
complexity[node]← complexity[node] + 1/(2*window)

return complexity values

2.3 Genome complexity definition

Complexity values are calculated against one genome from the set that
can be selected arbitrarily. This genome is extracted from the graph as a
simple chain of nodes that is called the reference chain (Figure 1C). To
calculate complexity in its node X, nodes from the reference chain in the
range ±window/2 around the node X are selected, and complexity is
defined as the number of distinct paths in the graph that do not contain the
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node X but start and finish in the nodes from the selected range (deviating
paths), see Figure 1C.

Complexity computing is an iterative algorithm that generates a set
of possible deviating paths from each node in the reference genome
(Algorithm 1). When a new unique deviating path is found, the algorithm
adds 1/(2*window) value to all nodes in the reference between nodes
coinciding with the start and the end of the deviating path.

The algorithm has the following user-defined parameters: window - the
size of the area around node X to which deviating paths should be connected
(default 20 nodes), iterations - number of random walk processes from
each node (default 500)

2.4 Method validation

We supposed that calculated complexity in some region of a chromosome
correlates with the probability of rearrangements in this region. To
verify this assumption and validate the algorithm, a set of model
genomes was generated by random rearrangements simulations. These
simulations included random insertions, deletions, HGT events, and
inversions. HGT and random insertion probabilities were chosen to be
equal to deletion events probability to maintain genome length. The
probability of inversion was chosen as 1/100 than others, in agreement
with literature data that inversion events are less common than other
types of rearrangements, such as deletions and duplication (Schmid and
Roth, 1983). Localization of these changes in the chromosome depended
on the user-defined distribution of rearrangements probability along
the chromosome. Simulation algorithm is available in Supplementary
Listings 5. Next, these model genomes were processed by the complexity
computing algorithm and results were compared with input distributions
(more details are available in Supplementary Notes 5).

2.5 Subgraph generation

To visualize a gene context in the region of interest, a subgraph representing
this region is constructed. First, a subset of reference chain nodes
representing the region of interest is added to the graph. Next, the algorithm
iterates through other genomes from the set, and deviating paths limited
to the selected region are added to the subgraph. If the length of the path is
greater than the depth parameter, then the path is cropped, only start and
end fragments (tails) of a fixed length (tails parameter, tails < depth) are
added to the subgraph instead of the entire path. If the weight of some edge
is less than the user-defined minimal_edge_weight parameter, this edge is
not added to the subgraph. The subgraph generation algorithm is listed in
Supplementary Listings 6).

2.6 Additional methods

Phylogenetic trees were inferred with Parsnp v1.2 (Treangen et al., 2014).
Retention indexes were calculated using RI function from R phangorn
library (Schliep, 2010). To estimate similarity to the reference genome, all
genomes were aligned with nucmer (Kurtz et al., 2004) and similarity
score was calculated as follows: all aligned reference genome ranges
were reduced with IRanges R package (Lawrence et al., 2013) and
their total length was divided by reference genome length. All query
genomes were sorted by this value and strains with the top 100 highest
values were chosen. Nucmer was also used to detect synteny blocks
in Figure 3 and Supplementary Figures 4-11. Prophages were detected
with Phaster (Arndt et al., 2016). Technical information (used libraries,
frameworks, and their versions) is available in Supplementary Notes 6.
SQLite database structure is described in Supplementary Notes 7. To
obtain Figures 2A we used GCB with following parameters tails = 1,
minimal_edge = 5. Figures 2B we used GCB with following parameters
tails = 0, minimal_edge = 5. To obtain Figure 2C we used GCB with the

following parameters: window = 20. Code to make Figures 2 and 3 is
available at https://github.com/paraslonic/GCB_paper_code.

3 Results

3.1 Application

The GCB tool is available as a standalone application and as a web server.
GCB web server uses precalculated data for 143 species and is available
at http://gcb.rcpcm.org. The standalone browser-based tool and a set of
scripts are available at https://github.com/DNKonanov/GCB.

