1 TMEM70 is an assembly factor of mitochondrial complexes I and V

- 2 Laura Sánchez-Caballero¹*, Dei M. Elurbe²*, Fabian Baertling^{1,3}, Sergio Guerrero-Castillo¹, Mariel van den
- 3 Brand¹, Joeri van Strien², Teunis J. P. van Dam⁴, Richard Rodenburg¹, Ulrich Brandt¹, Martijn A. Huynen²# and

4 Leo G.J. Nijtmans¹

- 5
- ¹Department of Paediatrics, Radboud Centre for Mitochondrial Medicine, Radboud University Medical Centre,
- 7 Nijmegen, The Netherlands
- 8 ²Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud
- 9 University Medical Centre, Nijmegen, The Netherlands
- ³Department of General Paediatrics, Neonatology and Paediatric Cardiology, University Children's Hospital
- 11 Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- ⁴Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Utrecht, The Netherlands
- 13 * These authors contributed equally to this work
- 14 # Correspondence: Martijn.Huijnen@radboudumc.nl
- 15

16 Abstract

17 Protein complexes from the oxidative phosphorylation (OXPHOS) system are assembled with the help of 18 proteins called assembly factors. We here delineate the function of the inner mitochondrial membrane protein 19 TMEM70, in which mutations have been linked to OXPHOS deficiencies, using a combination of BioID, 20 complexome profiling and coevolution analyses. TMEM70 interacts with complex I and V and for both 21 complexes the loss of TMEM70 results an accumulation of an assembly intermediate followed by a reduction of 22 the next assembly intermediate in the pathway. This indicates that TMEM70 has a role in the stability of 23 membrane-bound subassemblies or in the membrane recruitment of subunits into the forming complex. 24 Independent evidence for a role of TMEM70 in OXPHOS assembly comes from evolutionary analyses. The 25 TMEM70/TMEM186/TMEM223 protein family, of which we show that TMEM186 and TMEM223 are 26 mitochondrial in human as well, only occurs in species with OXPHOS complexes. Our results validate the use of 27 combining complexomics with BioID and evolutionary analyses in elucidating congenital defects in protein 28 complex assembly.

29

30 Introduction

31 The oxidative phosphorylation (OXPHOS) system, situated in the mitochondrial inner membrane, is composed 32 of five enzyme complexes (I–V) and two electron carriers, coenzyme Q and cytochrome c^1 . The first four 33 complexes form the electron transport chain (ETC) that couples the transfer of electrons from NADH and 34 Succinate to oxygen, to the transfer of protons across the membrane. The thus generated proton gradient is used 35 by complex V (CV) or ATP synthase to generate adenosine triphosphate $(ATP)^2$. From the five enzymes of the 36 OXPHOS system, the first and the last, i.e., complex I (CI) or NADH:ubiquinone oxidoreductase and CV are 37 particularly relevant to this study. Mammalian CI is a 45 subunit L-shaped complex, seven subunits of which are 38 mitochondrially encoded, (MT-ND1, MT-ND2, MT-ND3, MT-ND4, MT-ND4L, MT-ND5 and MT-ND6) with a 39 lipophilic arm integrated into the inner mitochondrial membrane and a hydrophilic peripheral arm jutting out into 40 the mitochondrial matrix³. The enzyme can be subdivided into three different functional modules⁴ that are assembled separately^{5,6}: the P-module (proton translocation) that represents the lipophilic membrane arm, the N-41 42 module (NADH dehydrogenase) and the Q-module (coenzyme Q reduction). Mammalian CV is an enzyme 43 complex composed of 18 subunits (including the regulatory protein IF₁), two of which are mitochondrially 44 encoded (MT-ATP6 and MT-ATP8)⁷. It comprises two modules: the globular F_1 domain (subunits α , β , γ , δ and 45 ε) that contains the catalytic region, and the membrane-embedded F₀ domain, that contains the rotary motor. The 46 F_1 module is connected to F_0 (subunits DAPIT, 6.8PL, a, A6L, e, f, g and c) by two stalks, one central, with 47 subunits γ , δ , ε and one peripheral that consists of the oligomycin sensitivity conferral protein (OSCP) and 48 subunits b, d, and F_6 . The central stalk and the c-subunits octamer establish the rotor of the fully assembled 49 enzyme⁸.

50 For the optimal assembly of the OXPHOS complexes extra proteins are needed: the so-called assembly factors, 51 which assist in the assembly of a complex but are not part of the final complex. Assembly factors have been 52 discovered by genetic and experimental approaches, often in combination with bioinformatic analyses⁹. Those 53 analyses have exploited that the assembly factors are often part of large protein families¹⁰. They show conservation of molecular function and co-evolve with CI itself¹¹. This is e.g. the case for the CI assembly factor 54 55 IND1, that was predicted to play a role in the assembly of Fe-S clusters in CI via the role of its cytoplasmic 56 homologs in the assembly of other Fe-S proteins and via its co-evolution with CI proteins¹². However, the exact 57 molecular function of many assembly factors has not been elucidated.

From all the complexes that are part of the OXPHOS system, the one with the lowest number of known assembly factors is CV. Its known assembly factors are ATPAF1 and ATPAF2¹³, which both interact with the F₁ module, and TMEM70¹⁴. TMEM70 is a transmembrane protein that localizes in the inner membrane of the

61 mitochondria^{15,16}. It contains two transmembrane regions that form a hairpin structure of which the N- and C-62 termini are located in the mitochondrial matrix¹⁷. Mutations in *TMEM70* have been reported to severely diminish the content of CV in a large cohort of patients^{14,18-26}, and of all nuclear encoded proteins affecting CV, TMEM70 63 64 is the most commonly mutated in disease²⁷. This observation led to the hypothesis that TMEM70 is a CV 65 assembly factor. However, there is no evidence of its direct interaction with CV proteins, and its specific role in 66 CV assembly remains unclear^{16,26}. 67 Interestingly, defects in TMEM70 have not exclusively reported deleterious effects on CV but also that combined with less severe CI deficiency²², a combined OXPHOS deficiency²⁸ or even an isolated CI 68 69 deficiency²⁰. Furthermore, TMEM70 has been shown to co-migrate with an assembly intermediate that forms 70 part of CI⁶, suggesting it might form part of its assembly process.

The present study aims to elucidate the full role of TMEM70 in the OXPHOS system using standard biochemical techniques combined with two novel techniques: complexome profiling and the BioID proximity-dependent labelling assay, together with an in-silico approach to detect TMEM70 homologs and reconstruct the coevolution of TMEM70 with other mitochondrial proteins.

75

- 76 Results
- 77

78 BirA* tagged TMEM70 biotinylates complex I, complex V and the small subunit of the ribosome

79 To study whether there is a direct interaction of TMEM70 with components of CI and CV and thus link its 80 absence to both OXPHOS deficiencies, or whether it interacts with any other mitochondrial protein complex, we 81 used HEK293 Flp-In T-Rex293 cell lines engineered to express BirA*- tagged TMEM70 in a doxycycline-82 inducible manner (BioID). In this experiment, designed to biotinylate proteins that occur in close proximity to 83 our protein of interest, we detected 538 proteins (Supplementary Table S1). From those, we obtained a list of 135 84 putative interaction partners of TMEM70 based on proteins showing a significant increase in biotin positive -85 doxycycline positive conditions compared to biotin positive - doxycycline negative conditions and biotin 86 negative – doxycycline positive conditions (Supplementary Fig. S1, Supplementary Table S2). The 87 mitochondrial proteins biotinylated by BirA*-TMEM70 (n = 102) were significantly enriched for proteins 88 involved in CI - including assembly factors NDUFAF1, NDUFAF2, NDUFAF4 and NDUFAF5 -- and CV, as well as the small subunit of the mitochondrial ribosome (analysis done with DAVID²⁹, Table 1, Supplementary 89 90 Table S3).

