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Abstract	1 

Oncogenic viruses like human papilloma virus (HPV) or Epstein Barr virus (EBV) are a major cause of human 2 

cancer. Viral oncogenesis has a direct impact on treatment decisions because virus-associated tumors can 3 

demand a lower intensity of chemotherapy and radiation or can be more susceptible to immune check-4 

point inhibition. However, molecular tests for HPV and EBV are not ubiquitously available. 5 

We hypothesized that the histopathological features of virus-driven and non-virus driven cancers are suf-6 

ficiently different to be detectable by artificial intelligence (AI) through deep learning-based analysis of 7 

images from routine hematoxylin and eosin (HE) stained slides. We show that deep transfer learning can 8 

predict presence of HPV in head and neck cancer with a patient-level 3-fold cross validated area-under-9 

the-curve (AUC) of 0.89 [0.82; 0.94]. The same workflow was used for Epstein-Barr virus (EBV) driven 10 

gastric cancer achieving a cross-validated AUC of 0.80 [0.70; 0.92] and a similar performance in external 11 

validation sets. Reverse-engineering our deep neural networks, we show that the key morphological fea-12 

tures can be made understandable to humans.  13 

This workflow could enable a fast and low-cost method to identify virus-induced cancer in clinical trials or 14 

clinical routine. At the same time, our approach for feature visualization allows pathologists to look into 15 

the black box of deep learning, enabling them to check the plausibility of computer-based image classifi-16 

cation. 17 

  18 
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Introduction	19 

Oncogenic viruses cause approximately 15% of malignant tumors in humans.1 Viruses can induce cancers 20 

with different histology and across different anatomic sites including squamous cell carcinomas (e.g. head 21 

and neck, cervix), adenocarcinomas (e.g. gastric), sarcomas (e.g. Kaposi), lymphomas (e.g. Burkitt) and 22 

hepatocellular carcinoma. Virus-driven tumors are an important health issue in western countries, but 23 

their global health impact is even higher as 80% of all virus-driven cancers occur in developing nations.2 24 

Their incidence is expected to increase drastically in the next decade in developing and economically de-25 

veloped countries.3,4 Some types of cancer are almost always virally driven (e.g. cervical cancer) while 26 

others can have viral or non-viral driver mechanisms (e.g. head and neck cancer or gastric cancer). In these 27 

cases, it is important to determine if a patient’s tumor has a viral origin because if this is the case, a dif-28 

ferent clinical management may be warranted and virus status might influence the choice of a clinical trial 29 

for that particular patient. For example, in the case of head and neck squamous cell carcinoma (HNSC), 30 

patients with human papilloma virus (HPV)-positive tumors have superior overall survival compared to 31 

patients with HPV-negative tumors of the same stage and can benefit from treatment de-escalation.5 32 

Likewise, patients with Epstein-Barr-Virus (EBV) related gastric adenocarcinoma tend to have a better 33 

prognosis and EBV positivity has been suggested as a biomarker for immunotherapy response.6  34 

The gold standard method for detection of viruses in human cancer is dependent on the tumor type. In 35 

head and neck cancer, overexpression of p16 as assessed by immunohistochemistry is the most commonly 36 

used surrogate marker for virus presence. However, p16 is neither perfectly sensitive nor specific7, and 37 

some centers also use HPV polymerase-chain reaction, in-situ hybridization, or targeted DNA sequencing 38 

for HPV detection in tumor tissue. While these tests are more specific, they are also more expensive and 39 

time consuming. Presence of latent EBV infection in gastric cancer is usually measured using EBV-encoded 40 

RNA in-situ hybridization in pathology samples, which has a relatively high sensitivity and specificity but 41 

requires dedicated testing equipment and expertise for accurate interpretation.  42 
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In the present study, we hypothesized that morphological features correlating with the presence of vi-43 

ruses in solid tumors can be deduced from hematoxylin and eosin (H&E) histology, which is routinely 44 

available for almost any patient with a solid tumor. As a tool for feature extraction from images, we used 45 

deep learning, a form of artificial intelligence (AI), which has previously been used to detect high-level 46 

morphological features directly from histological images.8-10	47 

 	48 
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Methods	49 

Ethics	and	data	sources		50 

All experiments were conducted in accordance with the Declaration of Helsinki and the International Eth-51 

ical Guidelines for Biomedical Research Involving Human Subjects. Anonymized scanned whole slide im-52 

ages were retrieved from The Cancer Genome Atlas (TCGA) project through the Genomics Data Commons 53 

