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Abstract 

Commitment of stem cells to different lineages is inherently stochastic but regulated by a range 

of environmental bio/chemo/mechanical cues. Here we develop an integrated stochastic 

modelling framework for predicting the differentiation of hMSCs in response to a range of 

environmental cues including sizes of adhesive islands, stiffness of substrates and treatment 

with ROCK inhibitors in both growth and mixed media. The statistical framework analyses the 

fluctuations of cell morphologies over around a 24-hour period after seeding the cells in the 

specific environment and uses the distribution of their cytoskeletal free-energy to forecast the 

lineage the hMSCs will commit to. The cytoskeletal free-energy which succinctly 

parameterises the biochemical state of the cell is shown to capture hMSC commitment over a 

range of environments while simple morphological factors such as cell shape, tractions on their 

own are unable to correlate with lineages hMSCs adopt. 
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Introduction 

Stem cells have the dual ability to differentiate into various mature cells (such as osteoblasts, 

chondrocytes, neuroblasts, etc.) that form various tissues, and proliferate to maintain a pool of 

immature cells that can differentiate when required. The degree and outcome of differentiation 

are controlled by various extrinsic signals in the stem cell niche that include cell-cell, cell-

matrix and cell-soluble cue interactions [1, 2]. For example, human mesenchymal stem cells 

(hMSCs) choose adipogenic over osteogenic lineage when plated at a high cell density, where 

the extent of cell-cell interactions determines cell fate [3]. Creation of synthetic cellular niches 

requires careful choices for the extracellular matrix (ECM), and soluble factors (such as growth 

factors, cytokines and hormones) to best harness the regenerative potential of stem cells [2, 4]. 

 

While the effect of soluble factors on stem cell lineage commitment and differentiation has 

been extensively studied, a thorough investigation of the influence of insoluble signals such as 

extracellular matrix rigidity, and adhesive properties of the substrate is still ongoing. It is now 

well-known that environmental cues such as microgravity [5] and mechanical cues such as 

substrate rigidity, substrate curvature, arrangements of micropillars, gratings and wells [6-9] 

dictate cell fate. Nanoscale physical cues such as nanotubes and nanowires of different pore 

sizes and spacing, nano-grating, nano-posts, and different arrangements of nano-pits [10-14] 

act at the scale of single focal adhesions to set cell lineage. Advances in nano- and 

micropatterning have aided in exploring the effect of chemical cues (such as changing the 

concentration and spacing of adhesive proteins on the substrate [15]) and geometric cues (i.e., 

confining the cells to adhesive patterns of different shapes and sizes [3, 16]) on cell fate. Over 

the past two decades, numerous experiments have been performed to investigate the effects of 

mechano/chemo/geometric cues (and their combinations) on the differentiation of multipotent 

stem cells. At the same time, several models have also been developed and refined using the 

wealth of information provided by experiments. 

 

One class of models simulate cell shape, cytoskeletal arrangements and focal adhesion 

formation in cells in response to the physical cues in the ECM, and thereby predict cell 

differentiation. Qualitative predictions of cell shape-induced differentiation on elastic 

substrates are obtained using 3D finite element models, where relevant subcellular structures 

are modelled explicitly [17]. Cell-cell interactions are captured through discrete finite element 

models (where each cell is a discrete unit that interacts with other cells and the substrate through 

contact stresses), and the extent of cell deformation is correlated with degree and lineage of 

differentiation [18]. Spreading of cells on patterned substrates are modelled using particle-

based methods, with inter-particle forces chosen to best capture the pinning of cells on 

substrates by the adhesive islands [19]. While these coarse-grained models provide an intuitive 

picture of the mechanisms of cell spreading and differentiation, they are often tailored for 

specific cues. 

 

Another class of models use machine-learning techniques to detect patterns in large volumes 

of experimental observations that can enable cell fate prediction. The experimental 

observations can be related to the expression of transcription factors (such as CBF𝛼1 for 
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osteoblasts and PPAR𝛾 for adipocytes) [20, 21], or various measures of cell shape (such as cell 

area, aspect ratio, stress-fibre intensity, etc.) [22, 23]. However, a frequent output from these 

models is a complex combination of input variables that seems to correlate strongly with cell 

fate, but physical significance of such measures remain poorly understood. Ideas borrowed 

from statistical mechanics have also been widely used to relate inherently stochastic molecular 

fluctuations to well-defined macroscopic cell fates [24, 25], but such models do not provide 

insight into cell shape changes associated with the different stages of the differentiation 

process. 

 

Here we aim to combine the strengths of the different approaches into one integrated stochastic 

framework for stem cell differentiation. While we recognise that cells exist in a fluctuating 

equilibrium with their surroundings, we also realise the need to incorporate fluctuations to the 

cell shape and cytoskeletal structure (rather than at the gene-level) so that we can predict both 

the spreading and differentiation response of hMSCs to chemo-mechanical cues in the ECM. 

In this study, we present a framework to (i) predict cell differentiation over mechanical and 

chemical cues, and (ii) show the equivalence of different types of chemo-mechanical cues in 

directing cell lineage commitment and subsequent differentiation.  
 

