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Abstract 

Resting-state functional brain networks demonstrate dynamic 

changes at the scale of seconds. However, their genetic mechanisms and 

profound cognitive relevance remain less explored. We identified 459 

Bonferroni-corrected genes, by associating temporal variability of 

regional functional connectivity patterns with Allen Brain gene 

expression profiles across the whole brain. These genes are partially 

verified in developing human brain gene expression in the BrainSpan 

Atlas, and are found to be involved in the enrichment of short- and 

long-term plasticity processes. The former process depends on synaptic 

plasticity, involving ion transmembrane transport, action potential 

propagation, and modulation. The latter process depends on structural 

plasticity, including axonal genesis, development, and guidance. Results 

from a longitudinal cognitive training study further revealed that baseline 

variability of hippocampal network predicted cognitive ability changes 

after three months of training. Our genetic association results suggest that 

the short-term plasticity processes may account for the rapid changes of 

regional functional connectivity, while the underlying long-term plasticity 

processes explain why temporal variability can predict long-term learning 

outcomes. To our knowledge, this is the first demonstration that 

measuring the dynamic brain network can lead to a non-invasive 

quantification of neuroplasticity.   
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Introduction 

Over the last decade, researchers have tried to characterize and 

understand the dynamic changes of functional brain networks in both 

resting and task fMRI to shed new light on the dynamics of 

spatiotemporal organization of spontaneous or evoked brain activity 1, 2, 3, 

4, 5, 6, 7. The dynamic changes of brain networks are related to cognition 8, 9, 

10, 11, 12, 13, 14, 15 and consciousness 16 are altered in various psychiatric 

disorders 17, 18, 19, 20.  

Whilst a considerable amount of work has been devoted to 

characterizing dynamic functional connectivity (FC) or network changes 

in spontaneous brain activity and connectivity, little attention has been 

paid to the underlying genetic mechanisms 21.The most recent efforts to 

integrate transcriptomic data from the Allen Human Brain Atlas into 

fMRI studies focused on understanding the molecular basis of static 

functional brain organization or structure 22. For example, gene 

expression profiles associated with regional BOLD or 

electrophysiological activity 23, 24, functionally connected regions 25, hubs 

26, networks 27, 28, cortical thickness and myelination 29 , and fiber 

connectivity 30 were all characterized, revealing specific genetic 

signatures over different levels of functional organization of the brain. In 

addition, the behavioral significance of the spontaneous fluctuation of the 

brain network remains unresolved. For instance, it is not clear how 
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baseline level of dynamic changes of functional brain networks may 

confer adaptability and plasticity for future learning. 

In this work we aimed to understand both the biological basis and 

behavioral implications of dynamic changes of the brain network in 

resting-state fMRI. First, we explored the molecular basis of dynamic 

changes of functional brain networks by associating the topography of 

temporal variability, a recently proposed dynamic brain network metric 31, 

with whole-brain transcriptomic profiles provided by the Allen Brain 

Atlas data. We identified more than 400 genes whose expression in the 

brain correlated significantly with topography of temporal variability, and 

these genes are found to be enriched in biological processes relevant to 

short-term and long-term plasticity. 

We further investigated the cognitive implications of spontaneous, 

dynamic brain changes in predicting future learning outcomes, using 

longitudinal cognitive training data from an aged cohort. We found that 

the dynamic network changes of hippocampus at baseline can predict 

changes in a visuospatial/constructional behavioral index after 3 months 

of cognitive training, suggesting that the dynamic metric probably reflects 

long-term plasticity or learning ability. At the molecular level, the 

biological pathways identified from genes, that are highly correlated with 

dynamic brain changes, explain why spontaneous brain network show 

temporal variability in resting-state and how these changes can predict 
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long-term learning outcomes. Overall, we explored dynamic brain 

network changes from genetic, neuroimaging and cognitive perspectives, 

and our results suggest that dynamic brain changes in resting-state can 

measure both short- and long-term neuroplasticity. 