91

Category	Term	GO	Cluster	FDR
GOTERM_BP_DIRECT	mitochondrial respiratory chain complex I assembly	GO:0032981	1	6.53e-11
GOTERM_BP_DIRECT	mitochondrial electron transport, NADH to ubiquinone	GO:0006120	1	4.73e-6
GOTERM_CC_DIRECT	mitochondrial respiratory chain complex I	GO:0005747	1	8.03e-5
GOTERM_MF_DIRECT	NADH dehydrogenase (ubiquinone) activity	GO:0008137	1	9.56e-5
GOTERM_BP_DIRECT	mitochondrial translational elongation	GO:0070125	2	4.02e-4
GOTERM_CC_DIRECT	Mitochondrial small ribosomal subunit	GO:0005763	2	1.15e-3
GOTERM_BP_DIRECT	Mitochondrial translation termination	GO:0070126	2	6.17e-3
GOTERM_CC_DIRECT	Mitochondrial proton-transporting ATP synthase complex	GO:0005753	3	1.85e-2
GOTERM_CC_DIRECT	Mitochondrial ATP synthesis coupled proton transport	GO:0042776	3	2.60e-2

92

93 Table 1. Enriched clusters obtained from potential mitochondrial interactors of TMEM70

94

95

96 A comprehensive assessment of the TMEM70 knockout effect on the OXPHOS system

97 An interaction of TMEM70 with CI and CV, as we observed in the BioID results, might explain why patients harbouring TMEM70 mutations have CI and CV deficiencies^{20,22,28}. To obtain a detailed view on how the 98 99 absence of TMEM70 affects those mitochondrial protein complexes, we performed complexome profiling on a 100 TMEM70 knockout cell line and on controls. We compared two HAP1 wild-type cell lines with one mutant cell 101 line that had a 32bp deletion in exon 1 of the TMEM70 gene, and performed a biological replicate by again 102 enriching mitochondria from these cell lines and repeating the complexome profiling. The deletion in exon 1 of 103 TMEM70 causes a frameshift and a premature stop codon in the cDNA, with no detectable presence of the 104 protein by MS/MS (Table 2). Complexome profiling, which consists of a BN-PAGE followed by mass 105 spectrometry, allows us to see the majority of the proteins belonging to each of the native complexes and their distribution over the various assembly intermediates^{30,31}. In the six complexome profiles, four controls and two 106 107 TMEM70 knockouts, we detected in total 3766 proteins, of which 814 are annotated as mitochondrial in 108 MitoCarta 2.0³². The profiles were normalized such that the sum of the intensities of the mitochondrial proteins

109 between the samples were equal, and the profiles were aligned with COPAL³³ to allow comparison between the

110 replicates (see Supplementary Table S4 for the complete results).

111 In order to assess the overall effects caused by the lack of TMEM70 on OXPHOS, and to confirm its interactions 112 with complexes I and V suggested by our BioID results (Table 1) as well as by previous studies^{6,22}, we measured 113 the presence of the subunits belonging to the fully formed OXPHOS complexes (see Methods). We observed a 114 significant decrease in the abundance of the subunits belonging to CI and CV and small, non-significant 115 increases in the other three OXPHOS complexes (Fig. 1a; p values: CI - 1.4e-12 (median ~60% compared to 116 controls), CII – 0.125, CIII – 0.322, CIV – 0.204, CV – 1.5e-5 (median ~30% compared to controls), Wilcoxon 117 signed-rank test, Supplementary Fig. S2). We also tested their enzymatic activities by spectrophotometric 118 analysis and, accordingly, results showed a 30% decrease in CI activity (p = 0.156) and a 70% decrease and CV 119 activity (p = 0.009), Fig. 1b), whereas the other OXPHOS complexes showed no apparent change in activity. 120 Furthermore, we also observed a reduction in fully formed complexes I and V in BN-PAGE/immunoblotting

analysis in KO conditions compared to controls (Supplementary Fig. S3).

By MS/MS

Sequence	P1_1	P1_2	P631_1	P631_2	KO_1	KO_2
AITYNAMIAETSTVFHQNDVK	10	10	17	8	0	0
HVFTTFYAK	18	2	20	2	0	0
IIYTGNMAR	19	5	19	1	0	0
IYHEATTDTYK	22	5	16	0	0	0
SIIVNPVIFPNR	10	4	12	4	0	0
Total	79	26	84	15	0	0

By matching

Sequence	P1_1	P1_2	P631_1	P631_2	KO_1	KO_2
AITYNAMIAETSTVFHQNDVK	34	7	35	2	0	0
HVFTTFYAK	8	21	10	13	0	0
IIYTGNMAR	29	40	41	21	1	1
IYHEATTDTYK	13	22	40	21	0	2
SIIVNPVIFPNR	8	12	23	4	2	0
Total	93	102	149	61	3	3

122	Table 2.	. Peptides a	assigned to	TMEM70 obtain	ned in all 6 sa	mples by	y MS/MS and	d by matching

123

124

Figure 1. Lack of TMEM70 has an effect in CI and CV. **a** Ratios between mutants and controls measured per subunit and grouped by complex. CI and CV show an apparent reduction of ~40% and 70% respectively. **b** Enzymatic activities shown by TMEM70 KO with respect to the parental control cell line. Complexes I and V show a decrease, although statistically significant only for the latter (p = 0.156, 0.8, 0.51, 0.577 and 0.009, for complexes I, II, III, IV and V, respectively; n = 3). Error bars represent the standard deviation.

131

132 Impaired assembly of complex I

133 We first focused on the differences in the assembly process of CI between the TMEM70 wild-type and in 134 TMEM70 knockout HAP1 cells. As mentioned above, there was a reduction of fully formed CI in cells lacking 135 TMEM70 (Fig. 1a), suggesting a possible CI assembly defect. CI assembly proceeds via pre-assembled 136 intermediates that later on interact, until the fully formed and active enzyme is made⁵. When analysing the 137 assembly steps of CI under TMEM70 KO conditions in the complexomics results, we observed a clear and 138 significant accumulation of the Q/P_P-a intermediate (Fig. 2 and Supplementary Fig. S4; median ratio = 4.14; p =139 4.89e-4) relative to controls, consistent with the accumulation observed in two-dimensional BN-PAGE/SDS-140 PAGE for NDUFS3 intermediates (Supplementary Fig. S5). At this stage, the Q-module formed by NDUFS2, 141 NDUFS3, NDUFS7, NDUFS8 and NDUFA5 and the assembly factors NDUFAF3 and NDUFAF4 is anchored 142 to the membrane with proteins belonging to the proximal P-module, TIMMDC1 and MT-ND1⁶. Following the 143 formation of this intermediate, and based on one of the previously described assembly pathways of complex I

144 (Fig. 2), the remaining subunits of the proximal module (P_P -b), which do not show any significant changes while 145 forming part of this intermediate (Fig. 2 and Supplementary Fig. S4; median ratio = 0.94; p = 0.102), are added 146 to form the intermediate Q/P_P that, in the TMEM70 depleted cells, also accumulates relative to the controls (Fig. 147 2 and Supplementary Fig. S4; median ratio = 2.41; p = 2.6e-3). The most distal part of the enzyme, the P_D 148 intermediate, is composed of two different intermediates: P_D-a and P_D-b. TMEM70 has been observed to co-149 migrate with this distal membrane part (P_D) of complex I, and within this distal part, with the intermediate P_D -a, 150 that is just next to the proximal membrane part of the complex⁶. With respect to the P_D part of the enzyme, the 151 intermediate P_D-b showed a minor but significant accumulation (Fig. 2 and Supplementary Fig. S4; median ratio 152 = 2.18; p = 0.016), while no accumulation was observed for P_D-a (median ratio = 1.04; p = 0.383). These results 153 are as well compatible with the alternative assembly pathway of complex I (Supplementary Fig. S6), which also 154 shows a significant decrease of the intermediates that follow after the incorporation of P_D-a (P_P-b/P_D-a, 155 Supplementary Fig. S6 and Supplementary Fig. S4; median ratio = 0.64; p = 0.004). Finally, both assembly 156 pathways converge with the formation of intermediate Q/P, which is also reduced in the absence of TMEM70 157 (Fig. 2, Supplementary Fig. S6 and Supplementary Fig. S4; median ratio = 0.70; p = 1.9e-7).

Figure 2. The assembly of complex I is impaired in the absence of TMEM70. Individual plots depict migration profiles of the average of the iBAQ values of the proteins that belong to the stated assembly intermediate (see Methods) in parental HAP1 cells (black line) and TMEM70 KO HAP1 cells (red line). The significant accumulation (red arrow) shown by intermediates Q/P_P and P_D -b together with the significant depletion (blue arrow) of the subsequent product (Q/P) in the TMEM70 knockout cells suggests an impairment in the incorporation of the first two to form the latter. *** p < 0.001. ** p < 0.01. * p < 0.05 based on results depicted in Supplementary Figure S4

166

168	1	.6	8
-----	---	----	---

169 Loss of the interaction between the c-ring and F₁ module in the *TMEM70* knockout

170 In order to understand the observed decrease in assembled CV in the absence of TMEM70, we also examined its 171 assembly process in the complexomics data (Supplementary Table S4). We could identify all subunits of CV 172 with two exceptions: the subunit ε (in all samples) and the components of the c-ring octamer (C1 subunits) (in 173 the replicate experiment of the TMEM70 KO cell line). Based on these data, the subunits of CV were distributed 174 over multiple intermediates in the control: the F_1 soluble and F_1 anchored intermediates, with subunits α , β , γ and 175 δ in the former, and those plus C1 in the latter (Supplementary Fig. S7a), the F_O late assembly intermediate with subunits ATP8, ATP6, DAPIT, 6.8PL, d, F6 and OSCP (Supplementary Fig. S7b) and the Fo early assembly 176 177 intermediate with subunits b, e, f and g (Supplementary Fig. S7c) as well as the fully formed complex V. Subunits belonging to F_1 show a migration pattern matching previously suggested states³⁴, namely, F_1 soluble 178 179 $(\alpha$ - β hexamer together with γ , δ and ε monomers), F₁ attached to the membrane bound c-ring, and F₁ forming 180 part of the fully assembled complex (Fig. 3a Control, Fig. 3b). With respect to the F_0 module, our results show a 181 co-migration pattern that hints towards the formation of two intermediates before the fully assembled complex: 182 one formed in an early stage composed of subunits b, e, f and g and one containing these subunits plus the ATP8,

