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Abstract1

Generating appropriate motor commands is an essential brain function. To achieve proper motor control2

in diverse situations, predicting future states of the environment and body and modifying the prediction3

are indispensable. The internal model is a promising hypothesis about brain function for generating and4

modifying the prediction. Although several findings support the involvement of the cerebellum in the5

internal model, recent results support the influence of other related brain regions on the internal model.6

A representative example is the motor adaptation ability in Parkinson’s disease (PD) patients. Although7

this ability provides some hints about how dopamine deficits affect the internal model, previous findings8

are inconsistent; some reported a deficit in the motor adaptation ability in PD patients, but others9

reported that the motor adaptation ability of PD patients is comparable to that of healthy controls. A10

possible factor causing this inconsistency is the difference in task settings, which yield different cognitive11

strategies in each study. Here, we demonstrate a larger, but not better, motor adaptation ability in PD12

patients than healthy controls while reducing the involvement of cognitive strategies and concentrating13

on implicit motor adaptation abilities. This study utilizes a smart-device-based experiment that enables14

motor adaptation experiments anytime and anywhere with less cognitive strategy involvement. The PD15

patients showed a significant response to insensible environmental changes, but the response was not16

necessarily suitable for adapting to the changes. Our findings support compensatory or paretic cerebellar17

functions in PD patients from the perspective of motor adaptation.18
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1 Introduction19

Motor adaptation is an essential brain function that modifies motor commands to achieve desired move-20

ments in novel situations, such as learning to use new tools or correcting a movement error. A promising21

hypothesis about motor adaptation is the internal model hypothesis, which considers the cerebellum to22

play a role not only in predicting future states of the environment and the body but also in modifying23

the prediction [1]. Appropriate motor commands can be generated through the outcome predicted by the24

internal model. To investigate the ability to update the internal model, a motor adaptation paradigm25

is used [2,3]. In this paradigm, the environment changes through artificially applied perturbations. The26

subjects thus need to update their internal models to achieve the desired movements while compensating27

for the perturbation.28

The cerebellum can play crucial roles in the internal model [1], which has been supported via deficit29

motor adaptation abilities in cerebellar ataxia patients [4,5]. In addition to the cerebellar ataxia pa-30

tients, Parkinson’s disease (PD) patients also showed impaired sensorimotor adaptation abilities, such as31

adapting to 90 degree visuomotor rotation [6] or adapting to three-dimensional arm-reaching movements32

[7]. PD, the second most common degenerative neurological disease, causes a lack of dopamine neurons33

in the substantia nigra pars compacta. Due to the impaired motor adaptation ability in PD patients,34

the internal model can be affected by not only the cerebellum but also other brain regions. The motor35

adaptation ability in PD patients can provide some hints to deepen our knowledge about the internal36

model.37

To investigate the motor adaptation ability inherent in PD patients, previous studies relied on a38

constant amount of perturbation that was applied abruptly at a specific time (we refer to this type of39

perturbation as abrupt perturbation hereafter). To adapt to the abrupt perturbation, subjects tend to40

rely on explicit strategies or their cognitive abilities [8,9]. For example, when the perturbation was 9041

degree visuomotor rotation that caused a 90 degree deviation in the movement angle between the actual42

and perturbed movements, it was possible to achieve the desired movements by aiming at the 90 degree43

location distant from a target. With an abrupt perturbation, subjects tend to notice the onset of the44

perturbation or task switching [9-11]. In the motor adaptation to the abrupt perturbation, it is difficult45

to determine whether the impaired sensorimotor adaptation in PD patients is caused by their cognitive46

abilities (i.e., the influence of the task switch) or adaptation abilities.47

In contrast to the adaptation to an abrupt perturbation, PD patients showed a compatible adaptation48

ability with the healthy elderly individuals in responding to a gradually applied visuomotor transformation49

(we refer to this type of perturbation as a gradual perturbation hereafter) [12,13]. In contrast to abrupt50

perturbations, a striking feature of gradual perturbations is their difficulty in being noticed [9-11,14,15].51

A task switch can thus be related to an adaptation to the abrupt perturbation and not to an adaptation52

to the gradual perturbation. The influence of the task switch can be a candidate for interpreting the53

compatible adaptation ability of PD patients with healthy elderly individuals in adapting to only the54

gradual perturbation.55

Additional support for the influence of task switching on motor adaptation in PD patients is the56

lack of savings in PD patients. Young individuals and healthy elderly individuals show faster learning in57

relearning trials than in the initial learning trials, such as in the A-B-A paradigm, which is referred to as58

savings [16-18]. In contrast, PD patients do not exhibit savings [19,20]. Because task switching can lead59

to savings, the adaptation ability inherent in PD patients can be influenced by task switching.60

Because task switching is a candidate in affecting the motor adaptation ability in PD patients, it is61

necessary to exclude the influence of task switching in detail. Although a gradual perturbation can involve62

less task switching than an abrupt perturbation, previous studies used 60 degree visuomotor rotation [12]63

or a 7.8 cm transformation in 10 cm arm-reaching movements in total [13]. These perturbations can64

involve the influence of task switching because the aiming direction can deviate from the target location65

even if the gradual perturbation involves more than a 45 degree visuomotor rotation (Fig. 3 in [9]). It66

is thus still unclear whether the adaptation ability is still compatible between PD patients and elderly67
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individuals because the task switch can be involved in a gradual perturbation with a large amplitude.68

Here, we investigated the motor adaptation ability of PD patients while decreasing the influence of69

the task switch as much as possible. To reduce the influence of the task switch, we relied on a gradually70

applied perturbation whose existence was noticeable by 1 out of the 82 participants in our previous study71