 

Modelling 

While it is well-established that changes to gene expressions over a period of about 1-2 weeks 

dictate the lineage commitment and differentiation fate of hMSCs, more recent studies have 

indicated that a combination of a large number of cell, nuclear and cytoskeletal morphometrics 

also provides excellent forecasting of the lineage of hMSCs [22, 23]. These morphometrics 

develop over a period of 1 to 2 days when the gene expression of cells has not been affected 

irreversibly by the environment. Here, we apply the recently developed homeostatic mechanics 

to predict the distribution of morphological states the cell assumes in the interphase period of 

its cell cycle, which in turn relates to its differentiation outcome. The homeostatic mechanics 

framework has already been shown to successfully capture a range of observations for smooth 

muscle cells seeded on elastic substrates [26, 27] and for myofibroblasts seeded on substrates 

micropatterned with stripes of fibronectin [28], giving us confidence to investigate its 

generality in terms of predicting the differentiation of hMSCs in response to a range of 

environmental cues. 

 

2.1     A brief overview of the homeostatic mechanics framework 

The homeostatic mechanics framework recognises that the cell is an open system which 

exchanges nutrients with the surrounding nutrient bath (Fig. 1a). These high-energy nutrient 

exchanges fuel large fluctuations (much larger than thermal fluctuations) in cell response 

associated with various intracellular biochemical processes. However, these biochemical 

processes attempt to maintain the cell in a homeostatic state, i.e. the cell actively maintains 

itself out of thermodynamic equilibrium [29] by maintaining its various molecular species at a 

specific average number over these fluctuations that is independent of the environment [30]. 

More specifically, homeostasis is the ability of a living cell to maintain, via coupled and inter-

connected biomechanical processes, the concentration of all internal species at a fixed average 

value independent of the environment, over all its non-thermal fluctuations. Upon employing 

the homeostatic constraint, we have the result that the ensemble average Gibbs free-energy is 

equal to that of the cell in suspension. This is a universal constraint that quantifies the fact that 

living cells maintain themselves away from thermodynamic equilibrium but yet attain a 
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stationary state. Recognising that biochemical processes such as actin polymerisation and 

treadmilling provide the mechanisms to explore morphological microstates, we employ the 

ansatz that the observed distribution of cell shapes is that one with the overwhelming number 

of microstates, i.e. the distribution that maximises the morphological entropy subject to the 

homeostatic constraint and any other geometrical constraints such as confinement imposed by 

patterning adhesive islands on substrates. 

 

Shishvan et al. [26] obtained the equilibrium distribution of states that the cell assumes in terms 

of the Gibbs free-energy 𝐺(𝑗) of the morphological state (𝑗) of the system as 

𝑃eq
(𝑗)

=
1

𝑍
exp(−𝜁𝐺(𝑗)) , (1) 

where 𝑍 ≡ ∑ exp(−𝜁 𝐺(𝑗))𝑗  is the partition function of the morphological microstates, and the 

distribution parameter 𝜁 follows from the homeostatic constraint ∑ 𝑃eq
(𝑗)

𝐺(𝑗)
𝑗 = 𝐺S, where 𝐺S 

is the equilibrium Gibbs free-energy of an isolated cell in suspension. Thus, 1/𝜁 in (1) is 

referred to as the homeostatic temperature that is conjugated to the morphological entropy of 

the cell. We employ Markov Chain Monte Carlo to construct a Markov chain that is 

representative of the homeostatic ensemble. This involves calculation of 𝐺(𝑗) for a given 

morphological microstate (𝑗) and construction of a Markov chain that is representative of the 

ensemble of states with probability distribution (1). Typical Markov chains comprised in excess 

of 2 million spread states (a detailed overview of the procedure is provided in Supplementary 

S1.2). 

 

2.2     Gibbs free-energy of a morphological microstate 

The implementation of the homeostatic mechanics approach described above requires a 

specific model for the Gibbs free-energy of the cell-substrate system in a given morphological 

state. Modelling all the elements of the cell is unrealistic and often not required as specific 

components are known to strongly respond to different cues. Here we are interested in 

investigating the differentiation behaviour of hMSCs to mechanical cues provided by the 

substrate stiffness [6] and geometric cues imposed by the size of adhesive islands patterned on 

substrates [3]. These cues are known to result in significant remodelling of the stress-fibre 

cytoskeleton and thus here we use a model for the Gibbs free-energy developed by Vigliotti et 

al [31] and subsequently modified in [26-28]. Details of the model including the parameters 

are given in Supplementary S1.3 and here we give a brief overview.  

 

Single human mesenchymal stem cells (hMSCs) are modelled as two-dimensional bodies in 

the 𝑥1 − 𝑥2 plane lying on the surface of an elastic substrate such that the out-of-plane Cauchy 

stress 𝛴33 = 0 (Fig. 1b). The substrate is modelled as a linear elastic half-space, whereas the 

cell consists of only three components: a cytoplasm that is modelled as comprising an active 

stress-fibre cytoskeleton wherein the actin and myosin proteins exist either in unbound or in 

polymerised states (Fig. 1a), a passive elastic nucleus, and elements such as the cell membrane, 

intermediate filaments and microtubules that are all lumped into a single passive elastic 

contribution. The cell in its undeformed state is a circle of radius 𝑅0 with a circular nucleus of 

radius 𝑅N whose centre coincides with that of the cell; see Supplementary S1.3 for details 

including the cell parameters used to characterise hMSCs.  
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For a given morphological microstate, the strain distribution within the cell is specified which 

directly gives the elastic strain energy of the cell 𝐹̂passive via a 2D Ogden-type hyperelastic 

model for both the nucleus and cytoplasm. The stress-fibre cytoskeleton within the cytoplasm 

is modelled as a distribution of stress-fibres such that at each location 𝑥𝑖 within the cell, 𝜂̂(𝜑) 