      

Results 

Topography of dynamic functional connectivity changes 

We used a metric called temporal variability to quantify the dynamic 

changes in functional connectivity associated with a given brain region 31. 

Greater temporal variability of a region indicates that its functional 

connectivity with other areas is changing frequently 31. The topography of 

temporal variability for the whole brain was obtained using HCP data and 

HCP_MMP1.0 multi-modal parcellation.32 HCP_MMP1.0 parcellation 

provides an invaluable neuroanatomical framework for 360 areas in the 

group average and in individual subjects; therefore, it is more refined and 

reliable.  

At the group level, the orbitofrontal complex (OFC) and posterior 

OFC (pOFC), piriform olfactory cortex, insular cortex, cingulate 

(Subgenual and anterior cingulate cortex/MPFC), the inferior medial 

temporal region (including the hippocampus/parahippocampus, 

presubiculum (PreS), entorhinal cortex (EC), perientorhinal and 

ectorhinal complex (PeEc), as well as temporal pole) had the highest 
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temporal variability (see Fig. 1 and Supplemental Table 1 for details, and 

Supplemental Table 7 for the names of the regions and abbreviations). In 

contrast, the early visual cortex (V2, V3 and V5 V6, lateral occipital 

cortex), premotor and sensory motor cortex, as well as inferior and 

superior parietal cortex, including intra-parietal sulcus, had lower 

temporal variability. 

Importantly, we found that the medial prefrontal cortex (PFC) 

demonstrates higher variability than the dorsal PFC. Ventral and medial 

PFC have reciprocal projections with olfactory circuitry, insular cortex 

and limbic brain areas, all having high temporal variability, while the 

lateral PFC interconnects with visual, auditory and somatosensory 

association cortices with low temporal variability. The medial or ventral 

PFC represents the internal world and is active in the resting-state, thus 

potentially demonstrating high variability. The lateral PFC, in contrast, 

represents the external world. Although the lateral PFC has less 

variability compared to the medial PFC in resting-state, we hypothesize 

that it will show higher variability in task-state owing to its flexible hub 

role 7. 

High variability in association cortex and limbic systems and low 

variability in unimodal sensory motor and visual areas were replicated in 

different scans in HCP data (Figure 1B), and also in UK Biobank datasets 

(Supplementary Table 2). The temporal variability demonstrates a high 
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correlation between HCP data and UK Biobank data (>0.9, see 

Supplemental Table 2), across all brain regions (using AAL2 template). 

These results indicate the reliability of temporal variability as a measure 

of dynamic FC changes.  

 

Genes significantly correlated with dynamic functional connectivity 

changes of the brain 

Temporal variability quantifies the dynamic changes of the 

functional connectivity profile associated with a given brain region, 

allowing for convenient association with whole-brain gene expression 

data. We correlated whole-brain topography of temporal variability with 

whole-brain transcriptomic profiles for about 20738 genes (Fig. 2) and 

found 324 genes, the expression of which in the brain showed significant 

negative correlation, while 135 genes showed positive correlation 

(Bonferroni correction; see Fig. 3A and Supplemental Table 3). Gene 

Ontology (GO) analysis showed that negatively related genes are 

functionally enriched in 48 biological processes (Bonferroni correction) 

related to synaptic plasticity. These genes are mainly involved in cell 

signaling, such as ion transport (15 terms, including various cation, e.g., 

potassium and sodium, and anion transport), action potential and its 

propagation (5 terms), peptide and hormone secretion, and transport and 

regulation (12 terms) (see Fig. 3A and Supplemental Table 4). The most 
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significant term was multicellular organismal signaling (p=1.82e-8). 

Meanwhile, the biological processes in which the positively related genes 

are enriched processes that are probably more related to structural 

plasticity including axonal development, guidance, axonal- and 

neurogenesis, and neuron differentiation (p<0.001, uncorrected) (see Fig. 