[11]; the visuomotor rotation changed by one degree in each trial, and the maximum value of the rotation72

was 15 degrees. Based on a previous study, task switches are less involved in gradually applied 15 degree73

visuomotor rotation than in gradually applied 45 degree visuomotor rotation [9]. We demonstrate that74

the PD patients showed a larger, but not better, motor adaptation ability than elderly individuals and75

young individuals, rather than a compatible or impaired ability.76

In addition to reducing the influence of the task switch, we also decreased the burden to participate77

in the motor adaptation experiments. Almost all the previous experiments on motor adaptation relied78

on manipulanda or pen tablet settings. These settings require the subjects to travel to the laboratory,79

which can be a burden, especially for patients, to participate in the experiments. To minimize this80

burden, we utilize a smart-device-based experimental setting that is available to conduct motor adap-81

tation experiments anytime and anywhere [11]. Smart-device-based experiments have been proposed to82

conveniently investigate motor adaptation or visuomotor abilities for flexible applications [21,22]. Our83

smart-device-based setting has been validated under several conditions and by comparing it to a conven-84

tional experimental setting with manipulanda [11]. We refer to our experimental setting as the POrtable85

Motor learning LABoratory (PoMLab). The PoMLab can decrease the burden for the participants, PD86

patients, elderly individuals, and young individuals by removing the need to go to a specific place at a87

particular time. In this study, we demonstrate a larger, but not better, motor adaptation inherent in PD88

patients using our PoMLab setting.89

2 Methods90

2.1 Participants91

Fifty-four subjects participated in the current study; their ages and sexes are summarized in Table 1.92

This study was approved by the ethics committees of the Tokyo University of Agriculture and Technology,93

Jichi Medical University, and Kakeyu Hospital. The PoMLab experiments were conducted while each94

participant was seated on a chair and an experimenter was present and close to the participant. The95

participants provided written informed consent to participate in this study.96

Table 1. Attributes of the participants. The ”p-values” in this table indicate the p-values from a
two-sample t-tests between the PD patients and the elderly individuals. ”M” and ”F” under sex indicate
male and female, respectively. All the values in this table denote the means ± standard deviations.

PD patients Elderly individuals p-value Young individuals
Age 70.06±7.34 75.67±12.70 0.1138 21.33±1.50
UPDRS 26.06±12.07 N/A N/A N/A
H & Y 2.67±0.69 N/A N/A N/A
MMSE 27.78±2.07 27.72±2.45 0.9418 N/A
Duration (year) 6.72±4.32 N/A N/A N/A
Sex M=9, F=9 M=8, F=10 N/A M=16, F=2

The PD patients were outpatients satisfying the following inclusion criteria. The elderly individuals97

were inpatients with broken lower-limb bones that did not disturb performance in our study. The young98

individuals were volunteers. All of the participants were naive to the purpose of the study.99

3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 18, 2019. ; https://doi.org/10.1101/707208doi: bioRxiv preprint 

https://doi.org/10.1101/707208
http://creativecommons.org/licenses/by-nc-nd/4.0/


The PD patients were clinically evaluated based on the Unified Parkinson’s Disease Rating Scale100

(UPDRS) [23] and the adapted version of the Hoehn and Yahr scale (H&Y) [24]. The Mini-Mental101

State Examination (MMSE) score was used to evaluate cognitive abilities. Table 1 summarizes the ages,102

UPDRS scores, H&Y scores, MMSE scores, duration, and sex in each group, if available.103

2.2 Inclusion criteria104

PD patients and elderly individuals whose MMSE scores were greater than 22 [no significant differ-105

ence, two-sample t-test p=0.9418], indicating no severe cognitive decline, were included in the study.106

Furthermore, the included PD patients were on a medication, resulting in no tremor. There were no mus-107

culoskeletal and visual impairments that inhibited performing the required tasks in the current study.108

2.3 Smart device109

We used an Android tablet (Nexus 9, HTC, Taipei City, Taiwan, 2048 × 1536 pixels, 228.25 × 153.68 ×110

7.95 mm screen size, and 436 g weight) throughout our experiments.111

2.4 PoMLab application112

The PoMLab application was developed using a personal edition of Unity (version 5.2). The PoMLab113

application is available on our GitHub page (https://github.com/masahiroshinya/PoMLab).114

2.5 PoMLab settings115

The cursor position on the tablet display (dx, dy) that was controlled by participants was determined as116

follows. First, the cursor position in the tablet coordinate system, (px, py), was determined based on the117

measured acceleration of the tilting motions in the x- and y-axes of the tablet coordinate system (ax,118

ay) through a low-pass filter; px = 0.95px + 0.05 arcsin(ax)− ox and py = 0.95py + 0.05 arcsin(ay)− oy,119

where ox and oy are offsets to determine the initial cursor position in each trial (ox = 0 and oy = −30).120

The ax and ay were sampled at 200 Hz. The cursor position in the accelerometer coordinate system was121

transformed into the position on the tablet display (dx, dy) by multiplying by the rotation matrix R;122

(dx, dy)
T = R(px, py)

T , where ()T denotes the transpose of the vector. Without any visuomotor rotation,123

the cursor position in the accelerometer coordinate system corresponded to that in the display coordinate124

system. In the tth learning trial, visuomotor rotation was applied through the rotation angle pt. The125

detailed settings and validations of PoMLab are provided in our previous study [11] and our code is126

available on GitHub (https://github.com/masahiroshinya/PoMLab).127

2.6 Experimental procedures128

The required task was to tilt the held tablet device appropriately. Corresponding to the tilting motion,129

the cursor displayed on the tablet moved (a yellow circle with a 4.5 mm radius on the Nexus 9). The130

participants were instructed to move the cursor toward the visually instructed target (a purple circle with131

a 4.5 mm radius on the Nexus 9) also on the display in a straightforward manner within two seconds132