183 ATP6, DAPIT, 6.8PL, d, F6 and OSCP subunits (Supplementary Fig. S7).

184 When we explored the assembly of CV in the TMEM70 knockout cell line in detail, we found that the above-185 mentioned association of the C1 subunit octamer with the α - β hexamer and the γ , δ and ϵ subunits that form the 186 F_1 module was missing in the absence of TMEM70 (median ratio = 0.04, the small number of subunits does not 187 allow obtaining significant values using non-parametric statistics). Interestingly, the canonical soluble F_1 188 intermediate showed a slight accumulation compared to the control (median ratio = 1.27) (Fig. 3a). Consistently, 189 this intermediate was found to be absent in the one-dimensional BN-PAGE immunoblot (Supplementary Fig. 190 S8). With respect to the c-ring components in the complexome analysis by mass spectrometry, we reasoned that 191 the tryptic in-gel digestion may not generate enough detectable peptides of proteins that are small and highly 192 hydrophobic, such as the C1 subunit. To address this issue, we repeated the complexome profiling, but now 193 digesting the samples with chymotrypsin instead of trypsin (Supplementary Table S5). Results revealed that the 194 intermediate in the wild type with an apparent mass of \sim 420 kDa indeed represents the F₁ module associated 195 with the C1 subunit octamer (Fig. 4). Furthermore, the absence of this intermediate in TMEM70 devoid cells 196 was accompanied by the absence of C1 subunit at the same apparent mass, thus confirming the interaction of the 197 soluble F_1 with the membrane subunit C1 (Fig. 4).

- 198 When focusing on the subunits belonging to the F₀ early assembly intermediate and/or the F₀ late assembly
- 199 intermediate, we observed that the differences between the TMEM70 knockout and the control are based on an
- 200 overall reduction (Fig. 3a). Together, these results suggest a role of TMEM70 in the membrane stability of the
- 201 C1 subunit octamer or its interaction with the F_1 module.

Figure 3. The assembly of complex V misses a F₁ intermediate in the absence of TMEM70. a Migration profiles of complex V intermediates in control HAP1 cells (dark grey) and TMEM70 KO HAP1 cells (red).
Intermediates are represented in the z-axis by the average of the iBAQ values of all the subunits detected by mass spectrometry that belong to that intermediate. In absence of TMEM70, F₁ intermediate accumulation is followed by F₁-c intermediate depletion whereas the other intermediates do not show specific effects besides an

- 208 overall reduction of their presence. **b** The F_1 soluble intermediate is anchored to the inner mitochondrial
- 209 membrane binding the c-ring octamer

210

F1 module and C1 subunit

211

Figure 4. ATP synthase F_0 complex subunit C1 interaction with F_1 is missing in the absence of TMEM70. Complexome profiling results after chymotrypsin digestion showing the average of detected F_1 subunits and C1 protein in control and TMEM70 KO HAP1 cells show a missing intermediate in the latter formed by both groups of proteins (F_1 proteins and an octamer of C1 subunits).

216

218

219 Mitochondrial translation is not disturbed by the lack of TMEM70

220 After confirming the involvement of TMEM70 in complex I and V that was indicated by the BioID results 221 (Table 1), we proceeded with the third complex from the BioID analysis, the mitochondrial ribosome, to 222 determine the possible effect of TMEM70 depletion on the assembly of the small subunit of the mitochondrial 223 ribosomes and/or in mitochondrial translation. To do so, we first assessed the assembly of the small subunit of 224 the mitochondrial ribosomes with our complexomics data in both the presence and absence of TMEM70 225 (Supplementary Table S4). We did not observe any discrepancies in the formation of intermediates throughout 226 the assembly of the mitochondrial ribosome when comparing both conditions (Fig. 5a), except for a slight but 227 significant increase of the final product (p = 7.5e-3, Supplementary Fig. S9) in the absence of TMEM70. In order 228 to assess whether such a difference would affect mitochondrial translation, we labelled newly translated mitochondrial products with ³⁵S-methionine³⁵ comparing newly synthesized products between control and 229 230 TMEM70 KO conditions. We collected cells 5 minutes, 15 minutes, 30 minutes and 60 minutes after 1h of 231 permanently inhibiting cytoplasmic translation (Fig. 5b). Results showed no differences between the two 232 conditions affecting the mitochondrially translated proteins of complexes III and IV. However, we did observe a 233 reduction in ATP6 that becomes more pronounced over time, which is consistent with the strong reduction in 234 fully assembled CV.

235 The lack of differences in both the assembly process of the ribosomes and the translation efficiency of those
236 suggest no significant role of TMEM70 in their assembly or their normal functioning.

Figure 5. The assembly of the small subunit of the mitochondrial ribosome and the translation of mitochondrial proteins are not affected in the absence of TMEM70 even though there is an increase of the final product. **a** Complexome profile of proteins belonging to the small subunit of the mitochondrial ribosome. Despite being enriched in the BioID dataset, its assembly does not appear to be disturbed in the absence of TMEM70. **b** Pulse labelling of mitochondrial encoded products after 5 min, 15 min, 30 min and 1 h. Newly synthesised products do not seem to show any differences in abundance, with the exception of ATP6 after 15 or more minutes.

244

245 The mitochondrial protein family TMEM223/TMEM186/TMEM70 co-evolves with OXPHOS

246 In order examine whether TMEM70 has co-evolved with OXPHOS proteins we determined its phylogenetic 247 distribution. Sequence searches for TMEM70 using sensitive Hidden Markov Models (Methods) revealed that it 248 has two paralogs in human: TMEM223 (E=2.9e-8) and TMEM186 (E=1.2e-28) (Fig. 6a). Results obtained from 249 cellular fractionation (Fig. 6b) and microscopy (Fig. 6c and 6d) indicate a mitochondrial localization of both 250 paralogs. Although the level of sequence identity between the three family members is low (e.g. in human 251 TMEM70-TMEM186: 14%, TMEM70-TMEM223: 9%, TMEM186-TMEM223: 15%), in silico predictions 252 indicate a similar asymmetric hairpin topology for all three proteins; a short N-terminal sequence located in the 253 mitochondrial matrix followed by an in/out and an out/in transmembrane helix and a longer C-terminal sequence 254 (Supplementary Fig. S10), consistent with the experimental results for TMEM70¹⁷. Furthermore, also the 255 Saccharomyces cerevisiae protein Mrx15, that is homologous to the TMEM70/186/223 family and within this 256 family most similar to TMEM223 (E=8e-28, 10% identity), has this asymmetric hairpin topology³⁶. All three 257 members of the TMEM70/186/223 family are phylogenetically widespread (Fig. 6a), and appear to have been 258 present in the last eukaryotic common ancestor (LECA). We then asked whether any other mitochondrial 259 proteins have a similar phylogenetic distribution as members of the TMEM70/186/223 family. Given the low 260 sequence identity between orthologs in this protein family and between their potential interactors, we used a two-261 tier approach. First, we employed an in-house orthology database based on pairwise sequence comparisons and 262 containing 52 diverse eukaryotic species to derive phylogenetic profiles of the human proteome, using 263 differential Dollo parsimony that measures the number of independent loss events along an evolutionary tree as 264 an evolutionary distance measure. For TMEM70, the protein with the highest co-evolution signal (NDUFAF1) 265 and four of the ten most co-evolving proteins were CI proteins (Supplementary Table S6). Second, we manually 266 analysed, using the top hits of the first approach and using more sensitive, profile-based analyses (Methods), the 267 co-evolution of TMEM70/186/223 with CI, CV and TMEM14. The latter is, based on the first step of the

- analysis, a protein family that co-evolves with TMEM70/186/223, and is also located in the inner mitochondrial membrane. Overall, we observe that members of the TMEM70/186/223 protein family only occur in species with OXPHOS, and are absent from species without CI and or CV. Nevertheless, the reverse does not apply as there are taxa, like the Kinetoplastida, that do have CI and CV but do not have detectable homologs of the
- 272 TMEM70/186/223 family (Supplementary Table S7).