Portal (https://portal.gdc.cancer.gov/). From this source, we retrieved images of head and neck squamous 54 

cell carcinoma (HNSC)11 and gastric adenocarcinoma (stomach adenocarcinoma, STAD)12. Exclusion crite-55 

ria for patients in these cohorts were missing values in virus status, corrupt image files or lack of tumor 56 

tissue on the whole slide image. For TCGA-HNSC, images from N=450 patients were downloaded of which 57 

N=38 met exclusion criteria, leaving images from N=412 patients for further processing. For TCGA-STAD, 58 

images from N=416 patients were downloaded of which N=99 met exclusion criteria, leaving N=317 pa-59 

tients for further processing. Furthermore, we retrieved anonymized archival tissue samples of N=105 60 

patients with HNSC from the University of Chicago Medicine Pathology archive (Chicago, Illinois, USA; 61 

“UCH-HNSC”) and anonymized tissue samples of N=197 patients with gastric cancer from the Kanagawa 62 

Cancer Center Hospital (Yokohama, Japan; “KCCH-STAD”) as described before13. For HNSC, HPV status was 63 

determined as described by Campbell et al.14 (by consensus of DNA sequencing15 and RNA sequencing16). 64 

For TCGA-STAD, EBV status was retrieved from genomic subtypes as described by Liu et al.17. For samples 65 

in UCH-HNSC, HPV status was defined by polymerase-chain reaction for the viral genes E6 and E7. For 66 

tumor samples in KCCH-STAD, EBV status was defined by EBV-encoded RNA in-situ hybridization.18 67 

Deep	transfer	learning	workflow	68 

All histological slides were reviewed and tumor regions were manually delineated in QuPath19 , tessellated 69 

into tiles of 256 x 256 µm2 which were subsequently downsampled to 224 x 224 px, yielding an effective 70 

magnification of 1.14 µm/px. These tumor tiles were used for deep transfer learning in MATLAB R2019a 71 
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as described before9,10. We used a modified VGG19 deep convolutional neural network20 which was pre-72 

trained on ImageNet (http://www.image-net.org, architecture shown in Suppl. Table 1). VGG19 was cho-73 

sen because of its previously proven performance in detecting multiple tissue components in human can-74 

cer histology9 and because of its compatibility with the Deep Dream method (see below). All TCGA cohorts 75 

were randomly split into three equal subsets at patient level. A VGG19 classifier was trained on these data 76 

in a three-fold cross-validated way. This procedure yielded three independent classifiers which were eval-77 

uated on their respective test set of held-out patients. For each tumor type, the classifier was subse-78 

quently re-trained on the whole TCGA set and evaluated on an external test set. 79 

Feature	visualization		80 

To trace back deep-learning based predictions to human-understandable morphological patterns in his-81 

tology, we used deep-dream-based visualization of output layer neurons for each class. We used a 82 

MATLAB implementation (https://de.mathworks.com/help/deeplearning/ref/deepdreamimage.html) of 83 

the original DeepDream algorithm (https://github.com/tensorflow/tensorflow/blob/master/tensor-84 

flow/examples/tutorials/deepdream/deepdream.ipynb) with pyramid level 6 and 500 iterations and sub-85 

sequently auto-optimized colors by histogram stretching in IrfanView 4.52 (https://www.irfanview.com/). 86 

Color optimization was done with identical parameters for all deep-dream-images generated by a given 87 

network.  88 

Statistics	and	data	presentation	89 

Classifier performance was assessed by the Area under the Receiver Operating Curve (AUC under the ROC) 90 

with sensitivity (true positive rate, TPR) plotted on the vertical axis and 1 – specificity (false positive rate, 91 

FPR) plotted on the horizontal axis. 95% confidence intervals for the AUC were calculated with 500-fold 92 

bootstrapping with the “bias corrected and accelerated percentile method” 28 unless otherwise stated. 93 

For three-fold cross validated experiments, the mean of AUCs and the mean of confidence interval 94 
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boundaries from all three classifiers is given if not otherwise noted. The ROC procedure is a widely used 95 

technique to assess the power of a classifier for any possible cutoff value of a numerical test. In this study, 96 

the cutoff for “percentage of virus-positive image tiles” was varied, yielding different sensitivity/specificity 97 

pairs which are plotted as ROC curves. 98 

Data	availability	99 

Images from the TCGA cohorts are available at https://portal.gdc.cancer.gov/. Our source codes are avail-100 

able at https://github.com/jnkather/VirusFromHE. 101 

 	102 
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Results	103 

Deep	learning	detects	virus	presence	in	squamous	cell	carcinomas	and	adenocarcinomas	104 