GCB GUI consists of three main parts: 1) the top panel that allows
selecting a genome and a region to work with, 2) the complexity
plot showing complexity profile for selected genome and contig (in
case if the assembly contains more than one contig), 3) the subgraph
visualization form. Several settings are implemented to customize
subgraph visualization to make it convenient for the analysis. Subgraph
can be exported in JSON format and visualized with specialized software
(i.e. Cytoscape) to prepare publication-ready images.

The server can also be run locally on a standard PC if the user
needs to analyze a custom group of genomes. To estimate the genomic
variability profile, the number of genomes should not be too small, few
dozens or hundreds are typical values. The upper limit depends on the
computational resources available to infer homology groups, which is the
most computationally difficult step. Snakemake and Python scripts are
provided to infer homology groups and to obtain a text file with complexity
values or a database file, which can be imported to the local GCB server.
Further details and instructions are provided in the user manual.

3.2 Subgraph visualization

Graph representation of gene order provides a convenient way to inspect
visually the context of genes of interest and to identify conservative and
variable gene combinations. GCB can construct and visualize subgraph -
part of the graph containing the region of interest.

Figures 2 A and B show an example of subgraphs representing the
gene context of the hemin uptake locus (hmu) and propanediol utilization
operon (pdu) in 326 complete genomes of Escherichia coli from the RefSeq
database (downloaded at the September 2017). The presence of E. coli
harboring these operons in the intestinal microbiome was previously shown
to be associated with Crohn’s disease (Dogan et al., 2014; Viladomiu et al.,
2017; Rakitina et al., 2017). While hmu operon is preferentially present in
B2 phylogroup (Supplementary Figure 1, retention index = 1), pdu operon
can be found in phylogenetically distinct strains of E. coli, and its presence
is in low agreement with the phylogenetic tree (Supplementary Figure 2,
retention index = 0.26). Visualization of subgraphs exported from GCB
was made with Cytoscape (Shannon et al., 2003), adherent-invasive E. coli
LF82 strain (Boudeau et al., 1999) was used as a reference.

The graph visualization reveals that hmu operon Figure 2A is located
in a conservative context, which means that the neighboring orthologous
groups are the same in all strains in which it is present. The edge that
bypasses the operon indicates that in some genomes the genes to the
left and right of the operon are adjacent, which suggests that this operon
was either deleted from ancestors of these genomes or inserted in other
genomes. Graph visualization also indicates that one of the genes (hemin
transport system permease, HmuU) or its close homologs are present in
two alternative contexts.

Pdu operon (Figure 2B) is also located in a conservative context and
some strains have no genes in that context. In this case, however, several
genomes contain highly variable gene sets instead of pdu operon. These
alternative sets include genes of iron transport (FepC, FcuA, HmuU),
DNA mobilization (retroviral integrase core domain, transposase DDE
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Fig. 2. Regions with high complexity values are associated with prophages and pathogenicity islands. Subgraphs of the genomic regions in which A) hemin uptake and B) propanediol
utilization operon are located. With dashed lines tails of long deviating paths are shown. The graph indicates that both operons are located in a conservative context. Genomes that do not
contain hemin uptake operon do not contain other genes in the same context. In the case of propanediol utilization operon, in several genomes alternative and highly variable gene sets
are present. Hmu operon is located on the 3691615-3700567 positions and pdu operon on the 2083448-2101340 positions of NCBI Reference Sequence NC_011993.1 (LF82 strain). C)
Complexity profile for E. coli LF82 chromosome. Color bars at the bottom panel show the location of essential genes, ribosomal and transport RNA genes, regions with prophages and
pathogenicity islands (PAI).

Tnp ISL3), and others. Some variations in pdu operon itself are also visible
and reflect different known operon variants (Rakitina et al., 2017).

3.3 Complexity profiles

In a set of genomes with identical gene order, each node in the resulting
graph will have two edges. Any gene rearrangements result in the addition
of new edges. We hypothesized that the number of distinct paths in a
subgraph representing a genomic region will monotonically depend on
the frequency of gene rearrangements in this region. We implemented
the algorithm (listed in Supplementary Listings 3 and described in
Supplementary Notes 3) to count the number of distinct random walks in
a subgraph representing a given region of the reference genome, the value
which we further call complexity of the region. By selecting subregions
with the sliding window we get the complexity profile of the reference
genome. The width of the sliding window can be set by the user, the
default value of 20 was used for the results described below.