273

274 Figure 6. TMEM70 has two paralogs, TMEM186 and TMEM223 that are both located in the mitochondria. 275 Furthermore, for TMEM70 orthologs in Arabidopsis thaliana and Schizosaccharomyces pombe, there is 276 experimental evidence that localizes them in the mitochondria^{58,59}, while also a S. cerevisiae homolog of the 277 family, YNR040W/Mrx15 that due to extreme sequence divergence could not be put into the tree, is located in 278 mitochondria³⁶. **a** Phylogenetic distribution of TMEM70 homologs. **b** Cellular fractionation of cells expressing 279 TMEM186-TAP and TMEM223-TAP. Immunodetection against NDUFB11, as a marker of the mitochondrial 280 enriched fraction (M), Alpha-tubulin as a marker of the cytoplasm (C), and CBP. (T) stands for total fraction. c 281 and d Fluorescence microscopy images of cells expressing TMEM186-GFP (c) and TMEM223-GFP (d) stained 282 with Mitotracker (mitochondrial network) and DAPI (nucleus).

- 283
- 284

285 Discussion

Our results describe a role of TMEM70 in the assembly of CI and CV of the OXPHOS system. This finding is in line with previous studies of patients harbouring mutations in *TMEM70*, that did not always have an isolated CV deficiency but rather combined OXPHOS deficiencies or even an isolated CI deficiency^{18,20,22,28}. The conclusions are supported by the results from BioID, complexome profiling analyses and enzyme measurements of the OXPHOS complexes. Although the assembly of both CI and CV are significantly affected in the absence of TMEM70, the effect on CV is more pronounced than on CI, which might explain the preponderance of CV phenotypes relative to CI phenotypes reported for patients with mutations in *TMEM70*.

293 In order to obtain a comprehensive list of potential interacting candidates that could hint at the function of 294 TMEM70, we began by performing a biotin ligase proximity-dependent assay (BioID) of BirA* tagged 295 TMEM70, which indicated that the protein is in close contact with CI, CV and the small subunit of the 296 mitochondrial ribosome. To determine a potential role of TMEM70 in the assembly of CI and CV in detail, we 297 studied all the proteins of both complexes meticulously by complexome profiling^{30,31}. Thus, we were able to 298 detect the majority of the proteins of each complex and of their assembly intermediates. This allowed us to 299 determine the effects that the lack of TMEM70 has on CI and CV assembly. For CI, the O/P_P-a and O/P_P 300 intermediates accumulate in the absence of TMEM70, suggesting that the impairment in the pathway comes 301 right after their assembly. In the case of Q/P_P-a, and following one of the alternative assembly pathways 302 (Supplementary Fig. S6), its accumulation could be caused by a reduction of forming the intermediate P_P-b/P_D-a. 303 If we follow the other alternative assembly pathway (Fig. 2), intermediate Q/P_P accumulation followed by Q/P304 depletion, suggests a problem with the incorporation of P_D-a and P_D-b intermediates, the latter of which also 305 accumulates in the TMEM70 KO. The interaction between CI and TMEM70 is in line with a previous study by 306 Guarini et al.³⁷, who showed TMEM70 as a significant interactor of ECSIT and NDUFS5, both proteins 307 belonging to the P_P -b/ P_D -a intermediate and, in the case of ECSIT, also part of the Q/P_P intermediate. The 308 interaction of TMEM70 with proteins of the P_P module³⁷, the comigration with the distal part (P_D) of CI⁶, and the 309 accumulation of Q/P_{P} -a, Q/P_{P} and P_{D} -b intermediates together with the depletion of P_{P} -b/ P_{D} -a and Q/P310 intermediates, suggests that TMEM70 is involved in the assembly of the membrane arm (P-module) of CI by 311 assisting in assembly or the stabilization of the P_D-a intermediate A role in the assembly or the stability of a 312 membrane intermediate is consistent with the membrane architecture of the protein, consisting of two 313 transmembrane helices followed by a long C-terminal tail²².

With respect to CV, we delineate a specific role of TMEM70 in its assembly. In the complexomics data we show how, upon lack of TMEM70, the intermediate where F_1 is bound to the membrane-embedded c-subunits octamer³⁴ is completely absent. Despite the absence of the F_1 -c intermediate, there was still some CV being assembled, although at only 30% compared to the control. One possibility is that in TMEM70 depleted cells the assembly of the complex follows an alternative path that was already described by He *et al*³⁸, where F_1 instead of being attached to the c-ring octamer first, instead attaches to the F_0 and the peripheral stalk before combining with the c-ring. Nevertheless, in our complexome profiling data we do not detect such an F_1F_0 intermediate that would support this alternative path.

322 With respect to the small subunit of the mitochondrial ribosome, although we observed a slight but significant 323 increment of mitochondrial ribosomes upon TMEM70 knockout, we did not observe any detectable differences 324 in its assembly nor in the efficiency of the translation of the mitochondrial products. Thus, as the synthesis of 325 mitochondrial encoded subunits was not altered in TMEM70 devoid cells, we find no evidence for the hypothesis of nucleoid disruption³⁹. The interactions detected by the BioID experiment could be due to the 326 327 structure of TMEM70 and the addition of the BirA domain to its C-terminus. Such terminus protrudes into the 328 mitochondrial matrix after the two transmembrane domains. This, together with the possibility of mitochondrial 329 ribosomes being in close proximity to the inner membrane during the translation, could be the reason they were 330 tagged.

331 Through our homology analyses and phylogenetic reconstruction of the co-evolution of TMEM70/186/223 332 family with CI and CV we could not detect a TMEM70 ortholog in S. cerevisiae, which is surprising as S. 333 cerevisiae does have CV. Interestingly, it has been described how in this species, F₁ does not undergo the same 334 assembly steps as in human and does not interact with the c-ring⁴⁰. Furthermore, S. cerevisiae lacks CI, fitting 335 our hypothesis of a double role of the protein in human, that is absent from S. cerevisiae because one of the 336 target complexes has been lost in evolution (CI), and the manner in which the other target complex is assembled 337 is different than in human. Sensitive homology detection does however reveal the presence of a TMEM70 338 homolog in S. cerevisiae: TMEM223. TMEM70, TMEM223 and the third member of this family that we could 339 detect, TMEM186, appear widespread in eukaryotic evolution and only occur in species with OXPHOS 340 complexes. We performed confocal microscopy for analysis of GFP-tagged TMEM186 and TMEM223. The 341 analysis showed the predominant localization of both proteins in the mitochondria, something that we could 342 confirm by cell fractionation and isolation of mitochondria. Like TMEM70, TMEM186 was also identified to co-migrate with CI assembly intermediates following dynamic complexome profiling⁶. Little is known about 343 344 this protein; however, it was recently identified as an interaction partner of ECSIT³⁷, suggesting a role in CI 345 assembly. Additional studies are required to determine if this protein functions in CI assembly.

346	It is interesting and unusual that a single protein TMEM70 would be involved in the assembly of two different
347	OXPHOS complexes, CI and CV. A common denominator based on our results is that, in both cases, it appears
348	to recruit proteins to membrane intermediates during the assembly of the enzymes. Such a combination of
349	hydrophobic and hydrophilic interactions would be consistent with the topology of the protein that contains two
350	well conserved transmembrane helices together with a long (~100 amino acids) tail that protrudes into the
351	matrix. Mrx15, the yeast homolog of TMEM70 and the ortholog of TMEM223, appears to tether the
352	mitochondrial ribosome to the membrane during translation, using the hydrophilic C terminus to interact with the
353	large subunit of the mitochondrial ribosome while the N terminus forms a hairpin in the inner mitochondrial
354	membrane. We hypothesize that TMEM70 has a similar tethering role to in the assembly of complexes I and V.
355	

356 Materials and methods

357

358 Enzyme Measurements

Respiratory chain enzyme analysis in HAP1 were performed as described before⁴¹. Values are expressed relative
 to the mitochondrial reference enzyme citrate synthase⁴².

361

362 Cell culture

363 HAP1 cells were grown in Iscove's Modified Dulbecco's Medium (IMDM) in the presence of 10% fetal calf364 serum and penicillin/ streptomycin.

365 HEK293 cells were cultured in DMEM (Biowhitaker) supplemented with 10% fetal calf serum (FCS) (v/v) and 366 1% penicillin/streptomycin (GIBCO). Inducible cell lines were selected on 5 μ g/ml blasticidin (Invitrogen) and 367 200 μ g/ml hygromycin (Calbiochem), and for expression of the transgene, 1 μ g/ml doxycycline (Sigma Aldrich) 368 was added for 24 hr.

369

370 Knockout

371 TMEM70 knockout (HZGHC003615c010) was ordered at Horizon (Austria). A near-haploid human cell line

372 (HAP1) was edited using CRISPR/Cas (Guide RNA sequence: CGGCTGGAGTACGGGGCCTT) resulting in a

373 frameshift mutation of 32bp in exon 1^{26} . This results in a 100% knockout. In Table 1 an overview of the

knockout cell line is shown.