We hypothesized that the presence of human papillomavirus (HPV) can be detected in head and neck 105 

squamous cell carcinoma (HNSC, Figure 1a) and that the presence Epstein-Barr-Virus (EBV) can be de-106 

tected in gastric adenocarcinoma (STAD, Figure 1b) directly from histology by deep learning with a convo-107 

lutional neural network (CNN). We used hematoxylin and eosin (H&E) stained tissue slides of patients 108 

included in the multicenter TCGA cohort (Suppl. Table 2) and trained a deep learning classifier in a patient-109 

level three-fold cross-validated way (Figure 1c), followed by re-training on the whole cohort (Figure 1d). 110 

In head and neck cancer (N=412 patients, 12% HPV positive), this yielded an average patient-level AUC of 111 

0.89 [0.82; 0.94] (Figure 1e) and applying the same workflow to detect EBV in gastric cancer (N=317 pa-112 

tients from TCGA, 8% EBV positive, Suppl. Table 3), a patient-level three-fold cross-validated neural net-113 

work achieved an AUC of 0.80 [0.70; 0.92] (Figure 1f). Together, these results show that deep learning can 114 

robustly distinguish virus-induced (“virus present”) from non-virus-induced tumors (“virus not present”) 115 

across different histologies and anatomic sites.  116 

Noisy	tile	level	data	yields	high	patient-level	accuracy	in	external	validation	cohorts	117 

To assess the robustness of the classifiers, we used the neural network that was trained on the entire 118 

TCGA patient cohorts for head and neck and gastric cancer, respectively, and evaluated the classifiers on 119 

external validation cohorts. Non-overlapping tissue tiles of 256 µm edge length were used to predict a 120 

“virus probability score” which classified each tile as either virus positive or negative (derived from a tu-121 

mor that was virally induced or derived from a tumor that was non-virally induced). These predictions 122 

were subsequently pooled on a patient level as “fraction of positive tiles” with varying thresholds accord-123 

ing to the Receiver Operating Characteristic procedure (Figure 2a). Because each tile in the training set 124 

was assigned the label of the corresponding patient (obtained via bulk testing of tissue) and the tiles 125 
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contained a multitude of different tissue types (tumor epithelium, stroma, necrosis, mucus, and others), 126 

this training set was inherently noisy. Correspondingly, predictions for virus-negative tiles in the EBV test-127 

ing set were noisy with many false positive tile-level predictions (Figure 2b, right-hand side). However, 128 

tiles from virus-positive patients were mostly classified correctly (Figure 2a, left panel), enabling robust 129 

classification after pooling tile-level predictions on a patient level. AUC for EBV detection in the KCCH-130 

STAD cohort (N=197 patients, 5% EBV positive) was 0.81 [0.69; 0.89] (Figure 2c; trained on TCGA-STAD, 131 

tested on KCCH-STAD). We manually assessed the histomorphology of tissue tiles in the KCCH-STAD co-132 

hort (Figure 2d, more examples are available at http://doi.org/ 10.5281/zenodo.3247009) and found that 133 

false positive tiles often presented with lymphocyte-rich stroma, a known morphological hallmark of EBV-134 

positive gastric cancer.21 Thus, we conclude that misclassifications of individual image tiles were due to 135 

plausible human-understandable morphological features.  136 

Similarly, we validated the virus detector for HPV trained on TCGA-HNSC (N=412 patients, 12% HPV posi-137 

tive) in our in-house cohort UCH-HNSC from University of Chicago (N=105 patients, 49% HPV positive). 138 

This cohort had two main differences compared to the TCGA cohort which might negatively affect classi-139 

fier performance: first, a polymerase-chain reaction for high-risk HPV viral genes was used to determine 140 

virus status. Second, this cohort was artificially balanced for HPV status and thus had a much higher prev-141 

alence of HPV-induced cancer than TCGA. In spite of these stark differences, our classifier achieved an 142 

AUC of 0.70 [0.66; 0.74] for HPV prediction in UCH-HNSC. Manual review of representative tissue tiles by 143 

an expert pathologist showed that tiles with a high HPV prediction score were “carcinomas with large 144 

nested, broad-based invasion and relative decrease in cytoplasmic keratinization, resulting in a blue (cool-145 

toned) appearance”. This is compatible with previously known morphological features of HPV-positive 146 

HNSC.22 Tiles with a low HPV prediction score were “carcinomas with small nested invasion and eosino-147 

philic (pink or warm-toned) cytoplasmic keratinization”. Thus, we conclude that in HNSC as well as in 148 
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gastric cancer, predictions of viral status in individual tissue tiles by a deep neural network were plausible 149 

to expert pathologists. 150 

Together, these data show that despite noisy training data and tile-level misclassifications, patient-level 151 

prediction of virus status in HNSC and gastric cancer can reach a high accuracy. 152 