parameterises the angular concentration of stress-fibres over all angles 𝜑, while 𝑛̂ss(𝜑) denotes 

the number of functional units within each stress-fibre. Thus, at any 𝑥𝑖 there is a total 

concentration 𝑁̂b of bound stress-fibre proteins obtained by integrating 𝜂̂𝑛̂ss over all 

orientations 𝜑, and these bound proteins are in chemical equilibrium with the unbound stress-

fibre proteins (Fig. 1a). The unbound proteins are free to diffuse within the cell, and thus at 

equilibrium of a morphological microstate, the concentration 𝑁̂u of these unbound stress-fibre 

proteins is spatially uniform. This chemical equilibrium condition along with the conservation 

of stress-fibre proteins within the cells provides the spatial and angular distributions of stress-

fibres from which the free-energy of the cytoskeleton 𝐹̂cyto is evaluated. The tractions that the 

cell exerts on the substrate induces a Helmholtz free-energy 𝐹̂sub
(𝑗)

 within the substrate. Then, 

the total (normalised) free-energy of the cell-substrate system in morphological microstate (𝑗) 

follows as 𝐺̂(𝑗) ≡ 𝐹̂passive
(𝑗)

+ 𝐹̂cyto
(𝑗)

+ 𝐹̂sub
(𝑗)

 (see Supplementary S1.4 for details of the 

normalisations).  

 

2.3     Early forecasting of the lineage of hMSCs 

A combination of a large number of cell, nuclear and cytoskeletal morphometrics that develop 

over a period of 1-2 days have been shown to forecast the lineage of hMSCs as measured via 

gene expressions over a period of about 1 week [22, 23]. While such a morphometric analysis 

is undoubtedly useful it has two drawbacks: (i) it requires the measurement and analysis of a 

large number of morphological metrics, and (ii) it provides little insight into the physical 

phenomena that set the lineage of the cell. A number of studies have shown that the hMSCs 

maintain an undifferentiated state when the polymerisation of the stress-fibre cytoskeleton is 

inhibited by the addition of re-agents such as 2,3-butanedione monoxime (BDM) or 

Blebbistatin. This combined with the fact that lineage is shown to correlate with cytoskeletal 

morphometrics suggests that the state of the stress-fibre cytoskeleton can be used to predict 

cell fate. The stress-fibre cytoskeleton is modelled in detail for each morphological microstate 

as briefly described above and in detail in Supplementary S1.1. Of course, a number of 

cytoskeletal morphometrics can be extracted from the simulations much like in the 

experiments, but the model has the additional feature that it also quantifies the cytoskeletal 

free-energy 𝐹̂cyto which is a succinct scalar parameter that quantifies the biochemical state of 

the cytoskeleton. Thus, here we attempt to use 𝐹̂cyto as the metric to forecast cell fate. 

 

Unlike, deterministic free-energy models [31-33] that treat cells as systems that minimise their 

free-energy, the homeostatic ensemble recognises that cells exchange nutrients with their 

environment and thereby maintain a thermodynamic non-equilibrium but nevertheless 

stationary state that is commonly referred to as the homeostatic state. In this homeostatic state, 

hMSCs fluctuate over the equilibrium distribution of morphological microstates characterised 

by (1) and thus have a fluctuating 𝐹̂cyto. Consider the fluctuating response of a hMSC over a 
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time period 𝑇s when it chooses its lineage 𝕩, where 𝕩 for example could denote an osteoblast 

(and then subsequently goes on to differentiate to 𝕩 over a much longer time scale). Over the 

time 𝑇s, the average cytoskeletal free-energy of the hMSC is given by 

𝐹̅cyto =
1

𝑇s

∫ 𝐹̂cyto 𝑑𝑡
𝑇s

0

, (2) 

where time 𝑡 = 0 is an arbitrary reference. We shall assume that the hMSC chooses a lineage 

𝕩 if 𝐹̅cyto lies in the range 𝐹̅𝕩 ± Δ𝐹̅𝕩, where 𝐹̅𝕩 and Δ𝐹̅𝕩 are values specific to lineage 𝕩. In order 

to estimate the probability of the hMSC choosing a lineage 𝕩, we first need to calculate the 

probability that 𝐹̅cyto lies in the range 𝐹̅𝕩 − Δ𝐹̅𝕩 ≤ 𝐹̅cyto ≤ 𝐹̅𝕩 + Δ𝐹̅𝕩. We hypothesise that cell 

lineage is typically set over a period of 24 to 48 hours after seeding of hMSCs in a particular 

environment. Over this period, the cell assumes a large number of morphological microstates. 

Most of these morphological microstates are correlated with each other, with the cell retaining 

memory of the history of its state over a timescale of 10s of minutes. However, over a longer 

time period, the cell loses memory and its morphological microstates are decorrelated [34]. 