3A and Supplemental Table 5), with the most significant biological 

processes being cGMP-mediated signaling (p=5.8E-5) which plays a role 

in regulating synaptic plasticity 33. 

We found that a notable number of genes, the expression of which is 

correlated with dynamic network changes and which were implicated in 

neuroplasticity and learning (see list in Fig. 3A). For example, for 

negatively related genes, the most significant gene was PLXDC1, which 

encodes PLXDC1 transmembrane proteins that act as cell-surface 

receptors for Pigment Epithelium Derived Factor (PEDF), a neurotrophic 

factor 34. ITPR1, which binds with DISC1 and regulates its dendritic 

transport 34, SNAP25, is a key component of the synaptic-vesicle fusion 

machinery 35, and ARHGAP9, which controls synapse development, all 

play a role in synaptic plasticity. GRIN2A and GABRA1, which are 

NMDA and GABA receptors, respectively, are key mediators of plasticity, 

and Caspr1 regulates the content of AMPA receptors at synapses 36. Other 

genes, such as SCN1A, which provides instructions for making sodium 

channels; SLC16A7, a postsynaptic protein involved in long-term 
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memory; SLC4A3, a membrane transport protein and CAMK2G, are 

crucial for plasticity at glutamatergic synapses. 

The gene most positively correlated with temporal variability was 

CPNE6, which has been reported to play a role in synaptic plasticity 37. 

Other positively related genes included APOE, which affects 

neurogenesis and synaptic plasticity 38 and FZD1 that regulates adult 

hippocampal neurogenesis 39. Also, CNTNAP3 regulates synaptic 

development 40, UCHL3 is implicated in the control of cell cycle/growth 

and synaptogenesis, and PTPRA is involved in numerous 

neurodevelopmental processes. Finally, ERBB2 is involved in Nrg/Erbb 

signaling networks regulating the assembly of neural 

circuitry, myelination and synaptic plasticity 41.  

 

Correlation between variability-related gene expression and age  

To partly verify the identified genes whose expression was 

significantly correlated with temporal variability in the Allen Brain Atlas 

dataset, we also analyzed the change of these genes’ expression with age 

using the Brain Span human development data. First, we found that the 

temporal variability of most brain regions demonstrated significant 

negative correlation with age (Supplemental Table 6), most prominently 

in the hippocampus (Fig. 3B). Second, for the genes identified in the 

Allen Brain Atlas dataset that are positively or negatively related to 
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variability, we calculated their mean expression each age category 

respectively within the BrainSpan dataset. We found that gene 

expression that was positively related to dynamic functional connectivity 

changes, significantly decreased with age. In contrast, whereas gene 

expression that was negatively related to dynamic functional 

connectivity changes, increased from infancy through to adulthood (see 

Fig. 3C for details).  

These findings suggested that those genes in the Allen Brain Atlas 

dataset that were identified to be correlated with temporal variability 

were also correlated significantly with variability in the BrainSpan data 

demonstrated with similar age-related changes, which partly verifies the 

genes found in Allen Brain Atlas dataset. As plasticity reduces with 

aging 42, these results also confirm the close relationship between 

dynamic functional connectivity changes, neuroplasticity and 

plasticity-related genes. 

 

Short-term dynamic FC changes predict long-term learning 

outcomes 

We tested whether current brain network variability is predictive of future 

learning outcomes in order to understand the cognitive significance of the 

temporal variability of functional connectivity changes. To determine this, 

we measured changes in cognitive scores following a period of training. 
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The study assessed an aging cohort in a longitudinal cognitive training 

study 43, 44. Our study included 26 subjects from the community 

(70.38�±�3.30 yrs) who underwent training of multiple cognitive 

domains including memory, reasoning, problem-solving strategies, and 

visuospatial map-reading skills, for 1 hour twice a week for 12 weeks. 