Reverse-engineering	trained	neural	networks	153 

Attempting to characterize more precisely which morphological features may have been used by the neu-154 

ronal network to detect virus-induced cancer, we used a feature-visualization method and discussed the 155 

results with a panel of expert pathologists. We hypothesized that reverse-engineering features from neu-156 

ral networks could be used as a plausibility check for deep learning, completing the cycle “human to AI 157 

and back”. In an exploratory study, we employed the Deep Dream algorithm which uses a trained neural 158 

network (Figure 3a) to create pseudo-images for each output class in the classification layer (Figure 3b). 159 

This approach yielded “pseudo-histology” images for HPV positive and negative HNSC (Figure 3b) and EBV 160 

positive and negative gastric cancer (Figure 3c), discussing the resulting images with five pathologists. In 161 

general, pathologists described the images as “beautiful” and “psychedelic”. Relating the aspect of 162 

pseudo-histology in histological terms, they described the features as “a sheet of small nodules composed 163 

of bright, predominantly warm colors” (HPV negative HNSC, Figure 3c, left panel), “large nests with 164 

rounded borders composed of dark, predominantly cool colors punctuated by red dots” (HPV positive 165 

HNSC, Figure 3c, right panel) and “ill-defined dark green whorls punctuated by blue dots and wisps of 166 

yellow” (EBV negative gastric cancer [STAD], Figure 3d, left panel), “overlapping sheets with reticulated 167 

patterns in pastel colors”, potentially resembling “lymphoid stroma” (EBV positive gastric cancer, Figure 168 

3d right panel).   169 

Together, these data show that deep learning can plausibly sort tissue tiles (Figure 2d) and yields a high 170 

classification performance for virus presence (Figure 2c). The actual morphological patterns used for this 171 
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classification may be different from the ones that humans typically use but can be visualized in a way that 172 

might be understandable for humans through the Deep Dream algorithm (as has been shown in non-173 

medical applications23). Based on this, we conclude that, by analyzing tile-level classification and possibly 174 

by analyzing Deep Dream images, human observers can get an insight about morphological patterns used 175 

by deep neural networks, allowing for quality control and possibly performing human classification per-176 

formance through machine-identified morphological features. 177 

 	178 
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Discussion	179 

Virus-induced cancers mostly occur in developing countries, making them neglected diseases on a global 180 

scale. Some of these virus-driven cancers are under-tested for in clinical routine. Existing wet lab assays 181 

to test for virus presence (such as sequencing) are costly, require a high level of expertise (such as in-situ 182 

hybridization) and not all assays achieve a perfect classification accuracy (such as p16 immunohistochem-183 

istry24). Here, we present a deep-learning-based low-to-no-cost assay for routine detection of virus pres-184 

ence from ubiquitously available histology in two major tumor types of very different histology. We 185 

demonstrate that classification accuracy is as high as AUC 0.81 when trained with a few hundred patients. 186 

Our approach relies on digitally scanned images of hematoxylin & eosin stained tissue slides. The cost to 187 

scan such a histology slide is well below $10 at low throughput and considerably lower at high through-188 

put10, potentially enabling noticeable cost savings for virus testing of tumor tissue in the future. 189 

At the moment, sensitivity and specificity of our classifier is lower than in routine diagnostic tests: for EBV 190 

detection in gastric cancer by EBV-encoded RNA in-situ hybridization, one study reported a sensitivity of 191 

100% at a specificity of 90%.25 For HPV detection in HNSC by p16 immunohistochemistry, another study 192 

reported a sensitivity of 97.4% and a specificity 93.75%.24 As shown in Figure 1e-f and Figure 2c, the deep 193 

learning classifier approaches these gold standard methods but is still less sensitive and specific. However, 194 

sensitivity and specificity of our method are higher than those in previous studies of deep-learning based 195 

prediction of molecular features from histology.8,26  196 

In our experiments, the deep learning classifiers reached a high cross-validated performance which we 197 

could replicate in an external validation set for gastric cancer (Figure 2c). In the multicenter TCGA-HNSC 198 

cohort, cross-validated HPV detection performance was high, but dropped in the external validation co-199 

hort UCH-HNSC. This may be related to the relatively small patient size of this cohort or due to different 200 

gold standards for HPV detection (consensus of DNA and RNA sequencing in TCGA-HNSC and polymerase-201 
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chain reaction in UCH-HNSC). Most probably, however, this is due to the very different prevalence of virus-202 