Over the period of 24 to 48 hours when the cell chooses its lineage, we assume that hMSCs 

assume 𝑁c decorrelated morphological microstates. This is thus equivalent to randomly 

drawing 𝑁c morphological configurations from the homeostatic distribution (1), and then for 

large 𝑁c, the central limit theorem specifies that 𝐹̅cyto has a distribution given by the probability 

density function 

𝑝(𝐹̅cyto) =
1

𝜎
√

𝑁c

2𝜋
exp [

(𝐹̅cyto − 𝜇)
2

2𝜎2

𝑁c
2

] , (3) 

where 𝜇 and 𝜎 are the mean and standard deviations of the homeostatic distribution of 𝐹̂cyto, 

i.e. 𝜇 ≡ ∑ 𝑃eq
(𝑗)

𝐹̂cyto
(𝑗)

𝑗  and 𝜎2 ≡ ∑ 𝑃eq
(𝑗)

[𝐹̂cyto
(𝑗)

− 𝜇]
2

𝑗  with the summations carried out over the 

entire homeostatic ensemble of morphological microstates (𝑗). Given that a hMSC chooses a 

lineage 𝕩 if 𝐹̅cyto lies in the range 𝐹̅𝕩 − Δ𝐹̅𝕩 ≤ 𝐹̅cyto ≤ 𝐹̅𝕩 + Δ𝐹̅𝕩, the probability 𝑃𝕩 of it 

choosing lineage 𝕩 is proportional to 𝒫𝕩 given by 

𝒫𝕩 = ∫ 𝑝(𝐹̅cyto)𝑑𝐹̅cyto

𝐹𝕩+Δ𝐹𝕩

𝐹𝕩−Δ𝐹𝕩

, (4) 

with the probability 𝑃𝕩 then defined through a normalising constant 𝑍L as 𝑃𝕩 ≡ 𝒫𝕩/𝑍L. This 

normalising constant ensures that the sum of the probabilities of all lineages with non-

differentiation also treated as a lineage in the context, equals unity. Thus, 𝑍L ≡ max[1, ∑ 𝒫𝕩𝕩 ] 

so that if 𝑍L = 1 the probability of non-differentiation is vanishing and otherwise is given by 

1 − ∑ 𝒫𝕩𝕩 . The model for prediction of cell fate thus requires the parameter 𝑁c in addition to 

𝐹̅𝕩 and Δ𝐹̅𝕩 for each lineage 𝕩. Typically, these parameters are dependent also on the media in 

which the hMSCs are cultured and we proceed to present predictions for the differentiation of 

hMSCs into osteoblasts, myoblasts and adipocytes cultured in growth and mixed media. For a 

given media, these parameters were calibrated for a given set of cues (e.g. stiffness cues) and 

then used to make predictions for a different set of cues (e.g. size of adhesive islands). We 
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emphasize that in many cues (e.g. stiffness cues), not all lineages are detected and thus 

calibration of the full model using experimental data is not always possible. Thus, while 

calibrating the model here, we lump those lineages into the “non-differentiation” category. This 

approximation does not add any error in the analysis so long as joint probability of 

differentiation of hMSCs into the detected and undetected lineages is zero. For example, 

consider the case of hMSCs on a range of substrate stiffness where the hMSCs can differentiate 

into osteoblasts, myoblasts and adipocytes but the experiment only detects osteoblasts and 

myoblasts. Since differentiation into adipocytes occurs only for very low stiffness values where 

the probability of differentiation into osteoblasts and myoblasts is vanishingly small, not 

accounting for differentiation into adipocytes does not add any errors for predicting the 

differentiation into osteoblasts and myoblasts. 

 

Results 

We shall consider the response of hMSCs in both growth media and mixed media when seeded 

on elastic substrates of varying stiffness and on effectively rigid substrates patterned with 

adhesive islands. The response of the cells in terms of morphometrics over relatively short 

periods (i.e. 1-2 days) is independent of the differentiation media and thus the parameters of 

the hMSCs detailed in Supplementary S1.3 are not dependent on the media. However, the 

differentiation outcomes, and thereby 𝐹̅𝕩 and Δ𝐹̅𝕩 are strongly dependent on the media. We thus 

present results in two steps whereby we first discuss predictions of cell morphometrics and 

then proceed to discuss predictions of the lineage in the two different media. 

 

3.1     Response on elastic substrates 

The response of cells on elastic substrates is recorded through a range of observables, all of 

which exhibit large variations but with trends clearly emerging when the statistics of these 

observables are analysed. This motivates our choice of the statistical homeostatic modelling 

framework, in which, just as in the experimental system, observables fluctuate while trends 

(and understanding) emerge once these observables are viewed statistically. Figure 2a shows 

representative images of cell morphologies on substrates with three contrasting stiffness 𝐸sub 

(while glass has a stiffness 𝐸sub ≈ 50 GPa, the effective stiffness experienced by the cell is 

much lower due to the intermediate ECM, and thus following Engler et al. [6] we take 𝐸sub =

70 kPa for glass as representing the effective stiffness of the ECM). The predictions have been 

presented alongside the observations (Fig. 2b) of Engler et al. [6], replicating the 

immunofluorescence staining used in experiments whereby the stress-fibres are shown in red, 

the focal adhesions in green and the nucleus in purple and blue (see Supplementary S1.4.2 for 

details the procedure used to translate the model predictions to such images). Overall, the cell 

morphologies and distributions of cytoskeletal and focal adhesion proteins are similar to the 

experimental observations. Stress-fibre polymerisation, focal adhesion formation, cell area and 

aspect ratio increase with increasing substrate stiffness, in line with a wide variety of 

observations [6, 8, 35]. However, as eluded to above, selected observations of cell 

morphologies are highly variable with understanding emerging from the statistics of 

observations. Recalling that typically reported observations include distributions of cell area, 

aspect ratio and total tractions exerted by the cell on substrates, we include in Figs. 3a-c 

predictions of these observables. These predictions are presented in terms of probability density 

functions of the normalised area  𝐴̂ (normalised by area of the cell in its elastic resting state 

𝐴0), aspect ratio (via the best fit ellipse) and the normalised total tractions 𝑇̂T (see 
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Supplementary S1.4.1 For details of the definitions). With increasing substrate stiffness, not 

only do the means of cell area, aspect ratio and total tractions increase, but so does the spread 

in these observables (i.e. the probability density functions are less peaked with increasing 

𝐸sub).  