(Fig. 1A). At the beginning of each trial, the subjects needed to tilt the tablet to set the cursor at the133

initial position in the center of the tablet screen (a blue circle with a 9.0 mm radius on the Nexus 9)134

for 1 second. After 1 second, the color of the initial position changed from blue to red, and the target135

appeared. Because the target was displayed for two seconds, the subjects needed to tilt the tablet to136

hit the target within these two seconds. The cursor, target, and initial position were displayed on the137

tablet screen, and the cursor moved according to the tilting motion, which enabled the motor adaptation138

experiments to be conducted solely with the tablet device.139
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The subjects participated in 20 practice trials and 80 learning trials. In the first 20 practice trials, the140

target position was pseudorandomly set to either 60, 75, 90, 105, or 120 degrees without any visuomotor141

rotation (90 degrees indicated the 12 o’clock position on the tablet display). In the following 80 learning142

trials, the target position was fixed at 90 degrees. The learning trials were divided into two parts. In143

the first 40 learning trials, the subjects experienced gradually increasing and vanishing clockwise (CW)144

perturbation. In the latter 40 trials, the subjects underwent counterclockwise (CCW) perturbation.145

Half of the participants experienced the CW perturbation first, and the other half of the participants146

experienced the CCW perturbation first. No subjects were aware of the existence of the perturbation.147

The experiment typically took less than 30 minutes.148

2.7 Evaluation of the learning effects149

The learning effects were evaluated depending on the movement angles of the cursor when the velocity150

on the y-axis reached its peak value (Fig. 1B). The movement trajectories are displayed in Fig. 1A151

after the movement started. The onsets were detected when the velocity along the y-axis on the display152

exceeded the mean + 2.5 times the standard deviation calculated in each trial. To avoid evaluating153

outliers, movement angles in each trial were excluded when these exceeded (15 + pt) when pt ≥ 0 or (-15154

+ pt) otherwise. There was no significant difference in the number of excluded trials between the PD155

patient group [3.38±2.96 out of 80 trials] and the elderly group [4.50±4.76 out of 80 trials] (p=0.6053) and156

between the PD patient group and the young group [1.61±2.20 out of 80 trials] (p=0.2830). There was157

a significant difference between the elderly and young groups (p=0.0413). We confirmed the invariance158

of the following results when the exclusion criteria were (c + pt) when pt > 0 or (-c + pt) otherwise159

with c = 11.5, 12, 13, 14, 16, 20, or 25. When c was less than 11.5, at least one participant in each group160

showed outliers in the same trial(s) with pt < 0 and pt > 0. This disturbed the analysis for the age- and161

MMSE-matched participants in the PD and elderly groups. We thus focused on the case when c > 11.5,162

especially when c = 15, throughout this study.163

2.8 Data analysis164

Because outliers were detected in some trials based on the abovementioned criteria, learning effects were165

averaged across the CW and the CCW conditions in each subject to exclude the effects of the outliers.166

There were no outliers at the same trials in the CW and the CCW conditions in all the subjects; the167

averaged learning effects could be reasonably discussed across all the subjects. Because the effects in the168

CW conditions took positive values and those in the CCW conditions took negative values, we averaged169

those by multiplying -1 to the learning effects in the CCW condition. If there were outliers at the kth170

trial in a subject in the CW condition, for example, the learning effects at the kth trial corresponded to171

that in the CCW condition.172

The averaged learning effects of the ith subject, xi = (x1,i, ..., x40,i), were decomposed into three173

parameters: the temporal delay ∆i(∆i ≥ 0), the amplitude Ai(Ai ≥ 0), and the phase ϕi. The temporal174

delay was calculated by temporally sliding the fragments of xi, xi(∆i) = (x9+∆i,i, ..., x32+∆i,i), to min-175

imize the squared error from the fragments of the perturbation sequence p = (p9, ..., p32). The squared176

error between the learning effects and the perturbation is hereafter referred to as the task error. We chose177

these fragments because the fragments of xi in the PD group were significantly different from 0 when the178

trial number was between 12 and 35 (i.e., xi = (x12,i, ..., x35,i) were significantly different from 0, t-test179

p < 0.01 [corrected]) and the squared error between the averaged fragments of the learning curve in the180

PD patients and the fragments of the perturbation sequence took its minimal value when the fragments181

were chosen to be (p9, ..., p32).182

After determining ∆∗
i as ∆∗

i = argmin∆i(
1
24

∑32
j=9(xj+∆i,i − pj)

2, we calculated the amplitude Ai183

as Ai =
|xi(∆

∗
i )|

|p| and the phase ϕi as ϕi = arccos
xi(∆

∗
i )·p

|xi(∆∗
i )||p|

, where |xi(∆
∗
i )| =

√
x2
9+∆∗

i
+ ...+ x2

32+∆∗
i

184
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indicates the norm of xi(∆
∗
i ), |p| =