We measured the baseline level of temporal variability from resting-fMRI 

for each brain region and correlated this with the change in cognitive 

score after 12 weeks of training, as measured by the Repeatable Battery 

for the Assessment of Neuropsychological Status score (RBANS, Form 

A).45 The RBANS is a widely used test for cognitive assessmenta . It 

includes a visuospatial/constructional index composed of a complex 

figure copy and judgment-of-line orientation task, and reflects a central 

cognitive ability. Of all 90 brain regions, only the baseline level 

variability of the right hippocampus showed a significant positive 

correlation with the change of visuospatial/constructional index (r=0.47, 

p= 0.01, FDR corrected).  

 

Discussion  

The dynamic changes of functional brain networks in spontaneous 

resting-fMRI have become increasingly recognized as having important 

functional implications for cognitive performance, development, aging, 

and disease 46. Despite the growing body of work and interest in 
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characterizing such dynamic changes, the underlying genetic mechanisms 

has to date been poorly addressed. Our genetic association analysis 

revealed neuroplasticity-related biological processes underlying dynamic 

functional connectivity changes. Furthermore, our longitudinal cognitive 

training data revealed that baseline temporal variability could predict 

learning outcomes within a window of several months for an aging cohort. 

We explored dynamic brain network changes from genetic, neuroimaging 

and cognitive perspectives, and together our results indicated that 

temporal variability measured from resting-state brain networks can serve 

as potential endophenotypes that reflect neuroplasticity.  

Dynamic FC changes reflect a fast plasticity process. Conceptually, 

dynamic changes of functional connectivity patterns on the scale of 

seconds are consistent with a new form of very rapid plasticity, termed 

Dynamic Network Connectivity (DNC) 47, 48, 49. Although the precise 

mechanisms of dynamic brain network changes remain unclear, it is 

believed that brain network reconfiguration can be rapid and transient and 

related to cognitive ability or task performance 46. At the molecular level, 

a recent work found consistency between the “dynamics” of functional 

connectivity calculated using calcium and hemodynamic signals, 

suggesting a neuronal origin of the temporal fluctuations of 

hemodynamic functional connectivity 50. In this process, the strength of 

neural-network connections can be rapidly increased/decreased over a 
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short time scale, as manifested by changes in coherence synchrony and 

phase-locking membrane potentials in remote neuronal ensembles 49, 

which is highly consistent with our variability measure of functional 

connectivity in resting-fMRI.  

The enrichment analysis of genes closely linked to dynamic 

connectivity changes provides a molecular explanation for the fast 

changes in resting-state functional connectivity. Biological processes, 

including synaptic transmission and modulation (see Fig. 3A and Fig. 4 A, 

C), are essential for maintaining and modulating functional connectivity. 

The neural network connection and its changes are closely related to 

these synaptic transmission processes that rely upon the availability of 

neurotransmitter transporters in presynaptic axonal terminals, the release 

of neurotransmitters, the activation of postsynaptic receptors and ion 

channels, and even the longer term changes of signaling cascades like 

calcium-cAMP signaling, as well as modulation by various peptides and 

hormones.  

Dynamic FC changes are also intimately related to long-term 

plasticity processes, as we found that the baseline variability relative to 

functional connectivity of the hippocampus can predict changes in 

cognitive performance after 3 months of training for an aging cohort (see 

Fig. 4A and B). Learning and memory occur through modifications in the 

strength of neural circuits, or neuroplasticity, particularly in the 
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hippocampus. Therefore, our results suggested that the variability of FC 

changes in resting-fMRI may reflect neuroplasticity at the behavioral 

level. Whilst a number of studies have demonstrated the behavioral and 

cognitive relevance of dynamic changes in functional connectivity 46, it 

should be noted that these studies showed spontaneous functional 

connectivity dynamics. For example, their studies reported the impact of 

neural community structure on concurrent behavior or how pre-stimulus 

functional connectivity is related to immediate task performance 8, 46, 51, 52. 

Few studies have shown the capability of dynamic network 

endophenotypes to predict future learning, especially after a long period 

of cognitive training.  