 

Tractions exerted by hMSCs on elastic substrates has been experimentally established, and we 

show in Fig. 3d predictions (for three high probability cell configurations) of the normalised 

traction distributions 𝑇̂ (see Supplementary S1.4.1 for definition) alongside corresponding 

measurements from Guvendiren & Burdick [35]. Regions of higher tractions are significantly 

fewer on the lower stiffness substrates, but also typically occur along the cell periphery in both 

the observations and predictions. In general, the agreement between model predictions of cell 

morphometrics and experimental observations gives confidence to attempt to employ it to aid 

forecasting of cell lineage. However, while substrate stiffness does affect cell response, it is 

clear that given the significant overlap in the distribution of observables (Figs. 3a-c), it is 

unlikely that these observables can be directly used to predict cell lineage. 

 

3.2     Response of cell on adhesive islands 

A selection of highly probable cell configurations of hMSCs on a square adhesive islands of 

area 𝐴p = 2025 μm2 are included in Fig. 4a (these islands are patterned on PDMS substrates 

with 𝐸sub = 4 MPa, which is assumed to be effectively rigid, and thus predictions shown 

correspond to substrates with stiffness 𝐸sub = 70 kPa). These predictions are shown as 

combined immunofluorescence-like images showing stress-fibres (green), focal adhesions 

(pink) and nucleus (blue). Tractions exerted by hMSCs are considered to be a strong indicator 

of the lineage they adopt [8, 35] and we include predictions of the probability density functions 

of the normalised total tractions 𝑇̂T in Fig. 4b for a range of areas 𝐴p of the square adhesive 

islands. Again, there is significant overlap in the traction distributions for the different island 

sizes, but in general, the tractions that cells exert decrease with decreasing 𝐴p, and this is 

generally thought to indicate a preference for differentiation into adipocytes over osteoblasts. 

 

3.3     Differentiation in growth media 

In a landmark experiment, Engler et al. [6] established the influence of substrate elasticity on 

stem cell lineage commitment. Their experiments were performed in a growth medium which 

encouraged differentiation into osteoblasts, myoblasts and maybe adipocytes depending on 

substrate stiffness although the experiments reported in Engler et al [6] did not directly report 

commitment to adipocytes. Thus, here we only focus on the differentiation of hMSCs to 

osteoblasts, myoblasts and set 𝐹̅𝕩 = 2.59 and Δ𝐹̅𝕩 = 0.14 for osteoblasts while for myoblasts 

we set 𝐹̅𝕩 = 1.87 and Δ𝐹̅𝕩 = 0.05 with 𝑁c = 15. 

 

Predictions of the fraction 𝒫𝕩 of the hMSCs differentiated into osteoblasts and myoblasts as a 

function of the substrate stiffness 𝐸sub are included in Fig. 5a alongside measurements from 

Engler et al. [6]. Excellent agreement is obtained, with osteoblasts favoured on the stiffer 

substrates. We note that even for 𝐸sub = 30 kPa where the probability of differentiation into 

osteoblasts peaks (and equally at 𝐸sub = 10 kPa where the probability of differentiation into 

myoblasts is a maximum), the differentiation fraction 𝒫𝕩 ≠ 1, i.e. the model predicts that at 

𝐸sub = 30 kPa, approximately 20% of the hMSCs remain undifferentiated much like the 

measurements. The excellent agreement between predictions and observations is of course 
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partially related to the fact that 𝐹̅𝕩 and Δ𝐹̅𝕩 for myoblasts and osteoblasts are calibrated against 

the differentiation data of Engler et al. [6]. However, the strength of the approach is that the 

model can now be used to predict the differentiation response for hMSCs on adhesive islands 

and these predictions are included in Fig. 5b. While no data exists to-date for the differentiation 

of hMSCs in growth media seeded on adhesive islands, our model suggests a preference for 

osteoblasts on larger islands and myoblasts on smaller islands. The propensity for 

differentiation of hMSCs into osteoblasts on larger islands is known at-least for hMSCs 

cultured in mixed media (as will be discussed subsequently) but here our predictions suggest 

that the mechanical cues from substrate stiffness and geometric cues from sizes of adhesive 

islands can have similar effects on the differentiation response of hMSCs in growth media. 

 

To understand the equivalency of these different cues, we first examine in further detail the 

differentiation predictions on elastic substrates. We have assumed that differentiation is set by 

the distribution of the cytoskeletal free-energy 𝐹̂cyto. Predictions of the probability density 

functions of 𝐹̂cyto for hMSCs on substrates with three selected stiffness are included in Fig. 6a. 