√
p29 + ...p232 indicates the norm of p, and xi(∆

∗
i ) · p = x9+∆∗

i
p9 +185

...+ x32+∆∗
i
p32 indicates the inner product of xi(∆

∗
i ) and p. ∆i indicates the temporal delay with which186

each subject minimizes the task error according to the imposed perturbation. Ai, the amplitude of187

learning effects, indicates the response strength to the applied perturbation. ϕi indicates the similarity188

between the learning effects and the applied perturbation sequence. To quantify the similarity between189

the learning effect and the perturbation while considering the amplitude, the phase, and the temporal190

delay together, we calculated the root-mean-squared error, RMSEi =
√

1
24

∑32
j=9(xj+∆∗

i ,i
− pj)2. To191

quantify the trajectories, we calculated the trajectory error as the sum of the lateral deviations within192

each trial: TEi =
1
T

∑T
f=1 dx,f , where dx,f indicates the x-position in the display coordinate system at193

the fth time frame and T indicate the total number of time frames within the trial. We calculated these194

five variables (i.e., ∆∗
i , Ai, ϕi, RMSEi, and TEi) throughout the current study.195

2.9 Statistical analysis196

We utilized one-way ANOVA with a group factor (patients with PD, elderly individuals, and young197

individuals), followed by Tukey’s post hoc tests to compare each group if there was no specified notification198

about statistical test. We used MATLAB 2016b (Mathworks, Nantick MA) for all statistical analyses.199

3 Results200

Eighteen PD patients, eighteen age- and MMSE-matched elderly individuals, and eighteen university201

students (referred to as young individuals in the following) adapted to visuomotor rotation through the202

PoMLab setting using a tablet device (the age distributions and clinical scores are summarized in Table203

1). Figs. 1A and 1B indicate the cursor trajectories and velocities along the y-axis, respectively, in204

the learning trials averaged across all the subjects in each group. In those figures, the solid green lines205

indicate participants in the PD patient group, the solid blue lines indicate those in the elderly group, and206

the solid black lines indicate those in the young group.207

We defined the learning effects as the movement angle at the time when the velocity along the y-axis208

took its peak value in each trial. Because we focused on the adaptation to the visuomotor rotation209

for which the subjects needed to compensate for the perturbation in the movement angles, the angles210

were typical values for the discussion of motor adaptation. The movement angles are thus referred to as211

learning effects hereafter. The angles of visuomotor rotation pt at the tth trial or visuomotor rotation212

itself are referred to as perturbations hereafter. Although the adaptation to the perturbation can consist213

of an explicit component (i.e., cognitive ability) and an implicit component (i.e., adaptive component in214

motor domain) [8,9], we instructed the participants to aim at the target straightforwardly, which enabled215

us to exclude the explicit components [8,9]. In addition, no participant was aware of the existence of the216

perturbation, suggesting that the following results mainly consisted of implicit components rather than217

explicit components.218

The learning effects showed between-trial variation depending on the between-trial varying perturba-219

tion (Fig. 1C). The shaded area in Fig. 1C denoted the trial numbers (trials 12-35) when the learning220

effects of PD patients were significantly different from 0 (t-test p<0.01 [corrected]). We compared the221

learning effects averaged across the trials denoted by the shaded area in each subject (Fig. 1D). There was222

a significant group effect (F(2,51) = 6.75, p=0.0025), indicating the difference among the PD patients,223

elderly individuals, and young individuals. There was a significant difference in the learning effects be-224

tween the PD patients [8.25±0.51, mean±s.e.m., standard error of the mean] and the elderly individuals225

[6.65±0.31] (p=0.0184) and between the PD patients and the young individuals [6.28±0.36] (p=0.0032).226

However, there was not a significant difference in the learning effects between the elderly individuals and227

the young individuals (p=0.8050). In summary, the PD patients had learning effects approximately 20%228

larger than the those of the elderly individuals and those of the young individuals in these measures.229
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In contrast to the learning effects, there was no group effect (F(2,51)=1.35, p=0.27) and no significant230

difference among the three groups (p>0.28) in the RMSE (Fig. 1E), the error between the learning effects231

and the perturbation (a detailed definition of this metric is in the Methods section). These results indicate232

that the PD patients showed more substantial learning effects than the elderly individuals and the young233

individuals but a comparable ability to minimize the RMSE.234

To further study the learning effects, we decomposed the learning effects into three components: the235

amplitude A, to quantify the magnitude of the response to the perturbation; the phase ϕ, to quantify the236

similarity between the learning curves and the perturbation; and the temporal delay ∆, to quantify the237

temporal sensitivity of the response to the perturbation.238

For the amplitude measurement (Fig. 2A), there was a significant group effect (F(2,51) = 6.76,239

p=0.0025), a significant difference between the PD patients [0.910±0.050] and the elderly individuals240

[0.752±0.025] (p=0.0162), a significant difference between the PD patients and the young individuals241

[0.721±0.037] (p=0.0034), and no significant difference between the elderly individuals and the young242

individuals (p=0.842). Fig. 2D shows the learning curves of the representative PD patients who showed243

large (solid magenta lines) and small (solid cyan lines) amplitude values. The PD patients showed244

an approximately 20% larger response in the amplitude than the elderly individuals and the young245

individuals.246

For the phase measurement (Fig. 2B), there was no significant group effect (F(2,51) = 1.16, p=0.32)247

and no significant difference between each group (p>0.3104 among the PD patients [0.930±0.009], the248

elderly individuals [0.906±0.014], and the young individuals [0.918±0.008]. Fig. 2E shows the learning249

curves of the representative PD patients who showed large (solid magenta lines) and small (solid cyan250

lines) phase values. In contrast to the amplitude, the PD patients showed a comparable phase with the251

elderly individuals and the young individuals.252

For the delay (Fig. 2C), there was a significant group effect (F(2,51) = 3.62, p=0.034), no signifi-253

cant difference between the PD patients [2.78±0.42] and the elderly individuals [4.11±0.65], (p=0.18),254