Our findings explain why spontaneous, short-term changes of 

current resting-state networks are indicative of the capability to learn in 

the future, or long-term plasticity. Dynamic changes in functional 

connectivity, or “spontaneous fluctuations in intrinsic connectivity 

networks”, have been postulated to optimize the brain’s readiness to 

respond to similar inputs in the future 53. Furthermore, these “intrinsic 

coupling modes” that change dynamically over time are hypothesized to 

represent spatiotemporal coupling patterns that adapt through 

use-dependent plasticity 54. In this regard, we believe that large FC 

variability in resting-state indicates patterns of functional connectivity 

that could potentially accommodate various cognitive demands. 
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Therefore, large variability facilitates preparation of functional brain 

networks for participation in processes involved in future learning. 

As evidenced in our longitudinal cognitive training data, our gene 

association analysis additionally provides molecular evidence that 

explains why dynamic FC changes are predictive of long-term learning 

outcomes. We found that genes closely related to dynamic FC changes 

are mainly enriched in two forms of neuroplasticity processes (see Fig. 

3A). The first appears to be related to synaptic plasticity or short-term 

plasticity, for example, alterations in existing synapses, including 

synaptic transmission, neurotransmitters, receptors, and modulators. (Fig. 

3A upper panel). As discussed above, these processes are related to the 

fast changes of functional connectivity. The second is probably related to 

structural plasticity or long-term plasticity, involving structural changes, 

such as the formation and development of postsynaptic assembly 

(dendritic remodeling), presynaptic assembly (axonogenesis, sprouting, 

and pruning), and soma (neurogenesis) (see Fig. 3A, lower panel). These 

structural changes, such as establishing a connection between spines and 

synapses, are correlated with the consolidation or maintenance of learning 

and memory 55. Spinal formation and synaptogenesis are triggered by cell 

surface adhesion molecules (CAMs) and their component proteins 56. 

Consistently, we have identified most CAMs and proteins in our gene 

association analysis, e.g., ERBB2, CADM1, and VANGL (see Fig. 3A 
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and Supplemental Table 3). 

Finally, we discuss the clinical implications of our findings. We have 

found that dynamic functional connectivity changes are related to 

extensive biological pathways implicated in neuroplasticity.  

In summary, we explored dynamic functional brain network changes 

from genetic, neuroimaging and cognitive perspectives, and our results 

suggested that the biological processes underlying spontaneous dynamic 

FC changes in resting-fMRI involves both short- and long-term plasticity 

processes. This explains why fast-scale dynamic FC changes can predict 

long-term learning process at the molecular level. The temporal 

variability metric from resting-fMRI can be used in the future to quantify 

the level of neural plasticity and learning in a range of age groups and 

environmental contexts. Our study findings have important clinical 

implications in regard to  early changes in plasticity in both healthy 

young people and the elderly, and in neurodevelopmental disorders and 

neurodegenerative diseases. 

 

Methods 

fMRI data from HCP  

For our analyses, we used data from the 900 Subjects Release (S900) 

of the Human Connectome Project (HCP). . The S900 collected 897 

healthy adults from August 2012 to Spring 2015. Details can be found at 
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https://www.humanconnectome.org/study/hcp-young-adult/. Using 

multi-modal imaging data from the HCP and a machine learning method, 

we identified a multi-modal parcellation (MMP) consisting of 180 

regions for each hemisphere 32. We used the 210v (210-subject validation) 

group MMP parcellation (https://balsa.wustl.edu/88mp) in our analyses. 

The 3T functional magnetic resonance imaging (rfMRI) data were 

acquired with a spatial resolution of 2 × 2 × 2 mm and temporal 

resolution of 0.7 s. The detailed acquisition protocol used for rfMRI data 

was comprehensively described in 57. We used all four runs of fMRI data 

collected over the course of two sessions. For each session, the phase 

encoding of oblique axial acquisitions was obtained in a right-to-left (RL) 

direction in one run and in a left-to-right (LR) direction in the other run. 