As discussed in [26], higher substrate stiffness allows cells to exert larger tractions without a 

significant energy penalty, and the probability of cells to adopt configurations with larger cell 

areas, aspect ratios and higher levels of stress-fibre polymerisation increases. A direct 

consequence of the high level of stress-fibre polymerisation is lowering of the cytoskeletal free-

energy as seen in Fig. 6a. These distributions then via (3) give the distribution of the 

cytoskeletal free-energy 𝐹̅cyto that cells assume over the 24-48 hour period after seeding during 

which they set their lineage. Predictions of the probability density functions of 𝐹̅cyto are 

included in Fig. 6b for the substrate stiffness employed in Fig. 6a. These distributions are 

relatively well dispersed suggesting that if the differentiation of hMSCs was set by this average 

cytoskeletal free-energy, their response on these three different substrates would vary 

substantially. In Fig. 6b, we have marked the range 𝐹̅𝕩 ± Δ𝐹̅𝕩 for the differentiation into 

osteoblasts in growth media. Clearly a large fraction of hMSCs seeded on the 𝐸sub = 30 kPa 

will differentiate into osteoblasts as seen in Fig. 5a, with a very small fraction of cells on 𝐸sub =

70 kPa also differentiating into osteoblasts as there is a small overlap in the distribution of 

𝐹̅cyto on 𝐸sub = 70 kPa with the differentiation range 𝐹̅𝕩 ± Δ𝐹̅𝕩  for osteoblasts. However, there 

is no overlap with hMSCs on 𝐸sub = 10 kPa with no differentiation into osteoblasts expected 

for cells seeded on such soft substrates. Thus, the propensity of hMSCs to differentiate into 

osteoblasts when seeded on substrates with stiffness 𝐸sub ≈ 30 kPa is directly related to the 

fact that their average cytoskeletal free-energy is in the correct range: for higher stiffness 

substrates 𝐹̅cyto is too low due to the higher levels of stress-fibre polymerisation, while on 

softer substrates 𝐹̅cyto is too high due to the significantly reduced levels of stress-fibre 

polymerisation. 

 

Recall that with increasing substrate stiffness the cytoskeletal free-energy decreases, and this 

is associated with an increase in cell area. Seeding cells on rigid substrates patterned with 

adhesive islands can restrict the spreading of cells and thereby have a similar effect on the 

cytoskeletal free-energy by constraining stress-fibre polymerisation via this geometric cue 

rather than the stiffness cue. Predictions of the distribution of 𝐹̂cyto are included in Fig. 6c for 

selected adhesive island areas 𝐴p with cytoskeletal free-energy again decreasing with 

increasing 𝐴p (for 𝐴p > 14000 μm2 the adhesive islands do not restrict cell spreading and the 
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results converge to the 𝐸sub = 70 kPa case discussed above). The consequences are therefore 

similar to the stiffness cues with hMSCs differentiating into osteoblasts for intermediate island 

areas. 

 

3.4     Differentiation in mixed media 

In mixed media, hMSCs differentiate into osteoblasts and adipocytes. We keep 𝐹̅𝕩 = 2.59 

unchanged for osteoblasts and increase Δ𝐹̅𝕩 = 0.37 while we choose 𝐹̅𝕩 = 1.61 and Δ𝐹̅𝕩 = 0.44 

for adipocytes. These values are again chosen in order to obtain agreement with measurements 

for hMSCs seeded on adhesive islands in mixed media [3].  Predictions of the differentiation 

fraction 𝒫𝕩 for adipocytes and osteoblasts as a function of the area 𝐴p of the adhesive islands 

(atop stiff substrates with stiffness 𝐸sub = 70 kPa) and the corresponding predictions of 𝒫𝕩 as 

a function of substrate stiffness 𝐸sub are included in Figs. 7a and 7b, respectively. The 

experimentally measured differentiation fraction from McBeath et al. [3] for an island size  

𝐴p = 2025 μm2 and from Guvendiren & Burdick [35] for cells cultured on substrates of 

stiffness 𝐸sub = 3 kPa and 30 kPa included in Figs. 7a and 7b confirm the fidelity of the 

predictions. Importantly, the equivalency of the stiffness and geometric cues seen for growth 

media also carries forward to mixed media, where we now see an increased tendency for 

differentiation into adipocytes at either lower adhesive island areas or lower substrate stiffness.  

 

Overall, the reason for this equivalency is as discussed above: adipocytes are favoured when 

the average cytoskeletal free-energy is higher and this occurs either by restricting cell spreading 

via the island size or on low stiffness substrates where the large tractions result in an energy 

penalty from the substrate which prevents cell spreading and enhances the cytoskeletal free-

energy. 

 

 

Discussion 

The equivalency of the cues discussed above, i.e. appropriately controlling adhesive island area 

can have an effect similar to substrate stiffness on hMSC differentiation seems to suggest that 

observable morphometrics such as cell area, aspect ratio etc. might correlate with the lineage 

the hMSCs adopt. In fact, it has been suggested [36] that changes to cell shape may be 

transduced into regulatory signals that govern cell fate. However, it is clearly seen from the 

distributions (Figs. 3a-c) that while cues such as substrate stiffness and island area do affect 

observables such as cell shape, the significant overlap of these distributions for the different 

cues strongly suggests that they cannot be directly used to determine cell fate. Here we claim 

that cytoskeletal free-energy, which gives a direct indication of the biochemical state of the 

cell, is a better metric to predict cell differentiation.  

 

One way to directly show why simple observables are insufficient is to plot the predictions of 

the correlation between common observables (i.e., cell area 𝐴̂, aspect ratio 𝐴s and total traction 

𝑇̂) and the cytoskeletal free-energy 𝐹̂cyto. The joint-probability distributions of 𝐹̂cyto with each 

of these observables, i.e. 𝑝(𝐴̂, 𝐹̂cyto), 𝑝(𝐴s, 𝐹̂cyto) and 𝑝(𝑇̂, 𝐹̂cyto) are shown in Figs. 8a-c for 

hMSCs seeded on an elastic substrate of stiffness 𝐸sub = 30 kPa. These distributions are an 

alternative way of showing scatter plots typically used to judge correlation of variables with 

the yellow regions indicating regions of high probability (i.e. if observations were made, we 

would anticipate to obtain a large number of independent measurements in those regions) and 
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dark blue indicating regions of low probability (i.e. we would expect that the probability of 

making a measurement in these regions is small). Clearly, there seems minimal correlation 

between these observables and 𝐹̂cyto confirming our view that these direct observables are not 

adequate to predict hMSC commitment. 