a significant difference between the PD patients and the young individuals [4.72±0.48] (p=0.030), and255

no significant difference between the elderly individuals and the young individuals (p=0.688). Fig. 2F256

shows the learning curves of the representative PD patients who showed large (solid magenta lines) and257

small (solid cyan lines) of delay values. The PD patients showed smaller response delays compared to258

the young individuals.259

Taken together, the learning effects of the PD patients were larger than the those of the elderly260

individuals and the young individuals (Figs. 1C and 1D, respectively) because the PD patients showed261

larger amplitudes compared to the other two groups (Fig. 2A). In addition, a slightly faster response262

delay in the PD patients contributed to the large learning effects (Fig. 2C).263

We further considered other factors that may affect the larger substantial learning effects in PD264

patients. A candidate in influencing the learning effects was the movement time. Following previous265

studies that reported slower movement times in PD patients than in elderly individuals [25], those patients266

also showed slower movement times in our experimental setting than the young individuals (Fig. 3A,267

significant group effect, F(2,51) = 21.96, p=1.32× 10−7, no significant difference between the PD patients268

[108.77±6.84 ms] and the elderly individuals [95.77±8.13 ms], p=0.3321, a significant difference between269

the PD patients and the young individuals [51.41±3.27 ms], p=1.93 × 10−7, and a significant difference270

between the elderly individuals and the young individuals, p=3.11 × 10−5). To investigate the possible271

effects of the movement time on the amplitude, we normalized the movement time within each group272

so that the mean and the standard deviation of the movement time in each group equaled 0 and 1,273

respectively. After normalization, we calculated the correlation coefficients between the amplitude and274

the grouped and normalized movement times. If the movement time affected the learning effects, we could275

expect some correlation between these metrics. In contrast to this assumption, there was no significant276

correlation between the magnitude and the normalized movement times (Fig. 3B, r=0.15, p=0.27).277

Additionally, there was no correlation between the phase and the normalized movement time (r=0.10,278
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p=0.46), between the lag and the normalized movement time (r=-0.15, p=0.28). These results indicate279

that the movement time was not a significant factor affecting the learning effects.280

Following previous studies that have reported that PD patients showed a large amount of feedback281

response [26] and that the feedback response can be a source of motor adaptation [27], we investigated the282

feedback response as another possible factor affecting the learning effects. Fig. 3C shows the relation,283

indicated by shaded areas, between the TE during the trials, which is a possible factor reflecting the284

feedback response, and the learning effects. There was no significant group effect (F(2,51) = 2.58,285

p=0.086) and no significant difference among the three groups (Figs. 3C and 3D, p=0.43 between the286

PD patients [24.39±0.60 mm] and the elderly individuals [25.42±0.57 mm], p=0.0697 between the PD287

patients and the young individuals [26.25±0.57 mm], and p=0.57 between the elderly individuals and288

the young individuals). These results indicate that the feedback response was not a significant factor289

affecting the learning effects.290

We further investigated the relationship between the clinical scores and the learning effects (Fig. 4).291

There was no significant correlation between all the recorded attributes and the clinical scores (i.e., age,292

duration, H&Y, MMSE, and UPDRS) and the properties of the learning effects (i.e., the amplitude and293

the temporal delay) (Fig. 4, p>0.102 for Pearson’s correlation coefficient, and p>0.208 for Spearman’s294

rank correlation coefficient). These results indicate that the recorded attributes and conventional clinical295

scores were not enough to explain the large amplitude and the small response delays in PD patients.296

Discussion297

We investigated the motor adaptation ability inherent in PD patients while decreasing the influence of task298

switching and the burden to participate in the experiments. To reduce the influence of task switching, we299

utilized a gradual perturbation that was not noticed by most of the participants. To decrease the burden300

to participate in the experiments, we used a smart-device-based experiment that enabled us to conduct301

the experiments anytime and anywhere. The current study revealed that the PD patients possessed a302

motor adaptation ability that was 20% larger, but not better, at minimizing the task errors than the303

elderly individuals and the young individuals (Figs. 1C-1E and Fig. 2). The larger adaptation ability304

was not related to the slow movement speed of the PD patients (Figs. 3A & 3B), the feedback response305

to the perturbation (Figs. 3C & 3D), or the conventional clinical scores (Fig. 4). The larger adaptation306

ability originated mostly in the larger amplitude (Fig. 2A) and slightly in the faster response delay (Fig.307

2C).308

A possible factor for the larger motor adaptation ability in the PD patients is compensatory or paretic309

cerebellar function [28]. The cerebellum plays essential roles in motor adaptation [1,4]. Cerebellar ataxia310

patients have shown deficits in updating the internal model in motor adaptation experiments [1,4,5].311

Although it is widely known that PD patients have paretic symptoms related to dopamine or the basal312

ganglia, a recent finding supported the possibility that they have a compensatory or paretic cerebellar313

functions [28]. The modulation of cerebellar function in PD patients can be supported by the connectivity314

between the cerebellum and basal ganglia [29]. Thus, our findings indicate an aspect of the compensatory315

or paretic cerebellar function in PD patients, especially in motor adaptation ability.316

Another possible factor for the larger observed motor adaptation ability in the PD patients is the317

reward associated with the motor adaptation task [30,31]. Because the dopamine neurons can encode318

reward information, such as the temporal difference error [32,33], the lack of dopamine neurons in the319

PD patients can affect motor adaptation through a deficit in encoding the reward information. In several320

motor adaptation studies, rewards are associated with accomplishing the performed movements [30,34].321