The number of subjects collected for each run varied from 828 to 870. 

For all sessions, all the data from both phase-encoding runs were used to 

calculate temporal variability. 

 

fMRI data for longitudinal cognitive training  

For cognitive training fMRI data, 26 healthy older adults with 

normal functional capacity, living independently in the community were 

recruited to a longitudinal cognitive training study 44 between March 

2008 and April 2008 in Tongji Hospital. These subjects aged 65–75 years, 

with education ≥1 year, had no hearing, vision, or communication 
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problems and no severe physical, neurological, or psychological disease 

or obvious cognitive decline, such as brain cancer, major depressive 

disorder, schizophrenia, and AD. Participants completed a one-hour 

multi-domain cognitive training twice a week for 12 weeks, targeting 

memory, reasoning, problem-solving strategies, and visuospatial 

map-reading skills. All participants were initially given a cognitive 

capacity assessment (baseline). Three months after intervention, another 

cognitive assessment was conducted. The measurements included the 

Repeatable Battery for the Assessment of Neuropsychological Status 

(RBANS, Form A) 45, 58, which has been shown to have good reliability 

and validity in Chinese community-living older people 58.  

Scanning was performed using a Siemens 3.0 Tesla Allegra scanner 

(Erlangen, Germany) at East China Normal University, Shanghai, China, 

both at baseline and after 3 months of training. Functional images were 

acquired using a single-shot, gradient-recalled echo planar imaging 

sequence (repetition time = 2000 ms, echo time = 25 ms and flip angle = 

90°). Thirty-two transverse slices (field of view = 240 × 240 mm2, 

in-plane matrix = 64 × 64, slice thickness = 5 mm, voxel size = 3.75 × 

3.75 × 5 mm3). Subjects were instructed to rest with their eyes closed and 

not to fall asleep. A total of 155 volumes were acquired, resulting in a 

total scan time of 310 s. 
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fMRI data for exploring variability changes with age  

In order to evaluate how temporal variability of brain networks 

changes with age, we used resting-fMRI data from 

http://fcon_1000.projects.nitrc.org/indi/pro/nki.html, which consisted of 

individuals between the ages of 4 and 85 years old. After data quality 

control, 298 subjects were left with a mean age of 42.75 y with a standard 

deviation of 19.57 y. 

fMRI data preprocessing 

For the HCP dataset, the resting-state fMRIs were run through 

minimal preprocessing pipelines 59. Next, the data were resampled to the 

standard grayordinates space according to the areal-feature-based MSM 

surface registration. Subsequently, the ICA+ FIX approach was 

performed for each volumetric time series to remove the spatially specific 

temporal artefacts. The approach includes the following procedures: 1) 

linear trend removal, 2) MELODIC-independent component analysis 

(ICA), 3) FMRIB’s ICA-based Xnoiseifier (FIX) to separate noise from 

signal, 4) regression out of the data noise and the 24 motion parameters. 

Here we focus on the 64984 grayordinates that belong to the cerebral 

cortex. Three hundred sixty regional time series were extracted by 

averaging voxel time series within each of the MMP regions, and the 

names of the regions and their corresponding abbreviations are listed in 

Supplemental Table 7. 
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Temporal variability: measure of dynamic FC changes of a brain 

region 

We used a dynamic neuroimaging endophenotype called temporal 

variability that we previously proposed 31 for association with the brain’s 

gene expression. The temporal variability of a brain region characterizes 

the dynamic changes of the functional connectivity patterns of a given 

brain region across different time windows 31, 60. To obtain the temporal 

variability, we first segmented all BOLD signals into non-overlapping 

windows (length l). The whole-brain functional network Fi in the ith time 

window was then constructed, using Pearson correlation as the measure 

of FC. The functional architecture of region k at window time i is denoted 

by Fi,k, which represents all the functional connections of region k. The 

variability of an ROI k is defined as 

�� � 1 � �������	
��,�, ��,�������������������������   �, � � 1,2,3, … , �, � � �. 