To verify our approach, we performed a number of simulations in
which we suggested that the probability of genomic rearrangement events
(HGT, deletion, translocation) is non uniformly distributed along the
chromosome. The algorithm is listed in Supplementary Listings 5 and
described in Supplementary Notes 5. We used three patterns to generate
profiles of such probabilities: sinusoidal, rectangle, and sawtooth and
performed 10 independent simulations for each pattern. The results of
our method were in good correspondence with the predefined distribution
(R-square mean > 0.8, Spearman correlation > 0.7, FDR corrected p-value
< 10−300), the comparisons of initial and inferred profiles are presented
in Supplementary Notes 5.

Figure 2C shows the complexity profile of E. coli LF82 chromosome
inferred with our algorithm. As expected, the regions with a higher
density of essential genes have lower complexity values. On the contrary,
pathogenicity islands and prophages are associated with the regions with
higher complexity. At the same time, there are chromosomal loci with
relatively high complexity values which have no identifiable associates
(no phage-like or transposon-associated genes). The comparison of
the complexity profile with 3C experimental datasets and simulation-
based chromosomal models did not reveal significant associations
(Supplementary Notes 8).

The proposed method can also be used to compare variability profiles
of different species and intraspecies structures. Figure 3A shows a
comparison of complexity profiles for different E. coli phylogroups
(Clermont et al., 2013). For each of the five large phylogroups (A, B1, B2,
D, E) we selected one reference strain and 99 most similar strains from 5466
RefSeq genomes (both finished and draft assemblies), see Supplementary
Figures 3 for the resulting phylogenetic tree of the 500 selected genomes.
Then complexity profiles for each reference genome were inferred. To
compute complexity independently for each clade only genomes from the
corresponding clade were used for each of the references. This comparison
reveals that many of the rearrangement hot spots are conservative and
located in the same context in the genomes of the strains belonging to
different phylogroups. The majority of them contain prophages (denoted
with an orange bar below the complexity profile), but some do not include
phage-associated genes. Transient hotspots (with high complexity in some
clades and low complexity in others) can also be observed.
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Fig. 3. Regions with high complexity values are mainly located in a conservative context in different E. coli phylogroups. A) Genomes from five different phylogroups were used as
references to compare complexity profiles. For each reference, 99 most similar genomes were selected and used to compute complexity values. Synteny is shown with gray blocks, orange
boxes designate prophage regions. Red triangle shows the location of capsule genes cluster, which is located in the region of varying complexity (from low in IAI1 and O157H7 strains to
moderate and relatively high in K12, LF82 and UMN026 strains). B) subgraph of capsule gene cluster shows the presence of conservative and variable parts of this operon in B2 clade (LF82
is reference genome). With dashed lines tails of long deviating paths are shown.

We noticed that one of the transient hotspots near the pheV tRNA
gene contains genes for capsule type II synthesis and export (red
triangle on Figure 3A, chromosomal coordinates, and NCBI locus tags:
CU651637:3111444-3128026, LF82_461-LF82_474). The visualization
of this region in LF82 genome from B2 clade (Figure 3B) reveals the
presence of a highly variable region inside this operon, which was
previously described (Johnson and O’Bryan, 2004). Tails of long paths
which bypasses the operon are shown with dashed lines, they indicate that
this operon is located inside the variable region of larger size.

The online tool contains precalculated complexity profiles for 141
bacterial and 2 archaeal species. Supplementary Figure 4 shows the
comparison of 68 genomes for which exactly 100 genomes were used to
compute complexity profiles and Supplementary Figure 5 for all available
organisms. It can be seen that a number of species have similar complexity
distributions through chromosome (Supplementary Figures 6-11).