 

To further illustrate that direct observables such as cell shape or tractions may not be sufficient 

to predict cell differentiation, we computationally performed an inhibition study whereby we 

constrained cytoskeletal tension generation. This is an attempt to simulate drugs such as the 

Rho kinase (ROCK) inhibitor Y-27632 that restricts myosin activation. We simulated this by 

reducing the maximum tensile stress 𝜎max  generated by a stress-fibre from 240 kPa to 231 kPa. 

Predictions of the distributions of 𝐴̂, 𝐴s and 𝑇̂T for cells cultured on a substrate patterned with 

adhesive islands of area 𝐴p = 2725 μm2 are included in Figs. 9a-c for both the reference 

(untreated) case and with the simulated ROCK inhibitor. There is no appreciable difference in 

these direct observables. The corresponding predictions for the differentiation fraction 𝒫𝕩 for 

both the untreated and ROCK inhibitor treated cases are included in Fig. 10a. The untreated 

cells are predicted to show a strong commitment for osteoblasts, while the ROCK inhibitor 

treated cells are predicted to display a much weaker tendency to differentiate, and also 

predicted to be equally likely to differentiate into adipocytes and osteoblasts. These findings 

are consistent with the measurements of McBeath et al. [3], who performed drug inhibition 

studies specifically to experimentally test whether cell shape affects cell differentiation. In 

particular, they cultured hMSCs in mixed media in the presence of 10 μM Y-27632. Similar to 

our computational results, they observed that the treated cells remained spread and 

morphologically similar to the untreated cells but no longer exhibited the differentiation 

response of the untreated cells. Their measurements of the differentiation fractions for cells 

cultured on 𝐴p = 2725 μm2 islands are included in Fig. 10a, and show excellent agreement 

with the computational results. 

 

The question arises as to why the computational model predicts such a dramatic change in the 

response given that common observables such as cell shape and tractions are seemingly 

unaffected when simulated with a ROCK inhibitor. Of course, differentiation in the model is 

directly related to the cytoskeletal free-energy 𝐹̂cyto. Simulating a ROCK inhibitor by reducing 

the value of 𝜎max  from 240 kPa to 231 kPa does not affect the cell morphology and tractions 

substantially but does affect the state of the cytoskeleton and thereby 𝐹̂cyto, as seen in Fig 9d. 

In terms of direct observations, this will be seen as a reduction in the level of stress-fibre 

polymerisation in imaged cells. Three randomly selected cell morphologies (from the entire 

computed distribution of states the cells assume) for untreated and ROCK inhibitor treated 

cases are shown in Fig. 10b for hMSCs seeded on substrates with 𝐴p = 2725 μm2. In these 

images only, the stress-fibre cytoskeleton has been marked in green similar to 

immunofluorescence imaging of actin in experiments. There is a clear reduction in the level of 

stress-fibre polymerisation due to the addition of the ROCK inhibitor in line with the 

observations of McBeath et al. [3]. It is this reduction in the level of stress-fibre polymerisation 

that enhances 𝐹̂cyto (see Fig. 9d) and inhibits cell differentiation even though there are no major 

changes in the cell morphometrics. The fact that no single cell morphometric is found to 

correlate with the lineage hMSCs adopt is well established with learning type models, in which 

using multiple metrics typically found to give reasonable predictions of cell fate [22, 23]. For 
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example, it is conceivable that a combination of morphometrics such as cell area, aspect ratio 

and traction will correlate with cell fate for untreated cells. However, it is clear that for cell 

treated with a ROCK inhibitor the metrics will need to include a quantification of stress-fibre 

polymerisation. However, cytoskeletal free-energy which directly measures the biochemical 

state of the cell is a single metric that correlates with the lineages hMSCs adopt. Unfortunately, 

while 𝐹̂cyto is not directly measurable in experiments, the fact that such a correlation might 

exist provides insight into the regulatory mechanisms that govern the commitment of hMSCs. 

 

In summary, we hypothesise that the shape fluctuations of hMSCs in response to physical cues 

in their microenvironment during 1-2 days after seeding determine the probability and 

phenotype of cell lineage commitment and subsequent differentiation. The cell shape 

fluctuations are an output of the homeostatic mechanics framework, with the physical cues and 

a simple free-energy model for the cell as the only inputs. Analysed through the lens of a single 

biochemical parameter, i.e. 𝐹̂cyto, the aggregate of cell shape fluctuations in a given 

microenvironment can provide an early forecast of stem cell differentiation (within 1-2 days, 

compared to the typical forecast timescale of 1-2 weeks in experiments [3, 6]). The efficacy of 

the framework is demonstrated here under different conditions (mechanical and geometric 

cues, and in the presence of actomyosin inhibitors), thus inspiring confidence in its applicability 

to other insoluble cues in the stem cell niche. A key assumption in the free-energy model for 

the cell is that the morphological response of cells is independent of the culture medium. 