In our experiments, the controlled cursor hit the target before, during, and after adaptation with a high322

probability (Fig. 1A). Furthermore, in our previous study, we showed that there was no difference between323

the motor adaptation with and without the vibration in hitting the target in healthy young adults, which324

was regarded as with and without the reward associated the success of the movement [11]. Thus, we can325
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suggest that our results may originate from compensatory or paretic cerebellar function rather than a326

deficit in encoding the reward information.327

Another possible factor inherent in our findings is the prospective error [18], which is the predicted er-328

ror in the upcoming movements. In the framework of the prospective error, the predicted error determines329

a recruitment pattern of neural units responsible for generating motor commands. In this framework, the330

learning effects when subjects do not predict the prospective error are larger than when they do predict331

the error. Without the prediction of the prospective error, the same pattern of neural units is recruited332

across all the trials, and the learning effects are embedded in the pattern in a concentrated manner.333

With the prediction of the prospective error, a different pattern of neural units is recruited according334

to the updated prospective error in each trial, and the learning effects are embedded in several patterns335

in a distributed manner. The learning effects embedded in the concentrated population, rather than in336

the distributed population, show large learning effects. A possibility inherent in the current finding is337

that the PD patients possess an impaired ability to predict the prospective error. In some tasks, the338

PD patients show a deficit prospective ability [35]. This hypothesis can also explain the lack of savings339

and anterograde interference (a slower learning speed in an interfered task in the A-B paradigm) in PD340

patients [19,20].341

Although the state-space model [36-39] is a popular method to quantify the learning effects in motor342

adaptation, it is not appropriate in the current study. In this framework, the task error should be343

minimized. In our current setting, the learning effects of PD patients took smaller values than the344

perturbation sequence until the 24th trial and larger values from the 25th trial. In this case, the framework345

of the state-space model predicted that the learning effects increased in each trial until the 24th trial;346

however, in our experimental setting, the leaning effects decreased from the 20th trial. Thus, we did347

not apply the state-space model in our current setting. Our findings suggest the need to improve the348

state-space model to explain adaptation to gradually applied and vanishing perturbations.349

Promising future work using PoMLab would be to investigate motor adaptation ability inherent in sev-350

eral types of patients, such as stroke patients, cerebellar ataxia patients, and Huntington disease patients,351

or the ability associated with autism spectral disorder, schizophrenia, etc. A cross-syndrome comparison352

can provide essential knowledge about the neural mechanisms of updating the internal model. Although353

several studies have investigated the ability of patients [4,5,26,40], the experimental setting is different354

in each study. PoMLab is a cross-platform application and is available for free on our GitHub page355

(https://github.com/masahiroshinya/PoMLab), which can help researchers, physical therapists, medical356

doctors, or anyone conduct motor adaptation experiments. Additionally, PoMLab supports conducting357

motor adaptation experiments anytime and anywhere while decreasing the burden to participate in an358

experiment.359

Acknowledgments360

We thank the staff at Kakeyu Rehabilitation Hospital for their kind support for this research. In partic-361

ular, we thank Youichi Maruyama and the physical therapists at the hospital. We also thank Shin-ichi362

Muramatsu for his help and Shintaro Uehara for his helpful comments.363

We acknowledge support from the Nakajima Foundation, the Kayamori Foundation of Informational364

Science, a Novartis Pharma Research Grant, and Promoting Science (a Grant-in-Aid for Young Scientists365

(18K17894), and Grant-in-Aid for Challenging Exploratory Research (16K12988)).366

Additional information367

Competing interests: The authors declare no competing financial or nonfinancial interests.368

9

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 18, 2019. ; https://doi.org/10.1101/707208doi: bioRxiv preprint 

https://doi.org/10.1101/707208
http://creativecommons.org/licenses/by-nc-nd/4.0/


Data availability369

The datasets analyzed in the current study are available from the corresponding author upon reasonable370

request.371

Author contributions372

K.T. and M.S. designed the experiments and T.S., T.S., and H.O. performed the experiments. K.T.373

performed the analyses and wrote the manuscript. T.K. oversaw the manuscript.374

References375

1. Wolpert DM, Miall RC, Kawato M. Internal models in the cerebellum. Trends in Cog Sci 2: 338-347.376

(1998)377

2. Shadmehr R, Mussa-Ivaldi FA. Adaptive representation of dynamics during learning of a motor task.378

J Neurosci 14: 3208-3224. (1994)379

3. Krakauer JW, Pine ZM, Ghilardi MF, Ghez C. Learning of visuomotor transformations for vectorial380

planning of reaching trajectories. J Neurosci 20: 8916-8924. (2000)381

4. Smith MA, Shadmehr R. Intact ability to learn internal models of arm dynamics in Huntington’s382

disease but not cerebellar degeneration. J Neurophysiol 93: 2809-2821. (2005)383

5. Gibo TL, Criscimagna-Hemminger SE, Okamura AM, Bastian AJ. Cerebellar motor learning: are384

environment dynamics more important than error size? J Neurophysiol 110: 322- 333. (2013)385

6. Contreras-Vidal JL, Buch ER. Effects of Parkinson’s disease on visuomotor adaptation. Exp Brain386

Res 150: 25-32. (2003)387

7. Messier J, Adamovich S, Jack D, Hening W, Sage J, Poizner H. Visuomotor learning in immersive 3D388

virtual reality in Parkinson’s disease and in aging. Exp Brain Res 179: 457-474. (2007)389

8. Taylor JA, Krakauer JW, Ivry RB. Explicit and implicit contributions to learning in a sensorimotor390

adaptation task. J Neurosci 34: 3023-3032. (2014)391

9. Butcher PA, Ivry RB, Kuo SH, Rydz D, Krakauer JW, Taylor JA. The cerebellum does more than392

sensory prediction error-based learning in sensorimotor adaptation tasks. J Neurophysiol 118: 1622-1636.393