4 Discussion
Hotspots of genome instability were described for a number of bacterial
species. In (Oliveira et al., 2017) the authors analyzed HGT hot spots
for 80 bacterial species. They concluded that many hotspots lack mobile
genetic elements and proposed that homologous recombination is mainly
responsible for the variability of those loci. The factors that determine
the location of hot spots, their emergence, and elimination, are still
an open question. To our knowledge, GCB is the first tool that allows
identifying genome rearrangement hot spots based on a user-defined set
of genomes. This provides a way to study dynamics of hot spots, changes
in their intensity and location on different levels ranging from intraspecies
structures like phylogroups or ecotypes to interspecies and intergenus
comparisons. While the dynamics of hot spots are primarily of fundamental
interest, practical applications may also be expected in the field of synthetic

biology, or in search for a new way to control the spread of antibiotic
resistance.

We compared complexity profiles between different species and, in
the case of E. coli, between different phylogroups. We observed that, as
a rule, when genomes are close enough for the large synteny blocks to
be detected (with blast or nucmer tool), then complexity profiles look
similar: the regions with high complexity values are surrounded with low
complexity regions forming the same conservative context in different
groups of organisms. The analysis of complexity profiles of E. coli
revealed that many hotspots are located in the prophage or pathogenicity
islands integration sites, and site-specific mechanisms could govern their
conservative location. Some hotspots lack such factors and reasons for
their conservative location are still to be elucidated. We had hypothesized
that chromosome folding may influence hotspots location, but no evidence
of this was found by comparison of complexity profiles with 3C data and
chromosomal folding simulations available from (Lioy et al., 2018) and
(Hacker et al., 2017) correspondingly (Supplementary Notes 8).

While complexity values calculated by GCB reflect the intensity of
gene rearrangement process, gene context visualization in a graph form
reveals it details. One of the scenarios is the variation of alternative gene
sets, and another is the process in which different changes overlap each
other. While the first type of variability is in a good agreement with the
mechanism proposed in (Oliveira et al., 2017), the latter is not. The case of
locus containing propanediol utilization operon (pdu) shows a combination
of the two. The operon is present in a subset of phylogenetically distinct
strains always in the same context, which means that it was either deleted
from or inserted into some of the genomes. In either case, its gene content
is rather stable with a relatively low number of observed variants. The
opposite is true for the strains that do not contain this operon but have an
alternative set of genes in its place. In this case, many overlapping changes
are observed. It may be suggested that the reason for such difference lies
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in the functional importance (fitness benefits) of the operon for its carriers
and "egoistic" or "parasitic" nature of alternative gene sets.

To our knowledge, gene neighborhood graph visualization is available
only in FindMyFriends R package beside GCB. Our tool provides
interactive opportunities and a number of visualization settings absent
elsewhere.

The methods we proposed in this article are not universal, they are
not suited for the detection of large genomic rearrangements (larger
than window parameter, usually several dozens of genes) or changes in
noncoding parts of the genome. Our methodology has also some drawbacks
coming from its dependence on orthology inference accuracy. Here we
used orthofinder tool (Emms and Kelly, 2015), which uses MCL graph
clustering algorithm based on gene length normalized blast scores. We
find this tool to be optimal in terms of efficiency and accuracy. On
the other hand, it doesn’t take into account phylogenetic information
and syntenic relationships between different genomes, and erroneous
homology inference sometimes occur. Paralogous genes may fall into
one group. In this case, the graph representation of the context becomes
problematic. We implement two possible ways of dealing with paralogous
genes in GCB: the default approach is to ignore them, the other is to
perform artificial orthologization process (each paralogous gene with
unique left and right context is denoted with a suffix and added to the
graph). From our experience, the optimal strategy is to work in the
default mode for explorative analysis and verify all conclusions in the
paralogs orthologization mode. The graph layout process is also hard to
automate. We use two layout algorithms (Dagre and Graphviz), but manual
manipulations are often needed to make a clear layout, and Cytoscape
(or other graph manipulation utils) is desirable to make publication-ready
images.

Despite the above-mentioned drawbacks, we find the here proposed
method of complexity analysis informative as it successfully identifies
known rearrangement hot spots (prophages, integrons et al.), and we hope
that GCB with its capacity of visualization and complexity assessment will
find its application in the area of comparative genomics studies.
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