We calculated �� at a number of different window lengths (l=equal 

to 25, 26, 27…50 seconds) and then took the average value as the final 

variability. These window lengths were chosen because window sizes 

around 30–60 s lead to robust results for cognitive states 61 and 

topological descriptions of brain networks 62. It should be noted that 

variability at different window length is highly correlated, indicating that 

the choice of window length is not crucial.  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 8, 2019. ; https://doi.org/10.1101/695122doi: bioRxiv preprint 

https://doi.org/10.1101/695122
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 

 

Variability characterizes the flexibility of the regional functional 

architecture. It reflects the region’s ability to reconfigure itself into 

different functional communities, or the flexibility in the functional 

integration/coordination with different neural systems. The larger the 

temporal variability of an ROI, the more different functional communities 

it will be involved in at different times. 

 

Adult brain gene expression data and preprocessing 

We used the gene expression data of six human brains from the 

Allen Human Brain Atlas (http://human.brain-map.org) for association 

analysis with the dynamic, neuroimaging endophenotype. We used an 

improved normalization process implemented in March 2013. Two of the 

brains had both hemispheres, and two had only the left hemisphere. In 

total, nearly 4000 unique anatomic samples with expression profiles of 

20738 genes were obtained. The details of microarray information and 

data normalization are available at 

http://help.brain-map.org/display/humanbrain/documentation/. 

For each AHBA issue sample, we create a 6mm sphere ROI in the 

MNI volume space centers on its MNI centroid coordinate and then map 

the ROI to the Conte69 human surface-based atlas. The ROI on the 

surface consists of the vertexes in which the voxels belong to the ROI in 

the volume space. We mapped each sample to the region in which most 
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vertexes belong to in the corresponding ROI. We only analyzed samples 

in the left brain because among the six brains used to obtain the samples, 

only 2 had samples in the right brain. The gene expression profiles of 

each MMP region are the average gene expression of all samples mapped 

to the region. Brain regions having fewer than 5 AHBA samples mapped 

to it were filtered out in our subsequent analysis to ensure more reliable 

results. Finally, 74 regions in the left brain remained after these exclusion 

criteria were applied. 

 

Developmental brain gene expression data 

To characterize how brain expression of the gene (that are correlated 

with temporal variability of brain networks) changes with age, we used 

the developmental brain gene expression profiles in BrainSpan Atlas, also 

provided by the Allen Brain Atlas. We obtained the processed expression 

profiles by using the R package ‘ABAData’. In total, 16 brain regions 

were sampled and analyzed in at least 20 age categories. Expression of a 

gene for a given brain region and developmental stage are the mean the 

expression value of all samples.  

 

Association analysis between temporal variability and gene 

expression across brain regions  

Correlation analysis was performed between temporal variability of 
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brain regions and corresponding gene expression to identify 

genes/biological pathways correlated to dynamic FC changes. That is, for 

each of the 20738 genes in the AHBA dataset, correlation analysis 

between regional gene expression and regional temporal variability was 

performed across all 74 brain regions. A gene is supposed to be 

significantly related to temporal variability if the corresponding 

correlation coefficient can pass the Bonferroni correction (p<0.05/20738) 

for each of the four fMRI runs. After identifying genes significantly 

related to temporal variability, we next 63 carried out gene enrichment 

analyses to identify the relevant biological pathways 63. 

 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 8, 2019. ; https://doi.org/10.1101/695122doi: bioRxiv preprint 

https://doi.org/10.1101/695122
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 

 

Figures and legend 

Figure 1 Whole-brain topography of temporal variability obtained from 

HCP data. The brain map is averaged across all 864 subjects and for each 

of the 4 scans. A. The temporal variability demonstrated high similarity 

across 4 scans for 360 brain regions. B. Regions with highest (like 

hippocampus, orbital frontal gyrus and ACC/MPFC) and lowest (like 

visual areas) temporal variability are shown.  
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Figure 2 Schematic illustration of correlation analysis between 

whole-brain temporal variability from resting-fMRI and whole-brain gene 

expression profile. A. Correlation analysis between whole-brain 

topography of temporal variability and whole-genome gene expression. 