(2017)394

10. Kagerer FA, Contreras-Vidal JL, Stelmach GE. Adaptation to gradual as compared with sudden395

visuomotor distortions. Exp Brain Res 115: 557-561. (1997)396

11. Takiyama K, Shinya M. Development of Portable Motor Learning Laboratory (PoMLab). PLoS ONE397

11: e0157588. (2016)398

12. Venkatakrishnan A, Banquet JP, Burnod Y, Contreras-Vidal JL. Parkinson’s disease differentially399

affects adaptation to gradual as compared to sudden visuomotor distortions. Hum Mov Sci 30: 760-769.400

(2011)401

13. Mongeon D, Blanchet P, Messier J. Impact of Parkinson’s disease and dopaminergic medication on402

adaptation to explicit and implicit visuomotor perturbations. Brain and Cog 81: 271-282. (2013)403

14. Ishii K, Hayashi T, Takiyama K. Influence of switching rule on motor learning. Sci Rep 8: 13559.404

(2018)405

15. Furuki D, Takiyama K. Decomposing motion that changes over time into task-relevant and task-406

irrelevant components in a data-driven manner: application to motor adaptation in whole-body move-407

ments. Sci Rep 9: 7246. (2019)408

16. Krakauer JW, Ghez C, Ghilardi MF. Adaptation to visuomotor transformations: consolidation,409

interference, and forgetting. J Neurosci 25: 473-478. (2005)410

17. Smith MA, Ghazizadeh A, Shadmehr R. Interacting adaptive processes with different timescales411

underlie short-term motor learning. PLoS Biol 4: e179. (2006)412

10

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 18, 2019. ; https://doi.org/10.1101/707208doi: bioRxiv preprint 

https://doi.org/10.1101/707208
http://creativecommons.org/licenses/by-nc-nd/4.0/


18. Takiyama K, Hirashima M, Nozaki D. Prospective errors determine motor learning. Nat Comm 6:413

5925. (2015)414

19. Marinelli L, Crupi D, Di Rocco A, Bove M, Eidelberg D, Abbruzzese G, Ghilardi MF, Learning415

and consolidation of visuo-motor adaptation in Parkinson’s disease. Parkinsonism Relat Disord 15:6-11.416

(2009)417

20. Leow LA, de Rugy A, Loftus AM, Hammond G. Different mechanisms contributing to savings and418

anterograde interference are impaired in Parkinson’s disease. Front Hum Neurosci 7. (2013)419

21. Fernandes HL, Albert MV, Kording KP. Measuring generalization of visuomotor perturbations in420

wrist movements using mobile phones. PLoS ONE 6: e20290. (2011)421

22. Bedore CD, Livermore J, Lehmann H, Brown LE. Comparing three portable, tablet-based visuomotor422

tasks to laboratory versions: An assessment of test validity. J Concussion 2: 1-15. (2018)423

23. Fahn S, Elton RL. Unified rating scale for Parkinson’s disease . In: Fahn S, Marsden CD, editors,424

Recent Developments in Parkinsons Disease, Florham Park. pp. 153-163, 293-304. (1987)425

24. Schenkman M, Zhu CW, Cutson TM, Whetten-Goldstein K. Longitudinal evaluation of economic426

and physical impact of Parkinson’s disease. Parkinsonism Relat Disord 8: 41-50. (2001)427

25. Majsak MJ, Kaminski T, Gentile AM, Flanagan JR. The reaching movements of patients with428

Parkinson’s disease under self-determined maximal speed and visually cued conditions. Brain 121(4):429

755-766. (1998)430

26. Semrau JA, Perlmutter JS, Thoroughman KA. Visuomotor adaptation in Parkinson’s disease: effects431

of perturbation type and medication state. J Neurophysiol 111: 2675-2687. (2014)432

27. Miyamoto H, Kawato M, Setoyama T, Suzuki R. Feedback-Error-Learning Neural Network for Tra-433

jectory Control of a Robotic Manipulator. Neural Netw 1: 251-265. (1988)434

28. Mirdamadi JL. Cerebellar role in Parkinson’s disease. J Neurophysiol 116: 917-919. (2016)435

29. Hoshi E, Tremblay L, Feger J, Carras PL, Strick PL. The cerebellum communicates with the basal436

ganglia. Nat Neurosci 8: 1491-1493. (2005)437

30. Izawa J, Shadmehr R. Learning from Sensory and Reward Prediction Errors during Motor Adaptation.438

PLoS Comput Biol 7. 11 (2011)439

31. Galea JM, Mallia E, Rothwell J, Diedrichsen J. The dissociable effects of punishment and reward on440

motor learning. Nat Neurosci 18: 597-602. (2015)441

32. Montague PR, Dayan P, Sejnowski TJ. A framework for mesencephalic dopamine systems based on442

predictive Hebbian learning. J Neurosci 16: 1936-1947. (1996)443

33. Schultz W, Dayan P, Montague PR. A neural substrate of prediction and reward. Science 275:444

1593-1599. (1997)445

34. Pekny SE, Izawa J, Shadmehr R. Reward-Dependent Modulation of Movement Variability. J Neurosci446

35: 4015-4024. (2015)447

35. Saito N, Takahata K, Yamakado H, Sawamoto N, Saito S, Takahashi R, Murai T, Takahashi H.448

Altered awareness of action in Parkinson’s disease: evaluations by explicit and implicit measures. Sci449