376 Blue-Native, SDS-PAGE Analysis and complex I In Gel Activity Assay

377 One-dimensional 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and 4%-12% 378 blue-native (BN)-PAGE was performed as described previously⁴³. Lanes were loaded with 40 (SDS analysis) or 379 80 (BN analysis) µg of solubilized mitochondrial protein. For the 1D and 2D BN SDS-PAGE followed by 380 immunoblotting, mitoplasts were solubilized with n-dodecyl- β -D-maltoside, whereas for complexome profiling 381 the solubilization was done with digitonin to preserve supercomplexes. After electrophoresis, gels were 382 processed further for in-gel complex I activity assay, in-gel fluorescence detection, immunoblotting, or two-383 dimensional 10% SDS-PAGE or blotting, proteins were transferred to a PROTAN nitrocellulose membrane 384 (Schleicher & Schuell).

385

386 Antibodies and ECL detection

387 Immunodetection was performed by the use of the following primary antibodies: CI-NDUFS3, CII-SDHA, CIII-

388 core 2, CIV-COX4, CV-ATPase-α/β (gift from the Molecular Bioenergetics Group, Medical School, Goethe-389

University Frankfurt⁴⁴), C3ORF60 (NDUFAF3) (Eurogentec) and V5 (Invitrogen). Goat-anti-rabbit and goat-

390 anti-mouse IRDye CW 680 or IRDye CW 800 were used as secondary antibodies, to detect the proteins using the 391 Odyssey system from LI-CORBiosciences. Secondary detection was performed using peroxidase-conjugated 392 anti-mouse or anti-rabbit IgGs (Life Technologies). Immunoreactive bands were visualized using the enhanced

393 chemiluminescence kit (Thermo Scientific) and detected using the Chemidoc XRS+system (Biorad).

394

395 Pulse labelling of mitochondrial translation products

396 In vitro labelling of mitochondrial translation products was performed as described previously³⁵. First, cells were 397 incubated for 30 minutes with methionine, cysteine and glutamine free DMEM (Gibco) supplemented with 398 glutamax (1Xconc), 10% dialyzed FBS and 1.1mg/l sodium pyruvate. Afterwards, emetine was added to a final 399 concentration of 100µg/ml, after 5 minutes 200µCi/ml³⁵S methionine label was added during 1 hour. Cells were 400 refreshed with 10% FBS DMEM media and harvested after 1h and after 5h of labelling and treated for SDS-401 PAGE or BN-PAGE.

402

403 Generation of inducible cell lines

404 TMEM70 was cloned into pDONR201 as described⁴⁵. The complete open reading frame (without stop codon) 405 was created by PCR according to the manufacturer's protocol and cloned into pDONR201 by the Gateway BP 406 Clonase II Enzyme Mix. The pDONR201-TMEM70 was recombined with the pDEST5-BirA*-FLAG-C-ter 407 using the LR Clonase II Enzyme Mix (Invitrogen). Flp-In T-Rex HEK293 cells were grown in DMEM 408 supplemented with 10% FBS and 1% pen/strep (100 U/ml). One day before transfection Pen/strep is removed. 409 When reached 60-80% confluence cells were transfected with each of the constructs with pOG44 using 410 Superfect. Cells were refreshed 3h after transfection. After 48h cells were selected by the addition of 411 hygromycin and Blasticidin (Invitrogen). Clones were selected and when reaching 60-80% confluency, protein 412 expression was induced by using 1 μ g/ml doxcycline (Sigma Aldrich) for 24h and checked by Western blot 413 analysis.

414

415 Biotin ligase proximity assay (BioID)

416 Doxycycline 1 µg/ml (Sigma Aldrich) was added to Flp-In T-Rex HEK293 cells to induce the expression of the 417 construct. After 24h the cells were washed with PBS 1X twice and placed in complete medium for 3h. 418 Afterwards, a final concentration of 50 μ M of biotin was added to the cells to start the biotinylation process ⁴⁶. 419 After 24h cells were washed, collected and lysed in lysis buffer (50 mM Tris-HCl pH7.4, 500 mM NaCl, 0.4% 420 SDS, 1 mM DTT and 1x Protease inhibitor) with 2% TX100 and then sonicated twice. Pre-chilled 50 mM Tris-421 HCl pH7.8 was added before the third sonication and then all samples were collected at 16.500g for 10 minutes 422 at 4 °C. Supernatant was added to the pre-equilibrated dynabeads and it was incubated overnight in the rotator. 423 Next day, beads were collected in the magnetic separation stand and the supernatant was removed. Beads were 424 washed 4 times with 4 different washing buffers (Wash buffer 1: 2% SDS. Wash buffer 2: 0.1% (w/v) 425 deoxycholic acid, 1 % TX100, 1 mM EDTA, 500 mM NaCl, 50 mM HEPES pH 7,4. Wash buffer 3: 0.5 % (w/v) 426 deoxycholic acid, 0.5 % (w/v) NP-40 (Igepal), 1 mM EDTA, 250 mM LiCl, 10 mM Tris-HCl pH7.8) for 8 427 minutes in the rotator. After the washing 50 µl 50mM ABC / 8M Urea was added to the beads and resuspended 428 gently by pipetting, then the sample was snap frozen in LN2 and stored at -80 degrees.

To prepare the beads first we added 1 μ l of reduction buffer (10mM DTT) for 30' at RT, then 1 μ l alkylation buffer (50 mM chloroacetamide in 50mM ABC) and incubated for 20' at room temperature (light protected). Afterwards 1ug of LysC was added and incubated for at least 3 hours at room temperature. Subsequently the sample was diluted in 50mM ABC and 1ul of trypsin was incorporated for digestion overnight at 37 degrees on a thermomixer on continuous agitation at 700 rpm. The supernatant containing the peptides was transferred to a new Eppendorf tube and TFA was added to a final concentration of 2%. All samples were incorporated into STAGE TIPS that were previously washed, once all sample has pass the filter 50 μ l of buffer A (0.1% formic

436 acid in HPLC water) was added and centrifuged. Then 40 µl of buffer B (80% ACN and 0.1% formic acid in 437 HPLC water) was added and the eluate was collected in 0.5 ml reaction vials. All samples were concentrated and 438 dried. Afterwards, 25 µl of buffer A was added and sonicated 2' in water bath before using the detergent removal 439 kit. Measurements were performed by nanoLC 1000 (Thermo Scientific) chromatography coupled online to Q 440 Exactive hybrid quadrupole-Orbitrap mass spectrometer (Thermo Scientific). Chromatography was performed 441 with an Acclaim PepMap 0.3 x 5 mm 5µm 100Å trap column (Thermo scientific) in combination with a 15cm 442 long x 100µm ID fused silica electrospray emitter (New Objective, PicoTip Emitter, FS360-100-8-N-5-C15) packed in-house with ReproSil-Pur C18-AQ 3 µm 140Å resin (Dr. Maisch)⁴⁷. Tryptic peptides were loaded and 443 444 analysed by liquid chromatography tandem mass spectrometry (LC-MS/MS) as previously explained. Raw data 445 files provided by MaxQuant (version 1.5.0.25; www.maxquant.org) were further analysed taking the log10 value 446 of their iBAQ and comparing experiment values (with doxycycline and biotin) with control ones (without 447 doxycycline and with biotin and vice versa). Proteins with a significant increase in their iBAQ values (Wilcoxon 448 rank-sum test, FDR 0.05) with respect to their own control runs, were considered as potential interacting 449 candidates.

450

451 Complexome profiling

452 Complexome profiling was performed essentially as described previously^{6,31}, except for the chymotrypsin
453 complexomics data, where chymotrypsin was used instead of trypsin and, from the 60 slices, 20 (slices 30 to 50)
454 where further processed.

455 BN- PAGE gel lanes of mitochondrial enriched fraction of TMEM70 KO and controls were incubated in fixing 456 solution (50% methanol, 10% acetic acid, 10 mM ammonium acetate [pH 3]) for 60 minutes, washed twice for 457 30 minutes with ultrapure water, cut in 60 even slices and transferred into a 96-well plate (Millipore 458 MABVN1250) containing 150µl of destaining solution (50% methanol, 50 mM ammonium hydrogen carbonate, 459 AHC). Then all the slices were washed three times for 30 minutes under gentle agitation at room temperature 460 with the same solution (AHC) to remove the excess of dye. Afterwards by centrifugation (600 x g, 3min, RT) the 461 excess of solution was removed and in-gel tryptic digest of the gel slices was performed as described before 6,31 . 462 Gel slices were incubated with 120 µl of 5mM dithiothreitol for 60 minutes which afterwards was removed by 463 centrifugation, and then 120µl of 15mM chloroacetamide were added to each well and also removed after 45 464 minutes of incubation. After drying the gel pieces for 45 minutes at room temperature the gel slices were 465 rehydratated in 20µl of trypsin solution or chymotrypsin (5 ng/µL in 50 mM AHC and 1 mM CaCl₂) for 30 min 466 at 4°C. Alternatively, chymotrypsin was used in an independent replicate. After addition of 150 μ l of 50mM 467 AHC solution the gel pieces were incubated overnight at 37°C. The supernatant, containing the peptides was 468 collected by centrifugation (600 x g, 3min, RT) into a new 96-well plate. The column was washed subsequently 469 with 80% acetonitrile and re-equilibrated with 5% acetonitrile for 5 minutes once by adding elution solution 470 (30% acetonitrile, 3% formic acid) for 20 minutes and transferred to a sterile (unfiltered) 96-well plate. The 471 supernatant was dried using a SpeedVac concentrator, remaining peptides were additionally extracted in 20 μ l of 472 5% acetonitrile/0.5% formic acid.