For each gene, e.g., the kth gene, we calculated the correlation coefficient 

between its expression in all brain regions and the corresponding 

temporal variability. Both expression and temporal variability in each 

brain region were averaged over the whole group of subjects. The 

correlation analysis was performed for each of the 4 fMRI scans, and 

those genes that passed the Bonferroni correction in each scan were kept 

for further analysis. B. Two genes, the expressions of which were most 

correlated with temporal variability, were shown with the corresponding 
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scatter plots. The most positively correlated gene is CPNE6 (r=0.6867), 

and the most negatively correlated gene is PLXDC1 (r=-0.7537).  

 

 

Figure 3 Biological pathways for genes significantly correlated with 

temporal variability and changes of expression of these genes with age. A. 

Biological pathways for genes positively and negatively correlated with 

temporal variability of functional brain networks. Some representative 

genes are also listed in the left column, and the full gene lists can be 

found in Supplemental table 3. B. Changes of temporal variability with 

age for right hippocampus. Window lengths were chosen from 20-30s in 

calculating the temporal variability from fMRI data. C. Changes of 

expression of genes over different stages of human development in 
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BrainSpan data. The genes identified in Allen Brain Atalas were divided 

into two groups: negatively/positively related to temporal variability. The 

mean expression of genes in the two groups was shown. As can be seen in 

B and C, both variability and genes positively related to variability show 

the same decreasing trend with age, which verifies that the genes we 

identified in Allen Brain Atalas are also correlated with variability in 

BrainSpan dataset.  
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Figure 4 Schematic illustration of the relationship among dynamic brain 

network changes, i.e., temporal variability (A), underlying genes and 

biological pathways (B), and long-term learning outcomes (C). By 

correlating temporal variability of a brain region (A) with gene 

expression (B) across the whole brain, we obtained 493 significant genes 

(Bonferroni correction) enriched in short- and long-term plasticity, i.e., 

synaptic plasticity and structural plasticity (C). Dynamic brain network 

measures of right hippocampus (A) can also predict future learning 

outcomes, i.e., changes in visuospatial/constructional index after 3 

months of learning (B). The genetic basis for temporal variability 

involved both short- and long-term plasticity (C), which explains why 

short-term, spontaneous functional brain networks changes can predict 

long-term learning outcomes. 
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Supplemental Materials 

Supplemental Table 1 The temporal variability for 360 brain regions 

from HCP_MMP1.0 parcellation. Resting-fMRI data from HCP were 

used, and group average results were presented.  

Supplemental Table 2 The temporal variability of brain regions using 

AAL2 template from HCP data and UK Biobank data, respectively. A 

high correlation between regional variability from HCP and UK Biobank 

was found. 
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Supplemental Table 3 Genes whose expressions were significantly 

correlated with dynamic functional connectivity changes in the brain 

(both positively- and negatively-correlated), Bonfferoni corrected. 

Supplemental Table 4 Biological pathways identified for the genes 

significantly negatively correlated with temporal variability of functional 

brain networks, Bonfferoni corrected. 

Supplemental Table 5 Biological pathways identified for the genes 

significantly positively correlated with temporal variability of functional 

brain networks, Bonfferoni corrected. 

Supplemental Table 6 Correlation between temporal variability of 

brain regions and age using Lifespan data from NKIRockland Sample 

(http://fcon_1000.projects.nitrc.org/indi/pro/nki.html) from the Nathan 

Kline Institute. 

Supplemental Table 7 The 180 areas of the cortical parcellation with 

index number, short name, description from HCP.  
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