induced cancers in the training set and in the test set. Whereas the training set (TCGA-HNSC) reflected 203 

the natural prevalence of HPV-positive cancers, the test set (UCH-HNSC) was artificially balanced to a 204 

prevalence of 50%. This may have negatively affected classifier performance as has been described for 205 

mutation prediction in lung cancer8.  206 

According to our experience from similar tasks, it can be expected that training on larger clinical cohorts 207 

will likely improve performance of our method. Similarly, further optimizing hyperparameters and neural 208 

network architectures will likely yield a performance boost. Also, further dividing deep learning classifiers 209 

by anatomical sub-sites of tumors (e.g. oropharyngeal or hypopharyngeal) will likely increase perfor-210 

mance. In the end, this image-based biomarker, like all biomarkers, needs to be tested in prospective 211 

clinical trials before widespread clinical use.  212 

A new aspect of our study is the approach “human to AI and back”: humans (expert pathologists) deline-213 

ated tumor tissue in whole slide sections and thus enabled the AI to detect virus presence in histological 214 

images. In turn, using deep-dream-based feature visualization, we show that the AI can in principle inform 215 

a human observer about morphological features of interest. Feature visualization by Deep Dream and 216 

similar methods27 is well-established to understand the inner workings of deep neural networks. Yet, to 217 

our knowledge, this has never been systematically used for pathologist-AI-crosstalk. Thus, our study 218 

shows for the first time that deep learning algorithms can not only be used as tools to facilitate diagnostic 219 

routine but could also enable human observers to get a different viewpoint on histomorphology.  220 

  221 
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Figures	222 

 

Figure 1: Detection of virus-induced cancer from histological routine images. (a) A representa-223 
tive sample (one of N=412 patients) of the TCGA-HNSC training cohort with a manual outline 224 
around the tumor tissue, (b) a representative sample of the TCGA-STAD cohort (1 of N=317 pa-225 
tients), scale bars in a and b are 5000 µm. (c) We trained and tested classifiers with patient-level 226 
three-fold cross-validation. (d) Subsequently, we re-trained on the whole cohort and tested in an 227 
external validation cohort. (e) Receiver operating characteristic (ROC, horizontal axis is 1-speci-228 
ficity and vertical axis is sensitivity) for HPV detection in TCGA-HNSC (N=412 patients), x marks 229 
the performance of the current clinical gold standard (p16 immunohistochemistry) (f) ROC for 230 
EBV detection in TCGA-STAD (N=317 patients), x marks the performance of EBV-encoded RNA 231 
(EBER) in-situ hybridization, the diagnostic gold standard. Each ROC curve corresponds to one 232 
cross-validation run.  233 
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 234 

Figure 2: Tile-level classification yields high patient-level performance. (a) Schematic of the pre-235 
diction process: in a histological whole slide image, non-overlapping areas of 256 x 256 µm 236 
(“blocks” or “tiles”) were used to predict virus status and subsequently pooled on a patient-level 237 
by fraction of positive tiles. Image credit for icon https://twemoji.twitter.com (b) For a subset of 238 
tiles in the KCCH-STAD validation cohort, the predicted EBV score is plotted for true EBV-positive 239 
(left) and EBV-negative tiles (right). A small random symmetric x-y-offset was added to each point 240 
for better visibility. While most positive tiles attained a high EBV score, prediction of EBV-nega-241 
tive tiles was noisy. More examples and more information about tile preprocessing is available at 242 
http://doi.org/10.5281/zenodo.3247009. (c) Despite noisy tile-level classification, patient-level 243 
prediction reached a high classification accuracy with an AUC of 0.81 in the independent KCCH-244 
STAD validation set. (d) Representative tiles from the top and bottom quantile of EBV predictions. 245 
False positive tiles are lymphocyte-rich, which is a hallmark of virus-driven cancer and thus makes 246 
these misclassifications plausible. 247 
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 248 

Figure 3: Feature visualization of viral morphological signatures in histological images by Deep 249 
Dream. (a) We used a modified VGG19 deep neural network that reads images in through the 250 
input layer and outputs predictions in a two-neuron output layer. (b) Information flow from left 251 
to right is used to classify images. The Deep dream algorithm uses the reverse direction to itera-252 
tively create pseudo images for each output neuron. (c) Example of Deep dream pseudo-images 253 
for HPV negative and positive HNSC with subjective manual description on morphological fea-254 
tures by expert pathologists, (b) corresponding images for EBV in STAD.  255 
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