473 Tryptic peptides were analysed by liquid chromatography tandem mass spectrometry (LC-MS/MS) in a Q-474 Exactive Orbitrap Mass Spectrometry System equipped with a nano-flow high-performance liquid 475 chromatography system EASY-nLC 1000 at the front end and the Thermo Scientific Xcalibur 2.2 SP1 Software 476 Package. Peptide separation was performed on a PicoTip emitter column filled with 3 mm C18 beads (Dr Maisch 477 GmbH, Germany) using 30 min linear gradients of 5 to 35% acetonitrile with 0.1% formic acid. The mass 478 spectrometer was operated in a Top 20 dependent, positive ion mode switching automatically between MS and 479 MS/MS. Full scan MS mode (400 to 1400 m/z) was operated at a resolution of 70 000 with automatic gain 480 control (AGC) target of 1×10^6 ions and a maximum ion transfer of 20 ms. Selected ions for MS/MS were 481 analysed using the following parameters: resolution 17500; AGC target of 1×10^5 ; maximum ion transfer of 50 482 ms; 4.0 m/z isolation window; for CID a normalized collision energy 30% was used; and dynamic exclusion of 483 30.0 s. A lock mass ion (m/z=445.12) was used for internal calibration⁴⁸.

All raw files were analyzed by MaxQuant software (version 1.5.0.25; www.maxquant.org). Spectra were searched against the *H. sapiens* NCBI RefSeq database with additional sequences of known contaminants and reverse decoy with a strict FDR of 0.01. Database searches were done with 20 ppm and 0.5 Da mass tolerances for precursor ions and fragmented ions, respectively. Trypsin was selected as the protease with two missed cleavages allowed. Dynamic modifications included N-terminal acetylation and oxidation of methionine. Cysteine carbamidomethylation was set as fixed modification. For protein quantification, unique plus razor peptides were considered.

491

492 Normalization and alignment of complexome profiles

After analysis in Maxquant, the complexome profiles were normalised to correct for varying intensities. Profiles
were corrected so that the sum of intensities of proteins annotated as mitochondrial in MitoCarta 2.0³² are equal
between samples. After normalisation, the profiles were aligned in silico with COPAL³³ to correct for technical

496 variation caused by shifts in protein migration across the gel. Gaps introduced in the alignment were filled by

- 497 linear interpolation based on its adjacent values.
- 498

499 Quantification of fully assembled complexes and intermediates

Normalized iBAQ values were taken from the profiles after aligning them with COPAL³³ (Supplementary Table 500 501 S4). In the case of fully assembled complexes, subunits belonging to CI (NDUFB3, NDUFC2, NDUFB1, NDUFA5, NDUFA6, NDUFS4, NDUFB10, NDUFB2, NDUFB5, NDUFS1, NDUFS8, NDUFAB1, NDUFA2, 502 503 NDUFS2, NDUFS3, NDUFB6, NDUFB4, NDUFB8, NDUFA7, NDUFB7, NDUFV1, NDUFA8, NDUFV3, 504 NDUFA3, NDUFC1, NDUFS5, NDUFA1, NDUFS6, NDUFV2, NDUFS7, NDUFA11, NDUFA9, NDUFB11, 505 NDUFA13, NDUFA12, NDUFB9, ND1, ND2, ND3, ND4, ND5, ND6), CII (SDHA, SDHB, SDHC, SDHD), 506 CIII (CYTB, UQCRO, UQCR11, UQCRH, UQCRB, UQCRC2, UQCRC1, UQCRFS1, CYC1, UQCR10), CIV 507 (COX6C, COX3, COX2, COX5B, COX4I1, COX6B1, COX7C, COX5A, COX7B, COX7A2, COX8A, COX1), 508 CV (ATP8, ATP6, ATP5G1, ATP5H, ATP5L, ATP5J, ATP5D, ATP5O, ATP5J2, C14orf2, ATP5I, ATP5F1, 509 ATP5C1, USMG5, ATPIF1, ATP5A1, ATP5B) were considered. With respect to CI intermediates, subunits 510 belonging to all the previously described intermediates of CI assembly⁶, namely, Q/P_P-a (NDUFA5, NDUFS2, 511 NDUFS3, NDUFS7, NDUFS8, NDUFAF4, NDUFAF3, TIMMDC1, ND1, NDUFA3, NDUFA8, NDUFA13), 512 PP-b (NDUFA5, NDUFS2, NDUFS3, NDUFS7, NDUFS8, NDUFAF4, NDUFAF3, TIMMDC1, ND1, 513 NDUFA3, NDUFA8, NDUFA13), Pp-a (NDUFB6, NDUFB5, NDUFB10, NDUFB11, NDUFB1, ND4, 514 FOXRED1, ATP5SL), P_D-b (NDUFAB1, NDUFB7, NDUFB3, NDUFB8, ND5, NDUFB9, NDUFB2), Q/P_P 515 (NDUFA5, NDUFS2, NDUFS3, NDUFS7, NDUFS8, NDUFAF4, NDUFAF3, TIMMDC1, ND1, NDUFA3, 516 NDUFA8, NDUFA13, NDUFAF2, NDUFA9, NDUFA1), PP-b/PD-a (NDUFS5, NDUFB6, NDUFB5, 517 NDUFB10, NDUFB11, NDUFB1, ND4, FOXRED1, ATP5SL, NDUFB4) and Q/P (NDUFA5, NDUFS2, 518 NDUFS3, NDUFS7, NDUFS8, NDUFAF4, NDUFAF3, TIMMDC1, ND1, NDUFA3, NDUFA8, NDUFA13, 519 NDUFAF2, NDUFA9, NDUFA1, NDUFB6, NDUFB5, NDUFB10, NDUFB11, NDUFB1, ND4, FOXRED1, 520 ATP5SL, NDUFAB1, NDUFB7, NDUFB3, NDUFB8, ND5, NDUFB9, NDUFB2, NDUFS5) were considered. 521 Regarding CV intermediates, subunits belonging to intermediates described in Supplementary Fig. S7 were 522 considered. Those are F₁ and F₁-c (ATP5A1, ATP5B, ATP5C1, ATP5D), F₀ early (ATP5F1, ATP5I, ATP5J2, 523 ATP5L) and F₀ late (ATP6, ATP8, C14orf2, USMG5, ATP5H, ATP5J, ATP5O, ATP5F1, ATP5J2, 524 ATP5L). For each subunit, we considered and averaged all three values from the peak matching the mass of the 525 complex and its flanking values. Then, we averaged them per condition, finally obtaining one value per subunit.

526 We compared these values between control and KO conditions in a paired manner per subunit using a non-527 parametric test (Wilcoxon rank-sum test). For intermediates Q/P_P and P_P -b/ P_D -a, given their partial overlap due 528 to their similar mass, we selected subunits that are not shared between them in order to be able to measure their

529 behaviour independently.

530

531 Microscopy

532 For confocal imaging, HEK293 cells expressing inducible NDUFAF3-GFP were cultured in a Wilco dish 533 (Intracel, Royston, UK), washed with phosphate-buffered saline (PBS), and incubated with 1 µM Mitotracker 534 Red (Invitrogen) for 15 min and with 10 µM Hoechst 3342 (Invitrogen) for 30 min, both at 37°C. Before 535 imaging, the culture medium was replaced by a colorless HEPES-Tris (HT) solution (132 mM NaCl, 4.2 mM 536 KCl, 1 mM CaCl₂, 1 mM MgCl₂, 5.5 mM D-glucose, and 10 mM HEPES, pH 7.4) and fluorescence images were 537 taken on a ZEISS LSM510 Meta confocal microscope (Carl Zeiss). Images were acquired at a rate of 10 Hz with 538 the use of a ×63 oil-immersion objective (N.A. 1.4; Carl Zeiss). Zoom factor 2 and pinhole settings were selected 539 for the attainment of an optical section thickness of $< 1 \mu m$. Measurements were performed at 20°C in the dark. 540 Confocal images of GFP and MitoTracker Red fluorescence were simultaneously collected with the use of an 541 argon laser (laser power 1%) with a 488 nm dichroic mirror and a 500-530 nm band-pass barrier filter in 542 combination with a helium-neon (HeNe) 1 laser (laser power 43%) with a 543 nm dichroic mirror and a 560 nm 543 long-pass filter. With the multitrack setting used, Hoechst fluorescence was subsequently imaged with the use of 544 a 405 nm diode laser (laser power 10%) and a 420-480 band-pass barrier filter.