Changes to the free-energy model to account for the influence of culture medium in cellular 

morphological response can enhance the applicability of the homeostatic mechanics framework 

to predict differentiation response in the presence of soluble cues in the stem cell niche. 
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Figure Captions 

 

Figure 1: (a) An illustration of the cell model employed in the simulations using the 

homeostatic mechanics framework. The sketch shows a section of a cell on an elastic substrate 

and exchanging species with the nutrient bath. The inset shows a representative volume 

element (RVE) of the cell cytoplasm containing polymerised acto-myosin stress-fibres and the 

unbound proteins along with the energy landscape that governs the equilibrium of these 

proteins. (b) The two-dimensional (2D) approximation of the cell with the 2D RVE.  

 

 
Figure 2: (a) Predictions from simulations, and (b) observations from Engler et al [6] of 

hMSCs seeded on elastic substrates uniformly coated with collagen. In the experimental 

immunofluorescence images, the focal adhesions are coloured green, actin red and nucleus blue 

and purple, and a similar scheme is followed in the predictions, with the focal adhesions 

parameterised by the magnitude of the normalised traction T̂ (see Supplementary S1.4.1 for 

details of the method used to construct immunofluorescence-like images from the simulated 

results). Scale bar = 20 μm. 
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Figure 3: Predictions of the probability density functions of three typically reported 

observables for hMSCs seeded on elastic substrates uniformly coated with collagen. 

Distributions of (a) normalised cell area 𝐴̂, (b) cell aspect ratio 𝐴s and (b) normalised total 

traction 𝑇̂T for three selected substrate stiffness 𝐸sub in each case. (d) Comparisons between 

measurements [35] and predictions of the distributions of tractions Τ exerted by cell on elastic 

substrates of stiffness 𝐸sub = 3 kPa and 30 kPa (outline of nucleus shown as a black line). In 

each case, we show three simulated configurations we randomly selected from the computed 

homeostatic distribution. The scale bar in (d) = 30 μm. 
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Figure 4: (a) A selection of 7 cell configurations selected from the homeostatic ensemble for 

hMSCs seeded on substrate patterned with adhesive islands of area 𝐴p = 2025 μm2. The 

predictions are shown as combined immunofluorescence-like images showing stress-fibres 

(green), focal adhesions (pink) and nucleus (blue). Focal adhesions are parameterised by the 

magnitude of the normalised traction T̂. The scale bar = 30 μm. (b) Prediction of the probability 

density function of normalised total traction 𝑇̂T for hMSCs seeded on adhesive islands of 

selected areas 𝐴p. 

 

 
Figure 5: (a) Predictions of the variation of differentiation fraction 𝒫𝕩 for hMSCs seeded on 

elastic substrates with stiffness 𝐸sub in growth media and compared with measurements from 

Engler et al. [6]. (b) Corresponding predictions of 𝒫𝕩 for hMSCs seeded on substrates patterns 

with adhesive islands of area 𝐴p and seeded in growth media. The hMSCs in growth media are 

assumed to differentiate into osteoblasts, myoblasts or remain undifferentiated. 
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Figure 6: Predictions of the probability density function of (a) the cytoskeletal free-energy 

𝐹̂cyto for hMSCs seeded on substrates of selected stiffness 𝐸sub, and (b) the corresponding 

distributions of the average cytoskeletal free-energy 𝐹̅cyto. In (b), we have indicated the band 

(blue) of average cytoskeletal free-energies over which hMSCs are assumed to differentiate 

into osteoblasts in growth media. (c) Predictions of the probability density functions of 𝐹̂cyto 

for hMSCs seeded on substrates patterned with adhesive islands of area 𝐴p.  

 

 
Figure 7: Predictions of the variation of differentiation fraction 𝒫𝕩 for hMSCs seeded on (a) 

substrates patterned with adhesive islands of area 𝐴p, and (b) elastic substrates with stiffness 

𝐸sub in mixed media. The hMSCs in mixed media are assumed to differentiate into osteoblasts, 

adipocytes or remain undifferentiated. Experimental measurements for an island of area 𝐴p =

2025 μm2 from McBeath et al. [3] and substrates of stiffness 𝐸sub = 3 kPa and 30 kPa from 

Guvendiren & Burdick [35] are included in (a) and (b), respectively.  
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Figure 8: Predictions of the joint probability density distributions of the cytoskeletal free-

energy 𝐹̂cyto with the (a) normalised cell area 𝐴̂, (b) cell aspect ratio 𝐴s and (c) the normalised 

total traction 𝑇̂T. Results are shown for hMSCs seeded on an elastic substrate of stiffness 

𝐸sub = 30 kPa.  

 

 
Figure 9: Predictions of the probability density functions for (a) normalised cell area 𝐴̂, (b) 

cell aspect ratio 𝐴s, (c) normalised total traction 𝑇̂T, and (d) the cytoskeletal free-energy 𝐹̂cyto 

for hMSCs seeded on substrates patterned with adhesive islands of area 𝐴𝑝 = 2725 μm2. 

Results are shown for both untreated cells and cells treated with a ROCK inhibitor.  
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Figure 10: (a) Predictions of the differentiation fraction 𝒫𝕩 for hMSCs seeded on a substrate 

patterned with adhesive islands of area 𝐴p = 2725 μm2. Results are shown for untreated cells 

as well as cells treated with a ROCK inhibitor, along with corresponding measurements from 

McBeath et al. [3] where Y-27632 was used as the ROCK inhibitor. (b) Three randomly 

selected cell morphologies from the entire homeostatic ensemble for untreated cells and cells 

treated with a ROCK inhibitor seeded on a substrate with 𝐴p = 2725 μm2. The scale bar = 30 

μm. In these images, we only show the stress-fibre distributions to illustrate the reduction in 

the level of stress-fibre polymerisation due to the treatment with a ROCK inhibitor.  
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