Rep 7: 8019. (2017)450

36. Thoroughman KA, Shadmehr R. Learning of action through adaptive combination of motor primi-451

tives. Nature 407: 742-747. (2000)452

37. Scheidt RA, Dingwell JB, Mussa-Ivaldi FA. Learning to move amid uncertainty. J Neurophysiol 86:453

971-985. (2001)454

38. Takiyama K, Sakai Y. Balanced motor primitive can explain generalization of motor learning effects455

between unimanual and bimanual movements. Sci Rep : 1-10. (2016)456

39. Takiyama K. Context-dependent memory decay is evidence of effort minimization in motor learning:457

a computational study. Front Comput Neurosci 9(4): 1-10. (2015)458

40. Patton JL, Stoykov ME, Kovic M, Mussa-Ivaldi FA. Evaluation of robotic training forces that either459

enhance or reduce error in chronic hemiparetic stroke survivors. Exp Brain Res 168: 368-383. (2006)460

11

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 18, 2019. ; https://doi.org/10.1101/707208doi: bioRxiv preprint 

https://doi.org/10.1101/707208
http://creativecommons.org/licenses/by-nc-nd/4.0/


y
-p

o
s
 i
n

 d
is

p
la

y
 (

m
m

)

L
e

a
rn

in
g

 e
ff
e

c
t

(A)

(C)

x-pos in display (mm) Normalized time

Trial number Subject type
PD    EL    YG

(B)

(D)

L
e

a
rn

in
g

 e
ff
e

c
t

V
e

lo
c
it
y
 (

m
m

/s
)

Subject type
PD    EL    YG

(E)

R
M

S
E

Figure Legends461

Fig. 1 Kinematics and learning curve in the PoMLab experiments. (A): Trajectories displayed on the462

tablet monitor. The green, blue, and solid black lines denote the averaged trajectories across the PD463

patients, the age- and MMSE-matched elderly individuals, and young individuals, respectively, in every464

five trials (N=18 in each group). The red, white, and magenta circles indicate the initial position, the465

controlled cursor, and the target, respectively. (B): Measured velocity. The green, blue, and solid black466

lines denote the averaged velocities along the y-axis across the PD patients, the age- and MMSE-matched467

elderly individuals, and the young individuals, respectively, in every five trials (N=18 in each group). (C):468

Learning curves and the perturbation schedule. The horizontal axis denotes the trial number, and the469

vertical axis indicates the learning effects or the degree of perturbation (black dotted line). The learning470

effects were calculated based on the movement angles at the time when the velocity along the y-axis471

reached its maximal value. The green, blue, and solid black lines indicate the learning effects averaged472

across the PD patients, the age- and MMSE-matched elderly individuals, and the young individuals,473

respectively. The green, blue, and black shaded areas indicate the standard error of the mean for the474

learning effects in each group. The gray shaded area denotes the trial number where learning effects in all475

the groups are significantly different from zero (t-test p<0.01 [corrected]). (D): Learning effects averaged476

across the trials denoted in the gray shaded area in panel (C). Each dot indicates the learning effects for477
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each subject. Each bar shows the mean learning effects in each group. * and ** indicate statistically478

significant differences with p < 0.05 and p < 0.01, respectively (Tukey’s post hoc test following one-way479

ANOVA). (E): RMSE averaged across the trials denoted in the gray shaded area in panel (C).480

Fig. 2 Learning effects decomposed into three factors. (A): Amplitude in each subject and group.481

A larger value indicates a larger learning effect. Each dot indicates the amplitude for each subject, and482

each bar shows the mean amplitude in each group. * and ** indicate significant differences with p <483

0.05 and p < 0.01, respectively (Tukey’s post hoc test following one-way ANOVA). (B): Cosine function484

of the phase for each subject and group. A larger value indicate a smaller phase value, which indicates485

a similar learning curve to the applied perturbation pattern. (C): Delay in each subject and group. A486

larger value indicate a longer delayed response to the applied perturbation. (D): Typical learning curves487

in the PD subjects whose amplitude was the largest, the second largest, the third largest (magenta solid488

lines), the third smallest, the second smallest, and the smallest (cyan solid lines). (E): Typical learning489

curves of the PD patients regarding the cosine function of the phase. (F): Typical learning curves of the490

PD patients regarding delays.491

Fig. 3 Kinematic factors possibly relating to the learning effects. (A): Movement time. ** indicates492
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a significant difference with p < 0.01 (Tukey’s post hoc test following one way ANOVA). (B): Relation493

between the normalized movement time and the amplitude of the learning curve. The normalized move-494

ment time indicates the modified movement time whose mean and standard deviation are zero and one,495

respectively, in each group. There was no correlation between the two variables (r=0.1517, p=0.2736).496

(C): Trajectory error. The horizontal axis indicates the trial number, and the vertical axis indicates497

the trajectory error. The trajectory error was calculated as the squared lateral deviation of the cursor498

trajectory. The gray shaded area shows the trial numbers where the learning effects were significantly499

different from zero (t-test p<0.01 [corrected]). (D): Trajectory error averaged across the trials in the gray500

shaded area in panel (C). There was no difference among the groups (p>0.0697, Tukey’s post hoc test501

following one-way ANOVA).502

Fig. 4 Correlation between the learning effects (amplitude and delay) and the clinical scores of503

the PD patients. (A-E): The relation between the amplitude and the scores. (F-J): The relationship504

between the delay and the scores. There was no significant correlation between the learning effects and505

the clinical scores (p>0.1024 for Pearson’s correlation coefficient, and p>0.2075 for Spearman’s rank506

correlation coefficient).507
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