545

546 Phylogenetic reconstruction of TMEM70 family

547 Protein sequences were manually selected from search results obtained with the jackhmmer tool from HMMER⁴⁹ 548 version 3.1b2. We initiated the search with TMEM70, TMEM186 or TMEM223 and searched against the 549 UniProtKB database, iterating until getting back all three human paralogs (6, 6 and 5 iterations, respectively). In 550 none of the cases did we retrieve other human proteins than TMEM70, TMEM186 or TMEM223. In order to 551 obtain as many sequences from different phyla as possible, we repeated the strategy using the PSI-BLAST 552 algorithm from BLAST⁵⁰ searching against the refseq protein database. After selecting the sequences, we aligned them with MAFFT⁵¹ v7.306 using the L-INS-I algorithm with the "Leave gappy regions" and "Mafft-homologs: 553 554 ON" parameters set. The obtained alignment was manually refined by deleting large gaps caused by apparent 555 insertions in only few aligned sequences. Finally, in order to unravel the orthologous groups, we reconstructed

the phylogenetic tree with PhyML⁵² version 20120412 and its automatic model selection SMS⁵³ using Bayesian
Information Criterion. The resulting tree was plotted with iTOL⁵⁴ version 3.5.4.

558

559 Co-evolution screen for TMEM70

560 We employed an in-house orthology database containing 52 diverse eukaryotic species to derive phylogenetic profiles for all human proteins as previously described by van Dam et al.⁵⁵. Shortly, we collected high quality 561 562 proteomes from genome databases and calculated orthologous groups using OrthoMCL (v2.0)⁵⁶. Phylogenetic 563 profiles were computed for each human protein based on the orthologous group they were mapped to. Proteins 564 mapped to the same orthologous group obtained identical profiles. Each profile is a vector of 0's and 1's 565 reflecting the presence of an orthologous group member in a particular species. These profiles, and a species tree for all 52 species as created before⁵⁵ were used as input for the Perl script to derive the differential Dollo 566 567 parsimony score as previously used by Kensche et al.⁵⁷.

568

569 Acknowledgements

Funded by the European Commission (FP7-PEOPLE-ITN. GA. 317433). U.B. and S.G.-C. were supported by a
grant from the Excellence Initiative of the German Federal and State Governments (EXC 115). M.A.H., U.B.
and J.S. were supported by a TOP grant from the Netherlands Organization for Health Research and
Development (no. 91217009). Part of this work was financed by a grant obtained from the United Mitochondrial
Disease Foundation (UMDF).

575

576 Author contributions

577 L.S.-C. and L.G.J.N. conceived the study and designed the research. L.S.-C., M.B. and F.B. performed the

- 578 experiments and generated the data with help from S.G.-C. and R.R. J.S. aligned the complexomics data. D.M.E.
- 579 analysed the data. D.M.E. and M.A.H. performed the phylogenetic reconstruction and T.J.P.D. and M.A.H.,
- performed the coevolution analysis. L.S.-C., D.M.E., M.A.H. and L.G.J.N. wrote the manuscript and S.G.-C.,
- 581 J.S., T.J.P.D. R.R. and U.B. discussed the results and helped with the manuscript.

582

583 Competing interests

584 The authors declare no competing interests.

586	Referen	ices
587	1	Alston, C. L., Rocha, M. C., Lax, N. Z., Turnbull, D. M. & Taylor, R. W. The genetics and
588		pathology of mitochondrial disease. J Pathol 241 , 236-250, doi:10.1002/path.4809 (2017).
589	2	Mitchell, P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-
590		osmotic type of mechanism. <i>Nature</i> 191 , 144-148 (1961).
591	3	Zhu, J., Vinothkumar, K. R. & Hirst, J. Structure of mammalian respiratory complex I. Nature
592		536 , 354-358, doi:10.1038/nature19095 (2016).
593	4	Brandt, U. Energy converting NADH:quinone oxidoreductase (complex I). Annu Rev Biochem
594		75 , 69-92, doi:10.1146/annurev.biochem.75.103004.142539 (2006).
595	5	Sanchez-Caballero, L., Guerrero-Castillo, S. & Nijtmans, L. Unraveling the complexity of
596		mitochondrial complex I assembly: A dynamic process. <i>Biochim Biophys Acta</i> 1857, 980-990,
597		doi:10.1016/j.bbabio.2016.03.031 (2016).
598	6	Guerrero-Castillo, S. et al. The Assembly Pathway of Mitochondrial Respiratory Chain
599		Complex I. <i>Cell Metab</i> 25 , 128-139, doi:10.1016/j.cmet.2016.09.002 (2017).
600	7	Pedersen, P. L. & Amzel, L. M. ATP synthases. Structure, reaction center, mechanism, and
601		regulation of one of nature's most unique machines. <i>J Biol Chem</i> 268 , 9937-9940 (1993).
602	8	Walker, J. E. The ATP synthase: the understood, the uncertain and the unknown. Biochem
603		<i>Soc Trans</i> 41 , 1-16, doi:10.1042/BST20110773 (2013).
604	9	Ghezzi, D. & Zeviani, M. Human diseases associated with defects in assembly of OXPHOS
605		complexes. <i>Essays Biochem</i> 62 , 271-286, doi:10.1042/EBC20170099 (2018).
606	10	Elurbe, D. M. & Huynen, M. A. The origin of the supernumerary subunits and assembly
607		factors of complex I: A treasure trove of pathway evolution. Biochim Biophys Acta 1857, 971-
608		979, doi:10.1016/j.bbabio.2016.03.027 (2016).
609	11	Huynen, M. A., de Hollander, M. & Szklarczyk, R. Mitochondrial proteome evolution and
610		genetic disease. <i>Biochim Biophys Acta</i> 1792 , 1122-1129, doi:10.1016/j.bbadis.2009.03.005
611		(2009).

612	12	Bych, K. <i>et al.</i>	The iron-sulphur proteir	Ind1 is required for	effective complex	l assembly.
-----	----	------------------------	--------------------------	----------------------	-------------------	-------------

- 613 *EMBO J* **27**, 1736-1746, doi:10.1038/emboj.2008.98 (2008).
- 614 13 Pickova, A., Paul, J., Petruzzella, V. & Houstek, J. Differential expression of ATPAF1 and
- 615 ATPAF2 genes encoding F(1)-ATPase assembly proteins in mouse tissues. FEBS Lett **551**, 42-
- 616 46 (2003).
- 617 14 Cizkova, A. *et al.* TMEM70 mutations cause isolated ATP synthase deficiency and neonatal
- 618 mitochondrial encephalocardiomyopathy. *Nat Genet* **40**, 1288-1290, doi:10.1038/ng.246
- 619 (2008).
- 620 15 Calvo, S. et al. Systematic identification of human mitochondrial disease genes through
- 621 integrative genomics. *Nat Genet* **38**, 576-582, doi:10.1038/ng1776 (2006).
- 622 16 Hejzlarova, K. et al. Expression and processing of the TMEM70 protein. Biochim Biophys Acta
- 623 **1807**, 144-149, doi:10.1016/j.bbabio.2010.10.005 (2011).
- 624 17 Kratochvilova, H. *et al.* Mitochondrial membrane assembly of TMEM70 protein.
- 625 *Mitochondrion* **15**, 1-9, doi:10.1016/j.mito.2014.02.010 (2014).
- 626 18 Wortmann, S. B. *et al.* Biochemical and genetic analysis of 3-methylglutaconic aciduria type
- 627 IV: a diagnostic strategy. *Brain* **132**, 136-146, doi:10.1093/brain/awn296 (2009).
- 628 19 Catteruccia, M. et al. Persistent pulmonary arterial hypertension in the newborn (PPHN): a
- 629 frequent manifestation of TMEM70 defective patients. *Mol Genet Metab* 111, 353-359,
- 630 doi:10.1016/j.ymgme.2014.01.001 (2014).
- 631 20 Diodato, D. et al. Common and Novel TMEM70 Mutations in a Cohort of Italian Patients with
- 632 Mitochondrial Encephalocardiomyopathy. *JIMD Rep* **15**, 71-78, doi:10.1007/8904_2014_300
- 633 (2015).
- Honzik, T. *et al.* Mitochondrial encephalocardio-myopathy with early neonatal onset due to
 TMEM70 mutation. *Arch Dis Child* **95**, 296-301, doi:10.1136/adc.2009.168096 (2010).

- 636 22 Jonckheere, A. I. *et al.* Restoration of complex V deficiency caused by a novel deletion in the
- 637 human TMEM70 gene normalizes mitochondrial morphology. *Mitochondrion* **11**, 954-963,
- 638 doi:10.1016/j.mito.2011.08.012 (2011).
- 639 23 Magner, M. et al. TMEM70 deficiency: long-term outcome of 48 patients. J Inherit Metab Dis
- 640 **38**, 417-426, doi:10.1007/s10545-014-9774-8 (2015).
- 641 24 Shchelochkov, O. A. *et al.* Milder clinical course of Type IV 3-methylglutaconic aciduria due to
- a novel mutation in TMEM70. *Mol Genet Metab* **101**, 282-285,
- 643 doi:10.1016/j.ymgme.2010.07.012 (2010).
- 644 25 Spiegel, R. *et al.* TMEM70 mutations are a common cause of nuclear encoded ATP synthase
- assembly defect: further delineation of a new syndrome. J Med Genet 48, 177-182,
- 646 doi:10.1136/jmg.2010.084608 (2011).
- 64726Torraco, A. *et al.* TMEM70: a mutational hot spot in nuclear ATP synthase deficiency with a648pivotal role in complex V biogenesis. *Neurogenetics* 13, 375-386, doi:10.1007/s10048-012-
- 649 0343-8 (2012).
- Houstek, J., Kmoch, S. & Zeman, J. TMEM70 protein a novel ancillary factor of mammalian
 ATP synthase. *Biochim Biophys Acta* 1787, 529-532, doi:10.1016/j.bbabio.2008.11.013
- 652 (2009).
- Braczynski, A. K. *et al.* ATP synthase deficiency due to TMEM70 mutation leads to
- ultrastructural mitochondrial degeneration and is amenable to treatment. *BioMed research international* 2015, 462592, doi:10.1155/2015/462592 (2015).
- Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large
 gene lists using DAVID bioinformatics resources. *Nat Protoc* 4, 44-57,
- 658 doi:10.1038/nprot.2008.211 (2009).
- 659 30 Wessels, H. J. *et al.* LC-MS/MS as an alternative for SDS-PAGE in blue native analysis of

660 protein complexes. *Proteomics* **9**, 4221-4228 (2009).

- 661 31 Heide, H. et al. Complexome profiling identifies TMEM126B as a component of the
- 662 mitochondrial complex I assembly complex. Cell Metab 16, 538-549,
- 663 doi:10.1016/j.cmet.2012.08.009 (2012).
- 664 32 Calvo, S. E., Clauser, K. R. & Mootha, V. K. MitoCarta2.0: an updated inventory of mammalian
- 665 mitochondrial proteins. Nucleic Acids Res 44, D1251-1257, doi:10.1093/nar/gkv1003 (2016).
- 666 33 Van Strien, J. et al. COmplexome Profiling ALignment (COPAL) reveals remodeling of
- 667 mitochondrial protein complexes in Barth syndrome. *Bioinformatics*,
- 668 doi:10.1093/bioinformatics/btz025 (2019).
- 669 34 Nijtmans, L. G., Klement, P., Houstek, J. & van den Bogert, C. Assembly of mitochondrial ATP
- 670 synthase in cultured human cells: implications for mitochondrial diseases. *Biochim Biophys*
- 671 Acta **1272**, 190-198 (1995).
- 672 35 Boulet, L., Karpati, G. & Shoubridge, E. A. Distribution and threshold expression of the
- 673 tRNA(Lys) mutation in skeletal muscle of patients with myoclonic epilepsy and ragged-red
 674 fibers (MERRF). *Am J Hum Genet* **51**, 1187-1200 (1992).
- 675 36 Moller-Hergt, B. V., Carlstrom, A., Stephan, K., Imhof, A. & Ott, M. The ribosome receptors
- 676 Mrx15 and Mba1 jointly organize cotranslational insertion and protein biogenesis in
- 677 mitochondria. *Mol Biol Cell* **29**, 2386-2396, doi:10.1091/mbc.E18-04-0227 (2018).
- 678 37 Guarani, V. et al. TIMMDC1/C3orf1 functions as a membrane-embedded mitochondrial
- 679 complex I assembly factor through association with the MCIA complex. *Molecular and*

680 *cellular biology* **34**, 847-861, doi:10.1128/MCB.01551-13 (2014).

- He, J. *et al.* Assembly of the membrane domain of ATP synthase in human mitochondria. *Proc Natl Acad Sci U S A* **115**, 2988-2993, doi:10.1073/pnas.1722086115 (2018).
- 683 39 Cameron, J. M. et al. Complex V TMEM70 deficiency results in mitochondrial nucleoid
- 684 disorganization. *Mitochondrion* **11**, 191-199, doi:10.1016/j.mito.2010.09.008 (2011).
- 685 40 Song, J., Pfanner, N. & Becker, T. Assembling the mitochondrial ATP synthase. *Proc Natl Acad*
- 686 *Sci U S A* **115**, 2850-2852, doi:10.1073/pnas.1801697115 (2018).

687	41	Janssen, A. J. et al. Spectrophotometric assay for complex I of the respiratory chain in tissue
688		samples and cultured fibroblasts. Clin Chem 53, 729-734, doi:10.1373/clinchem.2006.078873
689		(2007).
690	42	Srere, P. A. The citrate cleavage enzyme. I. Distribution and purification. J Biol Chem 234,
691		2544-2547 (1959).
692	43	Calvaruso, M. A., Smeitink, J. & Nijtmans, L. Electrophoresis techniques to investigate defects
693		in oxidative phosphorylation. <i>Methods</i> 46, 281-287, doi:10.1016/j.ymeth.2008.09.023
694		(2008).
695	44	Wittig, I., Velours, J., Stuart, R. & Schagger, H. Characterization of domain interfaces in
696		monomeric and dimeric ATP synthase. <i>Mol Cell Proteomics</i> 7, 995-1004,
697		doi:10.1074/mcp.M700465-MCP200 (2008).
698	45	Vogel, R. O. et al. Cytosolic signaling protein Ecsit also localizes to mitochondria where it
699		interacts with chaperone NDUFAF1 and functions in complex I assembly. Genes Dev 21, 615-
700		624, doi:10.1101/gad.408407 (2007).
701	46	Firat-Karalar, E. N. & Stearns, T. Probing mammalian centrosome structure using BioID
702		proximity-dependent biotinylation. Methods Cell Biol 129, 153-170,
703		doi:10.1016/bs.mcb.2015.03.016 (2015).
704	47	Ishihama, Y., Rappsilber, J., Andersen, J. S. & Mann, M. Microcolumns with self-assembled
705		particle frits for proteomics. <i>J Chromatogr A</i> 979, 233-239 (2002).
706	48	Olsen, J. V. et al. Parts per million mass accuracy on an Orbitrap mass spectrometer via lock
707		mass injection into a C-trap. <i>Mol Cell Proteomics</i> 4 , 2010-2021, doi:10.1074/mcp.T500030-
708		MCP200 (2005).
709	49	Finn, R. D. <i>et al.</i> HMMER web server: 2015 update. <i>Nucleic Acids Res</i> 43 , W30-38,
710		doi:10.1093/nar/gkv397 (2015).
711	50	Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database
712		search programs. Nucleic Acids Res 25, 3389-3402 (1997).

- 713 51 Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7:
- 714 improvements in performance and usability. *Mol Biol Evol* **30**, 772-780,
- 715 doi:10.1093/molbev/mst010 (2013).
- 52 Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood
- 717 phylogenies: assessing the performance of PhyML 3.0. *Syst Biol* **59**, 307-321,
- 718 doi:10.1093/sysbio/syq010 (2010).
- 719 53 Lefort, V., Longueville, J. E. & Gascuel, O. SMS: Smart Model Selection in PhyML. *Mol Biol Evol*
- 720 **34**, 2422-2424, doi:10.1093/molbev/msx149 (2017).
- 721 54 Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and
- annotation of phylogenetic and other trees. *Nucleic Acids Res* 44, W242-245,
- 723 doi:10.1093/nar/gkw290 (2016).
- 724 55 van Dam, T. J. *et al.* Evolution of modular intraflagellar transport from a coatomer-like
- progenitor. *Proc. Natl. Acad. Sci. U. S. A.* **110**, 6943-6948, doi:10.1073/pnas.1221011110
 (2013).
- 727 56 Li, L., Stoeckert, C. J., Jr. & Roos, D. S. OrthoMCL: identification of ortholog groups for
- 728 eukaryotic genomes. *Genome Res.* **13**, 2178-2189, doi:10.1101/gr.1224503 (2003).
- 729 57 Kensche, P. R., van Noort, V., Dutilh, B. E. & Huynen, M. A. Practical and theoretical advances
- in predicting the function of a protein by its phylogenetic distribution. J R Soc Interface 5,
- 731 151-170, doi:10.1098/rsif.2007.1047 (2008).
- 732 58 Nikolovski, N. et al. Putative glycosyltransferases and other plant Golgi apparatus proteins
- 733 are revealed by LOPIT proteomics. *Plant Physiol* 160, 1037-1051, doi:10.1104/pp.112.204263
 734 (2012).
- (____)
- Matsuyama, A. *et al.* ORFeome cloning and global analysis of protein localization in the
 fission yeast Schizosaccharomyces pombe. *Nat Biotechnol* 24, 841-847, doi:10.1038/nbt1222
- 737 (2006).

738